-
Notifications
You must be signed in to change notification settings - Fork 0
/
slint.h
782 lines (698 loc) · 21.2 KB
/
slint.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
//
// Simple Library for Number Theory
//
#ifndef _SLINT_H_
#define _SLINT_H_
#include <iostream>
#include <vector>
//#include <sys/mman.h>
//#include <sys/types.h>
//#include <sys/stat.h>
//#include <fcntl.h>
//#include <unistd.h>
// XXX lazy...
// 0 terminated array
const int prime_powers_table[] = {
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43,
47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109,
113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251,
256, 257, 263, 269, 271, 277, 281, 283, 289, 293, 307, 311, 313, 317, 331,
337, 343, 347, 349, 353, 359, 361, 367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
503, 509, 512, 521, 523, 529, 541, 547, 557, 563, 569, 571, 577, 587, 593,
599, 601, 607, 613, 617, 619, 625, 631, 641, 643, 647, 653, 659, 661, 673,
677, 683, 691, 701, 709, 719, 727, 729, 733, 739, 743, 751, 757, 761, 769,
773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 841, 853, 857, 859, 863,
877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 961, 967, 971,
977, 983, 991, 997, 1009, 1013, 1019, 1021, 1024, 1031, 1033, 1039, 1049,
1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123,
1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223,
1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301,
1303, 1307, 1319, 1321, 1327, 1331, 1361, 1367, 1369, 1373, 1381, 1399,
1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481,
1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627,
1637, 1657, 1663, 1667, 1669, 1681, 1693, 1697, 1699, 1709, 1721, 1723,
1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823,
1831, 1847, 1849, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907,
1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003,
2011, 2017, 2027, 2029, 2039, 2048, 2053, 2063, 2069, 2081, 2083, 2087,
2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179,
2187, 2197, 2203, 2207, 2209, 2213, 2221, 2237, 2239, 2243, 2251, 2267,
2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347,
2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2401, 2411, 2417,
2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539,
2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647,
2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711,
2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797,
2801, 2803, 2809, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887,
2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089,
3109, 3119, 3121, 3125, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203,
3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307,
3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389,
3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3481, 3491,
3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571,
3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671,
3673, 3677, 3691, 3697, 3701, 3709, 3719, 3721, 3727, 3733, 3739, 3761,
3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853,
3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943,
3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051,
4057, 4073, 4079, 4091, 4093, 4096, 4099, 4111, 4127, 4129, 4133, 4139,
4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349,
4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
4463, 4481, 4483, 4489, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549,
4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651,
4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759,
4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877,
4889, 4903, 4909, 4913, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967,
4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5041,
5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153,
5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273,
5279, 5281, 5297, 5303, 5309, 5323, 5329, 5333, 5347, 5351, 5381, 5387,
5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471,
5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563,
5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659,
5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779,
5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,
5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981,
5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089,
6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199,
6203, 6211, 6217, 6221, 6229, 6241, 6247, 6257, 6263, 6269, 6271, 6277,
6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361,
6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481,
6491, 6521, 6529, 6547, 6551, 6553, 6561, 6563, 6569, 6571, 6577, 6581,
6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701,
6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803,
6823, 6827, 6829, 6833, 6841, 6857, 6859, 6863, 6869, 6871, 6883, 6889,
6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983,
6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103,
7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213,
7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331,
7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477,
7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549,
7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643,
7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741,
7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873,
7877, 7879, 7883, 7901, 7907, 7919, 7921, 7927, 7933, 7937, 7949, 7951,
7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089,
8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8192,
8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291,
8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419,
8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537,
8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641,
8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731,
8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831,
8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941,
8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043,
9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161,
9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277,
9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377,
9391, 9397, 9403, 9409, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461,
9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551,
9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679,
9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787,
9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883,
9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 0};
static long next_prime(long);
// taken from NTL, stripped of
// overflow checking
static void XGCD(long& d, long& s, long& t, long a, long b)
{
long u, v, u0, v0, u1, v1, u2, v2, q, r;
long aneg = 0, bneg = 0;
if (a < 0) {
a = -a;
aneg = 1;
}
if (b < 0) {
b = -b;
bneg = 1;
}
u1=1; v1=0;
u2=0; v2=1;
u = a; v = b;
while (v != 0) {
q = u / v;
r = u % v;
u = v;
v = r;
u0 = u2;
v0 = v2;
u2 = u1 - q*u2;
v2 = v1- q*v2;
u1 = u0;
v1 = v0;
}
if (aneg)
u1 = -u1;
if (bneg)
v1 = -v1;
d = u;
s = u1;
t = v1;
}
// taken from NTL:
static long InvMod(long a, long n)
{
long d, s, t;
XGCD(d, s, t, a, n);
if (d != 1) return -1;
if (s < 0)
return s + n;
else
return s;
}
// taken from NTL:
static inline long MulMod(long a, long b, long n)
{
long q, res;
q = (long) ((((double) a) * ((double) b)) / ((double) n));
res = a*b - q*n;
if (res >= n)
res -= n;
else if (res < 0)
res += n;
return res;
}
// taken from NTL
static long PowerMod(long a, long ee, long n)
{
long x, y;
unsigned long e;
if (ee < 0)
e = - ((unsigned long) ee);
else
e = ee;
x = 1;
y = a;
while (e) {
if (e & 1) x = MulMod(x, y, n);
y = MulMod(y, y, n);
e = e >> 1;
}
if (ee < 0) x = InvMod(x, n);
return x;
}
// taken from NTL,
// stripped of overflow checking
static long GCD(long a, long b)
{
long u, v, t, x;
if (a < 0) {
a = -a;
}
if (b < 0) {
b = -b;
}
if (b==0)
x = a;
else {
u = a;
v = b;
do {
t = u % v;
u = v;
v = t;
} while (v != 0);
x = u;
}
return x;
}
static long LCM(long a, long b) {
long g = GCD(a, b);
return a * (b/g);
}
static void factors(long n, std::vector<long> * primes, std::vector<int> * exponents) {
//
// appends the prime factors of n to *primes,
// and if exponents if not NULL, appends the exponents
// of those factor to *exponents
//
// yes, this is stupidly slow.
//
// i don't care...
//
long p = 2;
int a = 0;
while(n > 1) {
a = 0;
while( (n % p) == 0 ) {
n = n / p;
a++;
}
if(a != 0) {
primes->push_back(p);
if(exponents != NULL) {
exponents->push_back(a);
}
}
if(p == 2)
p = 3;
else
p = p + 2;
}
}
static bool is_squarefree(long n) {
//
// factors n by trial division, checking for squarefreeness along the
// way.
//
// yes, this is stupidly slow.
//
// i don't care...
//
long p = 2;
int a = 0;
while(n > 1) {
a = 0;
while( (n % p) == 0 ) {
n = n / p;
a++;
}
if(a > 1) return false;
if(p == 2)
p = 3;
else
p = next_prime(p);
//p = p + 2;
}
return true;
}
static bool is_fundamental_discriminant(long n) {
if(n % 4 == 1) {
return is_squarefree(n);
}
else if(n % 4 == 0) {
long m = n/4;
if(m % 4 == 2 || m % 4 == 3) {
return is_squarefree(m);
}
else {
return false;
}
}
else {
return false;
}
}
static long primitive_root(long n) {
//
// Return a primitive root mod n.
//
// If n == 1 or 2, returns 1
// If n == 4, returns 3
// If n is an odd prime power p^e with p < 3037000499, returns
// the smallest primitive root mod p which is a primitive
// root for all e.
// If n in an odd prime larger than 3037000499, returns the
// smallest primitive root mod n
//
if(n < 2) {
return n;
}
if(n == 2)
return 1;
if(n == 4)
return 3;
if(n == 40487) return 10;
#ifdef FLINT_VERSION
if(n_is_prime(n)) {
return n_primitive_root_prime(n);
}
#endif
std::vector<long> prime_factors;
factors(n, &prime_factors, NULL);
if(prime_factors.size() > 1)
return -1;
long p = prime_factors[0];
if(p == 2)
return -1;
long p2;
if(p > 3037000499) {
p2 = p; // when p is too large, we still compute
// a primitive root, but we don't verify
// that it is a primitive root for all powers of p
}
else {
p2 = p*p;
}
long phi = p - 1;
std::vector<long> phi_prime_factors;
factors(phi, &phi_prime_factors, NULL);
long a = 1;
while(a < n) {
a++;
if(GCD(a,n) > 1)
continue;
bool root = true;
for( std::vector<long>::iterator i = phi_prime_factors.begin();
i != phi_prime_factors.end();
i++ ) {
//std::cout << p << " " << *i << std::endl;
if(PowerMod(a, phi/(*i), p) == 1) {
root = false;
break;
}
}
if(root) {
if(p == p2)
return a;
else {
long x = PowerMod(a, p, p2);
if(x != a)
return a;
}
}
}
return -1;
}
static bool is_prime_power(long q) {
std::vector<long> primes;
factors(q, &primes, NULL);
if(primes.size() == 1)
return true;
else
return false;
}
static bool MR_test(long n, long a) {
long d = n - 1;
int s = 0;
while(d % 2 == 0) {
d = d/2;
s = s + 1;
}
long x = PowerMod(a, d, n);
if(x == 1 || x == n-1) {
return true;
}
int r = 1;
while(r < s) {
x = x*x % n;
if(x == 1) return false;
if(x == n-1) return true;
r++;
}
return false;
}
static bool is_prime(long q) {
#ifdef FLINT_VERSION
return n_is_prime(q);
#else
if(q == 2 || q == 7 || q == 61) return true;
if(q < 4759123141l) {
return MR_test(q,2) && MR_test(q,7) && MR_test(q,61);
}
else {
std::cerr << "You should be using FLINT." << std::endl;
std::vector<long> primes;
std::vector<int> exponents;
factors(q, &primes, &exponents);
if(primes.size() == 1 && exponents[0] == 1)
return true;
else
return false;
}
#endif
}
static long next_prime(long n) {
if(n < 2)
return 2;
if(n == 2)
return 3;
if(n % 2 == 0)
n += 1;
else
n += 2;
while(!is_prime(n)) {
n += 2;
}
return n;
}
static long odd_part(long n) {
if(n == 0) {
return 1;
}
while(n % 2 == 0) {
n = n/2;
}
return n;
}
static long kronecker(long n, long m) {
if(GCD(n,m) != 1) {
return 0;
}
if(n < 0) {
if(m % 2 == 1) {
n = n % m;
if(n != 0) n = n + m;
}
else {
n = n % (4*m);
if(n != 0) n += 4*m;
}
}
//if(n > m) {
// n = n % m;
//}
long t = 1;
/*
std::cout << std::endl;
std::cout << n << " " << m << std::endl;
while(m > 1) {
long m_odd = odd_part(m);
long n_odd = odd_part(n);
if(m_odd % 4 == 3 && n_odd % 4 == 3) t = -t;
long x = n;
n = m % n;
m = x;
}
std::cout << t << " " << n << " " << m << std::endl;
*/
while(m > 1) {
long m_odd, m_even;
m_odd = odd_part(m);
m_even = m/m_odd;
if(n % 8 == 3 || n % 8 == 5) {
while(m_even % 2 == 0) {
t = -t;
m_even /= 2;
}
}
//if(m_even == 2) {
// if(n % 8 == 3 || n % 8 == 5) t = -t;
//}
n = n % m_odd;
if(odd_part(n) % 4 == 3 && m_odd % 4 == 3) t = -t;
long x = n;
n = m_odd;
m = x;
}
if(m == 0) {
if(n != 1) return 0;
}
return t;
}
static long kronecker2(long n, long m) {
long t = 1;
//cout << n << " " << m << " " << t << endl;
long m_even, m_odd;
m_odd = odd_part(m);
m_even = m/m_odd;
while(m > 2) {
if(m_even == 2) {
if(n % 8 == 3 || n % 8 == 5) t = -t;
}
n = n % m_odd;
if(odd_part(n) % 4 == 3 && m_odd % 4 == 3) t = -t;
//if(odd_part(m) % 4 == 3) t = -t;
long x = n;
n = m_odd;
m = x;
//cout << n << " " << m << " " << t << endl;
m_odd = odd_part(m);
m_even = m/m_odd;
}
if(m == 2) {
if(n % 2 == 0) return 0;
if(n % 8 == 3 || n % 8 == 5) t = -t;
}
else if (m == 0) {
if(n != 1) return 0;
}
return t;
}
static void prime_range(std::vector<long> * primes, long end, long start = 2) {
// fill primes with a list of prime numbers between
// start and end (including start but not end)
if(start > 2) {
std::cerr << "that's not implemented." << std::endl;
return;
}
// a really simple sieve...
bool * sieve_range = new bool[end]();
sieve_range[0] = 1;
sieve_range[1] = 1;
long p = 2;
while(p < end) {
primes->push_back(p);
for(long k = 2*p; k < end; k += p) {
sieve_range[k] = 1;
}
do {
p++;
} while (p < end && sieve_range[p] == 1);
}
delete [] sieve_range;
}
static std::vector<long> prime_range(long end, long start = 2) {
// fill primes with a list of prime numbers between
// start and end (including start but not end)
std::vector<long> primes;
if(start > 2) {
std::cerr << "that's not implemented." << std::endl;
return primes;
}
// a really simple sieve...
bool * sieve_range = new bool[end]();
sieve_range[0] = 1;
sieve_range[1] = 1;
long p = 2;
while(p < end) {
primes.push_back(p);
for(long k = 2*p; k < end; k += p) {
sieve_range[k] = 1;
}
do {
p++;
} while (p < end && sieve_range[p] == 1);
}
delete [] sieve_range;
return primes;
}
static void squarefree_range(std::vector<long> * squarefrees, long end, long start = 1) {
// fill primes with a list of prime numbers between
// start and end (including start but not end)
if(start > 1) {
std::cerr << "that's not implemented." << std::endl;
return;
}
// a really simple sieve...
bool * sieve_range = new bool[end]();
sieve_range[0] = 1;
sieve_range[1] = 0;
squarefrees->push_back(1);
long n = 2;
while(n < end) {
squarefrees->push_back(n);
for(long k = n*n; k < end; k += n*n) {
sieve_range[k] = 1;
}
do {
n++;
} while (n < end && sieve_range[n] == 1);
}
delete [] sieve_range;
}
static void discriminant_range(std::vector<long> * discs, long end, long start = 1) {
std::vector<long> sqfrees;
squarefree_range(&sqfrees, end, start);
int index1 = 0;
int index2 = 0;
int size = sqfrees.size();
long n1 = sqfrees[index1];
long n2 = sqfrees[index2];
while(n2 < end + 1) {
while(4*n2 < n1) {
if(n2 % 4 == 2 || n2 % 4 == 3) discs->push_back(4*n2);
index2++;
n2 = sqfrees[index2];
}
if(n1 == end) break;
if(n1 % 4 == 1) discs->push_back(n1);
index1++;
if(index1 > size) n1 = end;
else n1 = sqfrees[index1];
}
}
static int order_mod(int n, int q) {
//
// return the smallest e such that n^e == 1 mod q, or
// -1 if there is no such e
//
if(GCD(n,q) != 1) return -1;
int z = n;
int e = 1;
while(z != 1) {
z = (z * n) % q;
e++;
}
return e;
}
static long CRT(long a, long b, long m, long n) {
//
// return x == a mod m and b mod n
//
long minv = InvMod(m, n);
long ninv = InvMod(n, m);
long q = m*n;
a = a % m;
b = b % n;
long x1 = MulMod(n, MulMod(a,ninv,q), q);
long x2 = MulMod(m, MulMod(b,minv,q), q);
return (x1 + x2) % q;
}
static long CRT(std::vector<long> a, std::vector<long> n) {
if(a.size() == 0) return 0;
long x = a[0];
long q = n[0];
for(int k = 1; k < a.size(); k++) {
x = CRT(x, a[k], q, n[k]);
q = q*n[k];
}
if(q == 1) return 0;
return x;
}
static inline long ipow(long a, long n) {
long z = 1;
for(int j = 0; j < n; j++) {
z = z * a;
}
return z;
}
struct int_factor_t {
int p;
int e;
int f; // f == p^e
};
struct long_factor_t {
long p;
int e;
long f; // f == p^e
};
void build_factor_table(int size);
void load_factor_table();
void build_long_factor_table(long size);
struct int_factorization_t {
// factorization of 32 bit (signed) integers
int_factor_t factors[9];
int n;
int nfactors;
};
struct long_factorization_t {
// factorization of 64 bit (signed) integers
long_factor_t factors[16];
long n;
int nfactors;
};
void factor(int n, int_factorization_t &factorization);
void factor_long(long n, long_factorization_t &factorization);
std::vector<int> divisors(int n);
std::vector<long> divisors(long n);
int ndivisors(int n);
int mobius(int n);
int squarefree_part(int n);
int euler_phi(int n);
#endif