forked from aseveryn/deep-qa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
255 lines (206 loc) · 8.01 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import scipy.io
import numpy
import re
import os
import pandas as pd
import subprocess
from datetime import datetime
def load_SST_data(path, include_sentence_size=False):
print "Loading data from", path
data = scipy.io.loadmat(path)
vocab_emb = data['vocab_emb'].T
# Pad the first row, s.t. we can index with original values from Matlab
# (which start from 1) and the last row (empty).
vocab_size = vocab_emb.shape[1]
print 'vocab_size', vocab_size
vocab_emb = numpy.vstack([numpy.zeros(vocab_size), vocab_emb, numpy.zeros(vocab_size)])
print "Vocabulary", vocab_emb.shape, vocab_emb.dtype
train_lbl = data['train_lbl'][:,0].astype('int32')-1
train = data['train'].astype('int32')
valid = data['valid'].astype('int32')
valid_lbl = data['valid_lbl'][:,0].astype('int32')-1
test = data['test'].astype('int32')
test_lbl = data['test_lbl'][:,0].astype('int32')-1
# print train[:3]
if include_sentence_size:
train_sentence_size = data['train_lbl'][:,1][:,numpy.newaxis].astype('int32')
train = numpy.hstack([train, train_sentence_size])
valid_sentence_size = data['valid_lbl'][:,1][:,numpy.newaxis].astype('int32')
valid = numpy.hstack([valid, valid_sentence_size])
test_sentence_size = data['test_lbl'][:,1][:,numpy.newaxis].astype('int32')
test = numpy.hstack([test, test_sentence_size])
return [(train, train_lbl), (valid, valid_lbl), (test, test_lbl)], vocab_emb
def is_ascii(s):
return all(ord(c) < 128 for c in s)
NUM_ITEMS = 5
def iter_tweets(fname):
print "Processing", fname
for i, line in enumerate(open(fname), 1):
items = line.strip().split('\t')
if len(items) != NUM_ITEMS:
print "Skipping line: {}, wrong number of fields: {}; expected: {}".format(i, len(items), NUM_ITEMS)
continue
label, docid, tokens, pos_tags, text = items
# label = int(label)
if label == 'unknwn':
label = 0
tokens = tokens.lower().split()
pos_tags = pos_tags.split()
clean_tokens = []
for t, pos in zip(tokens, pos_tags):
t = re.sub(r'(.)\1+', r'\1\1', t) # Replace words with repeating characters
t = re.sub(r'\d', '0', t)
if not is_ascii(t):
continue
elif pos == '@':
t = '@@'
elif pos == 'U':
t = '<URL>'
elif pos == '$':
t = '0'
elif pos == 'G':
t = 'G'
clean_tokens.append(t)
yield label, clean_tokens
def iter_tweets_term(fname):
print "Processing", fname
for i, line in enumerate(open(fname), 1):
items = line.strip().split('\t')
tokens, pos_tags, docid1, docid2, begin, end, label, text, _, _ = items
if label == 'unknwn':
label = 0
tokens = tokens.lower().split()
pos_tags = pos_tags.split()
clean_tokens = []
for t, pos in zip(tokens, pos_tags):
t = re.sub(r'(.)\1+', r'\1\1', t) # Replace words with repeating characters
t = re.sub(r'\d', '0', t)
if not is_ascii(t):
continue
elif pos == '@':
t = '@@'
elif pos == 'U':
t = '<URL>'
elif pos == '$':
t = '0'
elif pos == 'G':
t = 'G'
clean_tokens.append(t)
yield label, clean_tokens, int(begin), int(end)
def iter_tweets_term_(fname):
label2int = {'negative': 0, 'neutral': 1, 'positive': 2, 'unknwn': 0}
print "Processing", fname
for i, line in enumerate(open(fname), 1):
items = line.strip().split('\t')
docid1, docid2, begin, end, label, text = items
label = label2int[label]
tokens = text.decode('unicode-escape').encode('utf-8').lower().split()
clean_tokens = []
for t in tokens:
t = re.sub(r'(.)\1+', r'\1\1', t) # Replace words with repeating characters
t = re.sub(r'\d', '0', t)
if not is_ascii(t):
continue
elif t.startswith('@') and len(t) > 1:
t = '@@'
elif t.startswith('http://'):
t = '<URL>'
clean_tokens.append(t)
yield label, clean_tokens, begin, end
def test_iter_tweets():
fname = 'emoticon_tweets/all.tagged'
for label, tokens in iter_tweets(fname):
print label, tokens
def load_bin_vec(fname, words):
"""
Loads 300x1 word vecs from Google (Mikolov) word2vec
"""
print fname
vocab = set(words)
word_vecs = {}
with open(fname, "rb") as f:
header = f.readline()
vocab_size, layer1_size = map(int, header.split())
binary_len = numpy.dtype('float32').itemsize * layer1_size
print 'vocab_size, layer1_size', vocab_size, layer1_size
count = 0
for i, line in enumerate(xrange(vocab_size)):
if i % 100000 == 0:
print '.',
word = []
while True:
ch = f.read(1)
if ch == ' ':
word = ''.join(word)
break
if ch != '\n':
word.append(ch)
if word in vocab:
count += 1
word_vecs[word] = numpy.fromstring(f.read(binary_len), dtype='float32')
else:
f.read(binary_len)
print "done"
print "Words found in wor2vec embeddings", count
return word_vecs
TASK_A = '/mnt/sdd/home/sovarm/nrc-twitter/data/semeval-2015/SemEval2015-task10-test-A-input.txt'
TASK_A_PROGRESS = '/mnt/sdd/home/sovarm/nrc-twitter/data/semeval-2015/SemEval2015-task10-test-A-input-progress.txt'
TASK_B = '/mnt/sdd/home/sovarm/nrc-twitter/data/semeval-2015/SemEval2015-task10-test-B-input.txt'
TASK_B_PROGRESS = '/mnt/sdd/home/sovarm/nrc-twitter/data/semeval-2015/SemEval2015-task10-test-B-input-progress.txt'
def score_semeval2015(pred_fn, nnet_outdir, data_dir):
def predict(dataset):
x_test = numpy.load(os.path.join(data_dir, 'semeval_{}_x.npy').format(dataset))
print dataset, x_test.shape
predictions = pred_fn(x_test)
y2label = {0: 'negative', 1: 'neutral', 2: 'positive'}
labels = [y2label[y] for y in predictions]
return labels
def write_predictions(input_fname, labels):
data = pd.read_csv(input_fname, sep='\t', names=['id1', 'id2', 'label', 'text'])
basename = os.path.basename(input_fname)
data['label'] = labels
data['id1'] = 'NA'
ts = datetime.now().strftime('%Y-%m-%d-%H.%M.%S')
outfile = os.path.join(nnet_outdir, '{}.output'.format(basename))
print 'Writing to', outfile
data.to_csv(outfile, sep='\t', header=False, index=False)
return outfile
labels = predict('test-2015')
outfile = write_predictions(TASK_B, labels)
labels = predict('test-2014')
outfile = write_predictions(TASK_B_PROGRESS, labels)
subprocess.call('/usr/bin/perl score-semeval2014-task9-subtaskB.pl "{}"'.format(outfile), shell=True)
subprocess.call('/bin/cat "{}.scored"'.format(outfile), shell=True)
def score_semeval2015_term(pred_fn, nnet_outdir, data_dir):
def predict(dataset):
x_test = numpy.load(os.path.join(data_dir, 'semeval_{}_x.npy').format(dataset))
x_test_term = numpy.load(os.path.join(data_dir, 'semeval_{}_x_term.npy').format(dataset))
print dataset, x_test.shape
predictions = pred_fn(x_test, x_test_term)
y2label = {0: 'negative', 1: 'neutral', 2: 'positive'}
labels = [y2label[y] for y in predictions]
return labels
def write_predictions(input_fname, labels):
data = pd.read_csv(input_fname, sep='\t', names=['id1', 'id2', 'begin', 'end', 'label', 'text'])
basename = os.path.basename(input_fname)
data['label'] = labels
data['id1'] = 'NA'
ts = datetime.now().strftime('%Y-%m-%d-%H.%M.%S')
outfile = os.path.join(nnet_outdir, '{}.output'.format(basename))
print 'Writing to', outfile
data.to_csv(outfile, sep='\t', header=False, index=False)
return outfile
labels = predict('test-2015')
outfile = write_predictions(TASK_A, labels)
labels = predict('test-2015-progress')
outfile = write_predictions(TASK_A_PROGRESS, labels)
subprocess.call('/usr/bin/perl score-semeval2014-task9-subtaskA.pl "{}"'.format(outfile), shell=True)
subprocess.call('/bin/cat "{}.scored"'.format(outfile), shell=True)
def test_iter_tweets_term():
fname = '/mnt/sdd/home/sovarm/nrc-twitter/data/semeval-2013-full/dev/input/twitter-dev-input-A.tsv'
for items in iter_tweets_term(fname):
print items
if __name__ == '__main__':
# main()
# test_iter_tweets()
test_iter_tweets_term()