forked from aseveryn/deep-qa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv1d.py
728 lines (576 loc) · 28 KB
/
conv1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
import numpy as np
import numba
import theano
from theano import tensor as T
import timeit
from theano.tensor.nnet.conv import conv2d
import theano.sandbox.neighbours as TSN
def convolve1d_2D_numpy(a, b, mode='full'):
nwords, ndim = a.shape
filter_width, ndim = b.shape
b = np.flipud(b) # flip the kernel
if mode == 'full':
pad = np.zeros((filter_width-1, ndim))
a = np.vstack([pad, a, pad])
shape = (nwords+filter_width-1, filter_width, ndim)
elif mode == 'valid':
shape = (nwords-filter_width+1, filter_width, ndim)
strides = (a.strides[0],) + a.strides
view = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
conv_out = np.einsum('kij,ij->kj', view, b)
return conv_out
class Convolve1d(theano.Op):
def __init__(self, mode='full'):
self.mode = mode
def make_node(self, image, filt):
image = theano.tensor.as_tensor_variable(image)
filt = theano.tensor.as_tensor_variable(filt)
assert image.ndim == 2
assert filt.ndim == 2
# assert image.shape[1] == filt.shape[1]
return theano.Apply(self, [image, filt], [image.type()])
def make_thunk(self, node, storage_map, compute_map, no_recycling):
in1_type = getattr(numba, node.inputs[0].dtype)
in2_type = getattr(numba, node.inputs[1].dtype)
out_type = getattr(numba, node.outputs[0].dtype)
self.numba_fct = numba.jit(out_type[:, :](in1_type[:, :], in2_type[:, :]))(convolve1d_2D_numpy)
# self.numba_fct = convolve1d_2D_numpy
return super(Convolve1d, self).make_thunk(
node, storage_map, compute_map, no_recycling)
def perform(self, node, inputs, outputs):
image, filt = inputs
out = self.numba_fct(image, filt, self.mode)
outputs[0][0] = out
def infer_shape(self, node, in_shapes):
nwords, ndim = in_shapes[0]
filter_width, ndim = in_shapes[1]
if self.mode == 'full':
return [(nwords+filter_width-1, ndim)]
elif self.mode == 'valid':
return [(nwords-filter_width+1, ndim)]
def R_op(self, inputs, eval_points):
rval = None
if eval_points[0] is not None:
rval = self.make_node(eval_points[0], inputs[1]).outputs[0]
if eval_points[1] is not None:
if rval is None:
rval = self.make_node(inputs[0], eval_points[1]).outputs[0]
else:
rval += self.make_node(inputs[0], eval_points[1]).outputs[0]
return [rval]
def grad(self, inputs, output_grads):
image, filt = inputs
[gi] = output_grads
# Wrong gradient, but produces good results
gi_reverse = gi[::-1]
out_image = convolve1d_2D(gi_reverse, filt, mode='valid')[::-1]
out_filt = convolve1d_2D(gi_reverse, image, mode='valid')[::-1]
return [out_image, out_filt]
def convolve1d_2D(image, filt, mode='full'):
return Convolve1d(mode)(image, filt)
def convolve1d_4D(input, W, mode='full'):
batch_size, nchannels, nwords, ndim = input.shape
nkernels_out, nkernels_in, filter_width, ndim = W.shape
# Unroll filter along columns
W_unrolled = W.dimshuffle(0, 2, 1, 3).flatten(ndim=3)
# Replicate input filters 'batch_size' times and squash out_filters along column axis.
# W_tiled = T.tile(W_unrolled, (1, 1, batch_size)).dimshuffle(1, 0, 2).flatten(ndim=2) # doesn't give a gradient
W_tiled = T.alloc(W_unrolled, batch_size, W_unrolled.shape[0], W_unrolled.shape[1], W_unrolled.shape[2]).dimshuffle(1, 2, 0, 3).flatten(ndim=3).dimshuffle(1, 0, 2).flatten(ndim=2)
# Unroll input and pad to fit the output filters.
input_reshaped = input.dimshuffle(0, 2, 1, 3).flatten(ndim=3).dimshuffle(1,0,2).flatten(ndim=2)
# input_tiled = T.tile(input_reshaped, (1, nkernels_out))
input_tiled = T.alloc(input_reshaped, nkernels_out, input_reshaped.shape[0], input_reshaped.shape[1]).dimshuffle(1, 0, 2).flatten(ndim=2)
conv_res = convolve1d_2D(input_tiled, W_tiled, mode=mode)
if mode == 'full':
new_shape = (nwords+filter_width-1, nkernels_out, batch_size, nkernels_in, ndim)
elif mode == 'valid':
new_shape = (nwords-filter_width+1, nkernels_out, batch_size, nkernels_in, ndim)
conv_out = conv_res.reshape(new_shape).dimshuffle(2, 1, 0, 3, 4).sum(axis=3)
return conv_out
##########################################
### Using einsum for 4d matrices
##########################################
def convolve1d_4D_numpy(a, b, mode='full'):
nbatches, nkernels_in, nwords, ndim = a.shape
nkernels_out, _, filter_width, _ = b.shape
b = b[:,:,::-1,:] # flip
if mode == 'full':
pad = np.zeros((nbatches, nkernels_in, filter_width-1, ndim))
a = np.concatenate([pad, a, pad], axis=2)
shape = (nbatches, nkernels_in, nwords+filter_width-1, filter_width, ndim)
elif mode == 'valid':
shape = (nbatches, nkernels_in, nwords-filter_width+1, filter_width, ndim)
strides = a.strides[:2] + (a.strides[2],) + a.strides[2:]
view = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
conv_out = np.einsum('kqlij,fqij->kflj', view, b)
return conv_out
class Convolve1d_4D(theano.Op):
def __init__(self, mode='full'):
self.mode = mode
def make_node(self, image, filt):
image = theano.tensor.as_tensor_variable(image)
filt = theano.tensor.as_tensor_variable(filt)
assert image.ndim == 4
assert filt.ndim == 4
return theano.Apply(self, [image, filt], [image.type()])
def make_thunk(self, node, storage_map, compute_map, no_recycling):
in1_type = getattr(numba, node.inputs[0].dtype)
in2_type = getattr(numba, node.inputs[1].dtype)
out_type = getattr(numba, node.outputs[0].dtype)
self.numba_fct = numba.jit(out_type[:,:,:,:](in1_type[:,:,:,:],
in2_type[:,:,:,:]))(convolve1d_4D_numpy)
# self.numba_fct = convolve1d_4D_numpy
return super(Convolve1d_4D, self).make_thunk(
node, storage_map, compute_map, no_recycling)
def perform(self, node, inputs, outputs):
image, filt = inputs
out = self.numba_fct(image, filt, self.mode)
# out = T.patternbroadcast(out, (False, True, False, False))
outputs[0][0] = out
def infer_shape(self, node, in_shapes):
nbatches, nkernels_in, nwords, ndim = in_shapes[0]
nkernels_out, nkernels_in, filter_width, ndim = in_shapes[1]
if self.mode == 'full':
return [(nbatches, nkernels_out, nwords+filter_width-1, ndim)]
elif self.mode == 'valid':
return [(nbatches, nkernels_out, nwords-filter_width+1, ndim)]
def grad(self, inputs, output_grads):
image, filt = inputs
# We need to reverse the gradients along axis=2 (nwords),
# compute convolution, then reverse again.
reverse_slicing = [slice(None, None, None)] * filt.ndim
reverse_slicing[2] = slice(None, None, -1)
reverse_slicing = tuple(reverse_slicing)
## TODO :: make sure the gradient is correct
[gi] = output_grads
gi_shuffled = gi.dimshuffle(1, 0, 2, 3)
filt_sh = filt.dimshuffle(1, 0, 2, 3)
image_sh = image.dimshuffle(1, 0, 2, 3)
out_image = convolve1d_4D_einsum(gi[reverse_slicing], filt_sh, mode='valid')[reverse_slicing]
out_filt = convolve1d_4D_einsum(gi_shuffled[reverse_slicing], image_sh, mode='valid')[reverse_slicing]
return [out_image, out_filt]
def convolve1d_4D_einsum(image, filt, mode='full'):
return Convolve1d_4D(mode=mode)(image, filt)
######
def convolve1d_4D_scan(input, W, mode='full'):
batch_size, nchannels, nwords, ndim = input.shape
nkernels_out, nkernels_in, filter_width, ndim = W.shape
# Unroll filter along columns
W_unrolled = W.dimshuffle(0, 2, 1, 3).flatten(ndim=3)
# Replicate input filters 'batch_size' times and squash out_filters along column axis.
# W_tiled = T.tile(W_unrolled, (1, 1, batch_size)).dimshuffle(1, 0, 2).flatten(ndim=2) # doesn't give a gradient
W_tiled = T.alloc(W_unrolled, batch_size, W_unrolled.shape[0], W_unrolled.shape[1], W_unrolled.shape[2]).dimshuffle(1, 2, 0, 3).flatten(ndim=3).dimshuffle(1, 0, 2).flatten(ndim=2)
W_tiled = W_tiled[::-1]
# reverse_slicing = [slice(None, None, None)] * W_tiled.ndim
# reverse_slicing[0] = slice(None, None, -1)
# reverse_slicing = tuple(reverse_slicing)
# W_tiled = W_tiled[reverse_slicing] # flip the kernel
# Unroll input and pad to fit the output filters.
input_reshaped = input.dimshuffle(0, 2, 1, 3).flatten(ndim=3).dimshuffle(1,0,2).flatten(ndim=2)
# input_tiled = T.tile(input_reshaped, (1, nkernels_out))
input_tiled = T.alloc(input_reshaped, nkernels_out, input_reshaped.shape[0], input_reshaped.shape[1]).dimshuffle(1, 0, 2).flatten(ndim=2)
if mode == 'full':
pad = T.zeros((filter_width-1, nkernels_out*batch_size*nchannels*ndim))
input_padded = T.concatenate([pad, input_tiled, pad])
conv_out, _ = theano.scan(fn=lambda i: (W_tiled * input_padded[i:i+filter_width]).sum(axis=0),
outputs_info=None,
sequences=[T.arange(0, nwords+filter_width-1)])
new_shape = (nwords+filter_width-1, nkernels_out, batch_size, nkernels_in, ndim)
elif mode == 'valid':
conv_out, _ = theano.scan(fn=lambda i: (W_tiled * input_tiled[i:i+filter_width]).sum(axis=0),
outputs_info=None,
sequences=[T.arange(0, nwords-filter_width+1)])
new_shape = (nwords-filter_width+1, nkernels_out, batch_size, nkernels_in, ndim)
conv_reshaped = conv_out.reshape(new_shape).dimshuffle(2, 1, 0, 3, 4).sum(axis=3)
return conv_reshaped
def convolve1d_2D_scan(a, b, mode='full'):
nwords, ndim = a.shape
filter_width, ndim = b.shape
b = b[::-1]
if mode == 'full':
pad = T.zeros((filter_width-1, ndim))
a = T.concatenate([pad, a, pad])
conv_out, _ = theano.scan(fn=lambda i: (a[i:i+filter_width] * b).sum(axis=0),
outputs_info=None,
sequences=[T.arange(0, nwords+filter_width-1)])
elif mode == 'valid':
conv_out, _ = theano.scan(fn=lambda i: (a[i:i+filter_width], b).sum(axis=0),
outputs_info=None,
sequences=[T.arange(0, nwords-filter_width+1)])
return conv_out
def convolve1d_4D_conv2d(input, W, mode='full'):
conv_out, _ = theano.scan(fn=lambda i: conv2d(input[:,:,:,i:i+1], W[:,:,:,i:i+1], border_mode=mode),
outputs_info=None,
sequences=[T.arange(0, W.shape[3])])
conv_out = conv_out.flatten(ndim=4).dimshuffle(1,2,3,0)
return conv_out
def convolve1d_4D_conv2d_image(input, W, mode='full'):
return conv2d(input, W, border_mode='valid')
def test_convolve1d_4D(test_grads=False, test_speed=True):
nbatches, nkernels_in, nwords, ndim = 100, 16, 58, 300
nkernels_out, filter_width = 4, 7
# nbatches, nkernels_in, nwords, ndim = 3, 1, 7, 5
# nkernels_out, filter_width = 2, 3
input_shape = (nbatches, nkernels_in, nwords, ndim)
filter_shape = (nkernels_out, nkernels_in, filter_width, ndim)
image = T.tensor4('input', dtype='float64')
filt = T.tensor4('filt', dtype='float64')
# Generate data
# image_data = np.arange(np.prod(input_shape)).reshape(input_shape)
image_data = np.random.randn(*input_shape)
filt_data = np.random.randn(*filter_shape)
border_mode = 'full'
# unrolling + einsum
out_4D = convolve1d_4D(image, filt, mode=border_mode)
f_conv = theano.function([image, filt], out_4D)
# using einsum
out_4D_einsum = convolve1d_4D_einsum(image, filt, mode=border_mode)
f_conv_einsum = theano.function([image, filt], out_4D_einsum)
# using theano scan
out_4D_scan = convolve1d_4D_scan(image, filt, mode=border_mode)
f_conv_scan = theano.function([image, filt], out_4D_scan)
# using theano scan and conv2d
out_4D_conv2d = convolve1d_4D_conv2d(image, filt, mode=border_mode)
f_conv_conv2d = theano.function([image, filt], out_4D_conv2d)
out_4D_conv2d_image = convolve1d_4D_conv2d_image(image, filt, mode=border_mode)
f_conv_conv2d_image = theano.function([image, filt], out_4D_conv2d_image)
out_conv = f_conv(image_data, filt_data)
out_conv_einsum = f_conv_einsum(image_data, filt_data)
out_conv_scan = f_conv_scan(image_data, filt_data)
out_conv_conv2d = f_conv_conv2d(image_data, filt_data)
out_conv_conv2d_image = f_conv_conv2d_image(image_data, filt_data)
print "Checking equality....",
print list(map(lambda x: x.shape, [out_conv, out_conv_einsum, out_conv_scan, out_conv_conv2d]))
# assert np.allclose(out_conv, out_conv_einsum, out_conv_scan, out_conv_conv2d)
print 'out_conv, out_conv_einsum', np.allclose(out_conv, out_conv_einsum)
print 'out_conv, out_conv_scan', np.allclose(out_conv, out_conv_scan)
print 'out_conv, out_conv_conv2d', np.allclose(out_conv, out_conv_conv2d)
print 'out_conv_einsum, out_conv_scan', np.allclose(out_conv_einsum, out_conv_scan)
print 'out_conv_scan, out_conv_conv2d', np.allclose(out_conv_scan, out_conv_conv2d)
print "done"
def check_grads():
def compute_grad(conv_out):
rng = T.shared_randomstreams.RandomStreams(seed=234)
proj = rng.normal(conv_out.shape)
cost = (conv_out * proj).sum()
grad = T.grad(cost, [image, filt])
f_grad = theano.function([image, filt], grad)
out = f_grad(image_data, filt_data)
return out
print 'Comparing gradients...'
grad_4D = compute_grad(out_4D)
grad_4D_einsum = compute_grad(out_4D_einsum)
grad_4D_scan = compute_grad(out_4D_scan)
grad_4D_conv2d = compute_grad(out_4D_conv2d)
print 'grad_4D', grad_4D[0].shape, grad_4D[1].shape
print 'grad_4D_einsum', grad_4D_einsum[0].shape, grad_4D_einsum[1].shape
print 'grad_4D_scan', grad_4D_scan[0].shape, grad_4D_scan[1].shape
print 'grad_4D_conv2d', grad_4D_conv2d[0].shape, grad_4D_conv2d[1].shape
print "Checking equality...."
# assert np.allclose(grad_4D, grad_4D_einsum, grad_4D_scan)
print 'grad_4D, grad_4D_einsum', np.allclose(grad_4D[0], grad_4D_einsum[0]), np.allclose(grad_4D[1], grad_4D_einsum[1])
print 'grad_4D, grad_4D_scan', np.allclose(grad_4D[0], grad_4D_scan[0]), np.allclose(grad_4D[1], grad_4D_scan[1])
print 'grad_4D_einsum, grad_4D_scan', np.allclose(grad_4D_einsum[0], grad_4D_scan[0]), np.allclose(grad_4D_einsum[1], grad_4D_scan[1])
print 'grad_4D_einsum, grad_4D_conv2d', np.allclose(grad_4D_einsum[0], grad_4D_conv2d[0]), np.allclose(grad_4D_einsum[1], grad_4D_conv2d[1])
print "done"
print "Running unittest_tools.verify_grad...",
theano.tests.unittest_tools.verify_grad(convolve1d_4D, [image_data, filt_data])
theano.tests.unittest_tools.verify_grad(convolve1d_4D_einsum, [image_data, filt_data])
theano.tests.unittest_tools.verify_grad(convolve1d_4D_scan, [image_data, filt_data])
print "done"
if test_grads:
check_grads()
# Timing
number = 10
print 'f_conv', timeit.timeit(lambda : f_conv(image_data, filt_data), number=number)
print 'f_conv_einsum', timeit.timeit(lambda : f_conv_einsum(image_data, filt_data), number=number)
print 'f_conv_scan', timeit.timeit(lambda : f_conv_scan(image_data, filt_data), number=number)
print 'f_conv_scan_conv2d', timeit.timeit(lambda : f_conv_conv2d(image_data, filt_data), number=number)
print 'f_conv_scan_conv2d_image', timeit.timeit(lambda : f_conv_conv2d_image(image_data, filt_data), number=number)
def test_grad_2d():
nwords, ndim = 5, 3
filter_width = 3
input_shape = (nwords, ndim)
filter_shape = (filter_width, ndim)
image = T.matrix('input', dtype='float64')
filt = T.matrix('filt', dtype='float64')
# Generate data
# image_data = np.arange(np.prod(input_shape)).reshape(input_shape)
rng = np.random.RandomState(123)
image_data = rng.randn(*input_shape)
filt_data = rng.randn(*filter_shape)
border_mode = 'full'
# unrolling + einsum
out_2D = convolve1d_2D(image, filt, mode=border_mode)
f_conv = theano.function([image, filt], out_2D)
# using theano scan
out_2D_scan = convolve1d_2D_scan(image, filt, mode=border_mode)
f_conv_scan = theano.function([image, filt], out_2D_scan)
## Compute convo
out_conv = f_conv(image_data, filt_data)
out_conv_scan = f_conv_scan(image_data, filt_data)
assert np.allclose(out_conv, out_conv_scan)
def compute_grad(conv_out, seed):
rng = T.shared_randomstreams.RandomStreams(seed=seed)
proj = rng.normal(out_conv.shape)
cost = (conv_out * proj).sum()
grad = T.grad(cost, [image, filt])
f_grad = theano.function([image, filt], grad)
out = f_grad(image_data, filt_data)
return out
print 'Gradient check'
for i in xrange(3):
seed = rng.randint(2**16)
print i, 'seed=', seed
grad_2D = compute_grad(out_2D, seed)
grad_2D_scan = compute_grad(out_2D_scan, seed)
assert np.allclose(grad_2D[0], grad_2D_scan[0])
assert np.allclose(grad_2D[1], grad_2D_scan[1])
# print grad_2D[1]
# print grad_2D_scan[1]
# print
print "Running unittest_tools.verify_grad...",
theano.tests.unittest_tools.verify_grad(convolve1d_2D_scan, [image_data, filt_data])
theano.tests.unittest_tools.verify_grad(convolve1d_2D, [image_data, filt_data])
print "done"
# def kmax_pool(input, k_max):
# assert input.ndim == 4
# k = theano.shared(k_max, name='k-max')
# # Unroll input into 2d ndim x (batch_size x nkernels_in x nwords)
# pool = TSN.images2neibs(input, (input.shape[2], 1), mode='ignore_borders')
# neighborsArgSorted = T.argsort(pool, axis=1)
# yy = T.sort(neighborsArgSorted[:, -k:], axis=1).flatten()
# xx = T.repeat(T.arange(neighborsArgSorted.shape[0]), k)
# pool_kmax = pool[xx, yy]
# pool_kmax_shape = T.join(0, T.as_tensor([input.shape[0], input.shape[1], input.shape[3], k]))
# pooled_out = pool_kmax.reshape(pool_kmax_shape, ndim=4).dimshuffle(0, 1, 3, 2)
# return pooled_out
def _k_max_pooling(input, kmax):
pool = input.dimshuffle(0, 2, 1, 3).flatten(ndim=3).dimshuffle(1,0,2).flatten(ndim=2).dimshuffle(1,0)
neighborsArgSorted = T.argsort(pool, axis=1)
yy = T.sort(neighborsArgSorted[:, -kmax:], axis=1).flatten()
xx = T.repeat(T.arange(neighborsArgSorted.shape[0]), kmax)
pool_kmax = pool[xx, yy]
pool_kmax_shape = T.join(0, T.as_tensor([input.shape[0], input.shape[1], input.shape[3], kmax]))
pooled_out = pool_kmax.reshape(pool_kmax_shape, ndim=4).dimshuffle(0, 1, 3, 2)
return pooled_out
def k_max_pooling(input, kmax):
nbatches, nchannels, nwords, ndim = input.shape[0], input.shape[1], input.shape[2], input.shape[3]
x = input.dimshuffle(0,1,3,2)
neighborsArgSorted = T.argsort(x, axis=3)
ax0 = T.repeat(T.arange(nbatches), nchannels*ndim*kmax)
ax1 = T.repeat(T.arange(nchannels), ndim * kmax).dimshuffle('x', 0)
ax1 = T.repeat(ax1, nbatches, axis=0).flatten()
ax2 = T.repeat(T.arange(ndim), kmax, axis=0).dimshuffle('x', 'x', 0)
ax2 = T.repeat(ax2, nchannels, axis=1)
ax2 = T.repeat(ax2, nbatches, axis=0).flatten()
ax3 = T.sort(neighborsArgSorted[:,:,:,-kmax:], axis=3).flatten()
pooled_out = x[ax0, ax1, ax2, ax3]
pooled_out = pooled_out.reshape((nbatches, nchannels, ndim, kmax)).dimshuffle(0,1,3,2)
return pooled_out
def max_pooling(input):
return T.max(input, axis=2)
def dynamic_k_max_pooling(input, sent_sizes, k_max_factor, k_max_final):
"""
k_max_factor -- multiplied by sentence_sizes gives the value of kmax for each sentence
"""
# Unroll input into (batch_size x nchannels x nwords) x ndim
nbatches, nchannels, nwords, ndim = input.shape[0], input.shape[1], input.shape[2], input.shape[3]
x = input.dimshuffle(0,1,3,2)
sent_sizes = T.cast(T.ceil(sent_sizes * k_max_factor), dtype='int32')
sent_sizes = T.maximum(sent_sizes, k_max_final)
# sent_sizes_matrix = T.repeat(sent_sizes, nwords, axis=1)
sent_sizes_matrix = T.repeat(sent_sizes.dimshuffle(0, 'x'), nwords, axis=1)
idx = T.arange(nwords).dimshuffle('x', 0)
idx_matrix = T.repeat(idx, nbatches, axis=0)
sent_sizes_mask = T.lt(idx_matrix, sent_sizes_matrix)[:,::-1]
neighborsArgSorted = T.argsort(x, axis=3)
neighborsArgSorted_masked = ((neighborsArgSorted + 1) * sent_sizes_mask.dimshuffle(0,'x','x',1)) - 1
neighborsArgSorted_masked_sorted = neighborsArgSorted_masked.sort(axis=3)
nwords_max = T.cast(T.ceil(nwords * k_max_factor), 'int32')
# print nwords_max.eval()
neighborsArgSorted_masked_sorted_clipped = neighborsArgSorted_masked_sorted[:,:,:,-nwords_max:]
ax0 = T.repeat(T.arange(nbatches), nchannels*ndim*nwords_max)
ax1 = T.repeat(T.arange(nchannels), ndim * nwords_max).dimshuffle('x', 0)
ax1 = T.repeat(ax1, nbatches, axis=0).flatten()
ax2 = T.repeat(T.arange(ndim), nwords_max, axis=0).dimshuffle('x', 'x', 0)
ax2 = T.repeat(ax2, nchannels, axis=1)
ax2 = T.repeat(ax2, nbatches, axis=0).flatten()
ax3 = neighborsArgSorted_masked_sorted_clipped.flatten()
pooled_out = x[ax0, ax1, ax2, ax3]
pooled_out = pooled_out.reshape((nbatches, nchannels, ndim, nwords_max)).dimshuffle(0,1,3,2)
return pooled_out
def test_dynamic_k_max_pooling():
np.random.seed(123)
nbatches, nkernels_in, nwords, ndim = 3, 1, 58, 20
input_shape = (nbatches, nkernels_in, nwords, ndim)
# image_data = np.random.rand(*input_shape)
data = np.arange(np.prod(input_shape))
np.random.shuffle(data)
data = data.reshape(input_shape)
data[:,:,-2:] = 0.
print 'data'
print data
input = theano.shared(data)
sent_sizes_data = np.array([3, 5, 20]).astype('int32')#[:,np.newaxis]
print 'sent_sizes_data'
print sent_sizes_data
sent_sizes = theano.shared(sent_sizes_data, borrow=True)
k_max_factor = 0.5
pooled_out = dynamic_k_max_pooling(input, sent_sizes, k_max_factor, 2)
print 'pooled_out'
print pooled_out.eval().shape
return
def _max_pooling(input, k):
return T.sort(input, axis=2)[:,:,-k:,:]
def test_kmax_pool():
nbatches, nkernels_in, nwords, ndim = 2, 1, 5, 3
input_shape = (nbatches, nkernels_in, nwords, ndim)
input = T.tensor4('input')
k = 3
f_kmax = theano.function([input], k_max_pooling(input, k))
f_max = theano.function([input], max_pooling(input))
image_data = np.arange(np.prod(input_shape), dtype=np.float64)
np.random.shuffle(image_data)
image_data = image_data.reshape(input_shape)
print image_data
print 'kmax'
print f_kmax(image_data)
print 'max'
print f_max(image_data)
def test_kmax_pooling_time():
nbatches, nkernels_in, nwords, ndim = 50, 16, 58, 300
input_shape = (nbatches, nkernels_in, nwords, ndim)
input = T.tensor4('input')
k = 1
f_kmax_argsort = theano.function([input], k_max_pooling(input, k))
f_kmax_unroll = theano.function([input], _k_max_pooling(input, k))
f_max = theano.function([input], max_pooling(input))
image_data = np.random.randn(*input_shape).astype(dtype=np.float64)
# np.random.shuffle(image_data)
image_data = image_data.reshape(input_shape)
# print image_data
# print 'kmax'
print 'f_kmax_argsort', timeit.timeit(lambda: f_kmax_argsort(image_data), number=10)
print 'f_kmax_unroll', timeit.timeit(lambda: f_kmax_unroll(image_data), number=10)
print 'f_max', timeit.timeit(lambda: f_max(image_data), number=10)
def kmax_pool_unroll():
pool = input.dimshuffle(0, 2, 1, 3).flatten(ndim=3).dimshuffle(1,0,2).flatten(ndim=2)
neighborsArgSorted = T.argsort(pool, axis=0)
def test_kmax():
nbatches, nkernels_in, nwords, ndim = 3, 1, 7, 2
input_shape = (nbatches, nkernels_in, nwords, ndim)
image_data = np.ones(input_shape, dtype=np.float64)
image_data = np.random.rand(*input_shape)
input = theano.shared(image_data)
# sent_sizes_data = np.array([3, 2, 3, 2, 4, 5, 3])[:,np.newaxis].astype('int32')
# sent_sizes = theano.shared(sent_sizes_data, borrow=True)
# sent_sizes_matrix = T.repeat(sent_sizes, ndim, axis=1)
# print 'sent_sizes_matrix', sent_sizes_matrix.eval()
sent_sizes_data = np.random.randint(1, 5, size=(nbatches, 1))
sent_sizes = theano.shared(sent_sizes_data, borrow=True)
sent_sizes_matrix = T.repeat(sent_sizes, nwords, axis=1)
print 'sent_sizes_matrix'
print sent_sizes_matrix.eval()
idx = T.arange(nwords).dimshuffle('x', 0)
idx_matrix = T.repeat(idx, nbatches, axis=0)
print 'idx_matrix'
print idx_matrix.eval()
sent_sizes_mask = T.lt(idx_matrix, sent_sizes_matrix)
print 'sent_sizes_mask'
print sent_sizes_mask.eval()
k_max = 4
# f_kmax = theano.function([input], kmax_pool(input, k))
# k = theano.shared(k_max, name='k-max')
# kmax_limit = nwords * T.ceil(L-l)/L
# Unroll input into 2d ndim x (batch_size x nkernels_in x nwords)
# pool = TSN.images2neibs(input, (input.shape[2], 1), mode='ignore_borders')
print 'input', input.eval()
neighborsArgSorted = T.argsort(input, axis=2)
print 'neighborsArgSorted'
print neighborsArgSorted.eval()
neighborsArgSorted_masked = (neighborsArgSorted * sent_sizes_mask.dimshuffle(0,'x',1,'x'))
print 'neighborsArgSorted_masked'
print neighborsArgSorted_masked.eval()
neighborsArgSorted_clipped = (neighborsArgSorted * sent_sizes_mask.dimshuffle(0,'x',1,'x'))[:,:,:k_max,:]
print 'args'
print neighborsArgSorted_clipped.eval()
return
# Given a column of sentence length
# Tile it along axis=1 to form a matrix
# Create another matrix with T.arange() to represent indices
# do T.lt to create a mask and then eliminate all indices in the neighborsArgSorted
# yy = T.sort(neighborsArgSorted[:, -k:], axis=1).flatten()
yy = T.sort(neighborsArgSorted_clipped, axis=3).flatten()
print 'yy', yy.eval()
xx = T.repeat(T.arange(neighborsArgSorted.shape[0]), k_max)
pool_kmax = input[xx, yy]
print pool_kmax.eval()
# pool_kmax_shape = T.join(0, T.as_tensor([input.shape[0], input.shape[1], input.shape[3], k]))
# pooled_out = pool_kmax.reshape(pool_kmax_shape, ndim=4).dimshuffle(0, 1, 3, 2)
pool_kmax_shape = T.join(0, T.as_tensor([input.shape[0], input.shape[1], input.shape[3], kmax_limit]))
pooled_out = pool_kmax.reshape(pool_kmax_shape, ndim=4).dimshuffle(0, 1, 3, 2)
# pooled_out = TSN.neibs2images(pool_kmax, (input_shape[2], 1), input_shape, mode='valid') #.dimshuffle(0, 1, 3, 2)
# image_data = np.arange(np.prod(input_shape), dtype=np.float64).reshape(input_shape)
print image_data
print 'kmax', k_max
# print pooled_out.eval()
def test_convolve1d_4D_conv2d():
nbatches, nkernels_in, nwords, ndim = 1, 1, 3, 1
nkernels_out, filter_width = 2, 2
image_shape = (nbatches, nkernels_in, nwords, ndim)
filter_shape = (nkernels_out, nkernels_in, filter_width, ndim)
image = T.tensor4('image', dtype='float64')
filt = T.tensor4('filt', dtype='float64')
# Generate data
# image_data = np.arange(np.prod(image_shape)).reshape(image_shape)
# filt_data = np.arange(np.prod(filter_shape)).reshape(filter_shape)
image_data = np.random.randn(*image_shape)
filt_data = np.random.randn(*filter_shape)
border_mode = 'full'
# unrolling + einsum
out_4D_einsum = convolve1d_4D_einsum(image, filt, mode=border_mode)
f_conv_einsum = theano.function([image, filt], out_4D_einsum)
# using theano scan
out_4D_scan = convolve1d_4D_scan(image, filt, mode=border_mode)
f_conv_scan = theano.function([image, filt], out_4D_scan)
# using theano scan and conv2d
out_4D_conv2d = convolve1d_4D_conv2d(image, filt, mode=border_mode)
f_conv_conv2d = theano.function([image, filt], out_4D_conv2d)
out_scan = f_conv_scan(image_data, filt_data)
out_conv2d = f_conv_conv2d(image_data, filt_data)
out_einsum = f_conv_einsum(image_data, filt_data)
assert np.allclose(out_scan, out_conv2d)
assert np.allclose(out_scan, out_einsum)
assert np.allclose(out_conv2d, out_einsum)
# print out_scan
# print out_conv2d
# print out_einsum
def compute_grad(conv_out, seed):
rng = T.shared_randomstreams.RandomStreams(seed=seed)
proj = rng.normal(conv_out.shape)
cost = (conv_out * proj).sum()
grad = T.grad(cost, [image, filt])
f_grad = theano.function([image, filt], grad)
out = f_grad(image_data, filt_data)
return out
print 'Gradient check'
rng = np.random.RandomState(123)
for i in xrange(3):
seed = rng.randint(2**16)
print i, 'seed=', seed
grad_scan = compute_grad(out_4D_scan, seed)
grad_einsum = compute_grad(out_4D_einsum, seed)
assert np.allclose(grad_einsum[0], grad_scan[0])
assert np.allclose(grad_einsum[1], grad_scan[1])
print 'convolve1d_4D_einsum'
theano.tests.unittest_tools.verify_grad(convolve1d_4D_einsum, [image_data, filt_data])
if __name__ == '__main__':
np.random.seed(232)
# test_convolve1d_4D()
# test_grad_2d()
# test_kmax()
test_kmax_pool()
# test_kmax_pooling_time()
# test_convolve1d_4D_conv2d()
# test_dynamic_k_max_pooling()