forked from video-dev/hls.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmp4-remuxer.js
806 lines (728 loc) · 31.5 KB
/
mp4-remuxer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
/**
* fMP4 remuxer
*/
import AAC from './aac-helper';
import MP4 from './mp4-generator';
import Event from '../events';
import { ErrorTypes, ErrorDetails } from '../errors';
import { toMsFromMpegTsClock, toMpegTsClockFromTimescale, toTimescaleFromScale } from '../utils/timescale-conversion';
import { logger } from '../utils/logger';
const MAX_SILENT_FRAME_DURATION_90KHZ = toMpegTsClockFromTimescale(10);
const PTS_DTS_SHIFT_TOLERANCE_90KHZ = toMpegTsClockFromTimescale(0.2);
class MP4Remuxer {
constructor (observer, config, typeSupported, vendor) {
this.observer = observer;
this.config = config;
this.typeSupported = typeSupported;
const userAgent = navigator.userAgent;
this.isSafari = vendor && vendor.indexOf('Apple') > -1 && userAgent && !userAgent.match('CriOS');
this.ISGenerated = false;
}
destroy () {
}
resetTimeStamp (defaultTimeStamp) {
this._initPTS = this._initDTS = defaultTimeStamp;
}
resetInitSegment () {
this.ISGenerated = false;
}
remux (audioTrack, videoTrack, id3Track, textTrack, timeOffset, contiguous, accurateTimeOffset) {
// generate Init Segment if needed
if (!this.ISGenerated) {
this.generateIS(audioTrack, videoTrack, timeOffset);
}
if (this.ISGenerated) {
const nbAudioSamples = audioTrack.samples.length;
const nbVideoSamples = videoTrack.samples.length;
let audioTimeOffset = timeOffset;
let videoTimeOffset = timeOffset;
if (nbAudioSamples && nbVideoSamples) {
// timeOffset is expected to be the offset of the first timestamp of this fragment (first DTS)
// if first audio DTS is not aligned with first video DTS then we need to take that into account
// when providing timeOffset to remuxAudio / remuxVideo. if we don't do that, there might be a permanent / small
// drift between audio and video streams
let audiovideoDeltaDts = (audioTrack.samples[0].pts - videoTrack.samples[0].pts) / videoTrack.inputTimeScale;
audioTimeOffset += Math.max(0, audiovideoDeltaDts);
videoTimeOffset += Math.max(0, -audiovideoDeltaDts);
}
// Purposefully remuxing audio before video, so that remuxVideo can use nextAudioPts, which is
// calculated in remuxAudio.
// logger.log('nb AAC samples:' + audioTrack.samples.length);
if (nbAudioSamples) {
// if initSegment was generated without video samples, regenerate it again
if (!audioTrack.timescale) {
logger.warn('regenerate InitSegment as audio detected');
this.generateIS(audioTrack, videoTrack, timeOffset);
}
let audioData = this.remuxAudio(audioTrack, audioTimeOffset, contiguous, accurateTimeOffset);
// logger.log('nb AVC samples:' + videoTrack.samples.length);
if (nbVideoSamples) {
let audioTrackLength;
if (audioData) {
audioTrackLength = audioData.endPTS - audioData.startPTS;
}
// if initSegment was generated without video samples, regenerate it again
if (!videoTrack.timescale) {
logger.warn('regenerate InitSegment as video detected');
this.generateIS(audioTrack, videoTrack, timeOffset);
}
this.remuxVideo(videoTrack, videoTimeOffset, contiguous, audioTrackLength, accurateTimeOffset);
}
} else {
// logger.log('nb AVC samples:' + videoTrack.samples.length);
if (nbVideoSamples) {
let videoData = this.remuxVideo(videoTrack, videoTimeOffset, contiguous, 0, accurateTimeOffset);
if (videoData && audioTrack.codec) {
this.remuxEmptyAudio(audioTrack, audioTimeOffset, contiguous, videoData);
}
}
}
}
// logger.log('nb ID3 samples:' + audioTrack.samples.length);
if (id3Track.samples.length) {
this.remuxID3(id3Track, timeOffset);
}
// logger.log('nb ID3 samples:' + audioTrack.samples.length);
if (textTrack.samples.length) {
this.remuxText(textTrack, timeOffset);
}
// notify end of parsing
this.observer.trigger(Event.FRAG_PARSED);
}
generateIS (audioTrack, videoTrack, timeOffset) {
let observer = this.observer,
audioSamples = audioTrack.samples,
videoSamples = videoTrack.samples,
typeSupported = this.typeSupported,
container = 'audio/mp4',
tracks = {},
data = { tracks },
computePTSDTS = (this._initPTS === undefined),
initPTS, initDTS;
if (computePTSDTS) {
initPTS = initDTS = Infinity;
}
if (audioTrack.config && audioSamples.length) {
// let's use audio sampling rate as MP4 time scale.
// rationale is that there is a integer nb of audio frames per audio sample (1024 for AAC)
// using audio sampling rate here helps having an integer MP4 frame duration
// this avoids potential rounding issue and AV sync issue
audioTrack.timescale = audioTrack.samplerate;
logger.log(`audio sampling rate : ${audioTrack.samplerate}`);
if (!audioTrack.isAAC) {
if (typeSupported.mpeg) { // Chrome and Safari
container = 'audio/mpeg';
audioTrack.codec = '';
} else if (typeSupported.mp3) { // Firefox
audioTrack.codec = 'mp3';
}
}
tracks.audio = {
container: container,
codec: audioTrack.codec,
initSegment: !audioTrack.isAAC && typeSupported.mpeg ? new Uint8Array() : MP4.initSegment([audioTrack]),
metadata: {
channelCount: audioTrack.channelCount
}
};
if (computePTSDTS) {
// remember first PTS of this demuxing context. for audio, PTS = DTS
initPTS = initDTS = audioSamples[0].pts - audioTrack.inputTimeScale * timeOffset;
}
}
if (videoTrack.sps && videoTrack.pps && videoSamples.length) {
// let's use input time scale as MP4 video timescale
// we use input time scale straight away to avoid rounding issues on frame duration / cts computation
const inputTimeScale = videoTrack.inputTimeScale;
videoTrack.timescale = inputTimeScale;
tracks.video = {
container: 'video/mp4',
codec: videoTrack.codec,
initSegment: MP4.initSegment([videoTrack]),
metadata: {
width: videoTrack.width,
height: videoTrack.height
}
};
if (computePTSDTS) {
initPTS = Math.min(initPTS, videoSamples[0].pts - inputTimeScale * timeOffset);
initDTS = Math.min(initDTS, videoSamples[0].dts - inputTimeScale * timeOffset);
this.observer.trigger(Event.INIT_PTS_FOUND, { initPTS });
}
} else if (computePTSDTS && tracks.audio) {
// initPTS found for audio-only stream with main and alt audio
this.observer.trigger(Event.INIT_PTS_FOUND, { initPTS });
}
if (Object.keys(tracks).length) {
observer.trigger(Event.FRAG_PARSING_INIT_SEGMENT, data);
this.ISGenerated = true;
if (computePTSDTS) {
this._initPTS = initPTS;
this._initDTS = initDTS;
}
} else {
observer.trigger(Event.ERROR, { type: ErrorTypes.MEDIA_ERROR, details: ErrorDetails.FRAG_PARSING_ERROR, fatal: false, reason: 'no audio/video samples found' });
}
}
remuxVideo (track, timeOffset, contiguous, audioTrackLength, accurateTimeOffset) {
let offset = 8;
let mp4SampleDuration;
let mdat;
let moof;
let firstPTS;
let firstDTS;
let lastPTS;
let lastDTS;
const timeScale = track.timescale;
const inputSamples = track.samples;
const outputSamples = [];
const nbSamples = inputSamples.length;
const ptsNormalize = this._PTSNormalize;
const initPTS = this._initPTS;
// if parsed fragment is contiguous with last one, let's use last DTS value as reference
let nextAvcDts = this.nextAvcDts;
const isSafari = this.isSafari;
if (nbSamples === 0) {
return;
}
// Safari does not like overlapping DTS on consecutive fragments. let's use nextAvcDts to overcome this if fragments are consecutive
if (isSafari) {
// also consider consecutive fragments as being contiguous (even if a level switch occurs),
// for sake of clarity:
// consecutive fragments are frags with
// - less than 100ms gaps between new time offset (if accurate) and next expected PTS OR
// - less than 200 ms PTS gaps (timeScale/5)
contiguous |= (inputSamples.length && nextAvcDts &&
((accurateTimeOffset && Math.abs(timeOffset - nextAvcDts / timeScale) < 0.1) ||
Math.abs((inputSamples[0].pts - nextAvcDts - initPTS)) < timeScale / 5)
);
}
if (!contiguous) {
// if not contiguous, let's use target timeOffset
nextAvcDts = timeOffset * timeScale;
}
// PTS is coded on 33bits, and can loop from -2^32 to 2^32
// ptsNormalize will make PTS/DTS value monotonic, we use last known DTS value as reference value
inputSamples.forEach(function (sample) {
sample.pts = ptsNormalize(sample.pts - initPTS, nextAvcDts);
sample.dts = ptsNormalize(sample.dts - initPTS, nextAvcDts);
});
// sort video samples by DTS then PTS then demux id order
inputSamples.sort(function (a, b) {
const deltadts = a.dts - b.dts;
const deltapts = a.pts - b.pts;
return deltadts || (deltapts || (a.id - b.id));
});
// handle broken streams with PTS < DTS, tolerance up 0.2 seconds
let PTSDTSshift = inputSamples.reduce((prev, curr) => Math.max(Math.min(prev, curr.pts - curr.dts), -1 * PTS_DTS_SHIFT_TOLERANCE_90KHZ), 0);
if (PTSDTSshift < 0) {
logger.warn(`PTS < DTS detected in video samples, shifting DTS by ${toMsFromMpegTsClock(PTSDTSshift, true)} ms to overcome this issue`);
for (let i = 0; i < inputSamples.length; i++) {
inputSamples[i].dts += PTSDTSshift;
}
}
// compute first DTS and last DTS, normalize them against reference value
let sample = inputSamples[0];
firstDTS = Math.max(sample.dts, 0);
firstPTS = Math.max(sample.pts, 0);
// check timestamp continuity accross consecutive fragments (this is to remove inter-fragment gap/hole)
let delta = firstDTS - nextAvcDts;
// if fragment are contiguous, detect hole/overlapping between fragments
if (contiguous) {
if (delta) {
if (delta > 1) {
logger.log(`AVC: ${toMsFromMpegTsClock(delta, true)} ms hole between fragments detected,filling it`);
} else if (delta < -1) {
logger.log(`AVC: ${toMsFromMpegTsClock(-delta, true)} ms overlapping between fragments detected`);
}
// remove hole/gap : set DTS to next expected DTS
firstDTS = nextAvcDts;
inputSamples[0].dts = firstDTS;
// offset PTS as well, ensure that PTS is smaller or equal than new DTS
firstPTS = Math.max(firstPTS - delta, nextAvcDts);
inputSamples[0].pts = firstPTS;
logger.log(`Video: PTS/DTS adjusted: ${toMsFromMpegTsClock(firstPTS, true)}/${toMsFromMpegTsClock(firstDTS, true)}, delta: ${toMsFromMpegTsClock(delta, true)} ms`);
}
}
// compute lastPTS/lastDTS
sample = inputSamples[inputSamples.length - 1];
lastDTS = Math.max(sample.dts, 0);
lastPTS = Math.max(sample.pts, 0, lastDTS);
// on Safari let's signal the same sample duration for all samples
// sample duration (as expected by trun MP4 boxes), should be the delta between sample DTS
// set this constant duration as being the avg delta between consecutive DTS.
if (isSafari) {
mp4SampleDuration = Math.round((lastDTS - firstDTS) / (inputSamples.length - 1));
}
let nbNalu = 0, naluLen = 0;
for (let i = 0; i < nbSamples; i++) {
// compute total/avc sample length and nb of NAL units
let sample = inputSamples[i], units = sample.units, nbUnits = units.length, sampleLen = 0;
for (let j = 0; j < nbUnits; j++) {
sampleLen += units[j].data.length;
}
naluLen += sampleLen;
nbNalu += nbUnits;
sample.length = sampleLen;
// normalize PTS/DTS
if (isSafari) {
// sample DTS is computed using a constant decoding offset (mp4SampleDuration) between samples
sample.dts = firstDTS + i * mp4SampleDuration;
} else {
// ensure sample monotonic DTS
sample.dts = Math.max(sample.dts, firstDTS);
}
// ensure that computed value is greater or equal than sample DTS
sample.pts = Math.max(sample.pts, sample.dts);
}
/* concatenate the video data and construct the mdat in place
(need 8 more bytes to fill length and mpdat type) */
let mdatSize = naluLen + (4 * nbNalu) + 8;
try {
mdat = new Uint8Array(mdatSize);
} catch (err) {
this.observer.trigger(Event.ERROR, { type: ErrorTypes.MUX_ERROR, details: ErrorDetails.REMUX_ALLOC_ERROR, fatal: false, bytes: mdatSize, reason: `fail allocating video mdat ${mdatSize}` });
return;
}
let view = new DataView(mdat.buffer);
view.setUint32(0, mdatSize);
mdat.set(MP4.types.mdat, 4);
for (let i = 0; i < nbSamples; i++) {
let avcSample = inputSamples[i],
avcSampleUnits = avcSample.units,
mp4SampleLength = 0,
compositionTimeOffset;
// convert NALU bitstream to MP4 format (prepend NALU with size field)
for (let j = 0, nbUnits = avcSampleUnits.length; j < nbUnits; j++) {
let unit = avcSampleUnits[j],
unitData = unit.data,
unitDataLen = unit.data.byteLength;
view.setUint32(offset, unitDataLen);
offset += 4;
mdat.set(unitData, offset);
offset += unitDataLen;
mp4SampleLength += 4 + unitDataLen;
}
if (!isSafari) {
// expected sample duration is the Decoding Timestamp diff of consecutive samples
if (i < nbSamples - 1) {
mp4SampleDuration = inputSamples[i + 1].dts - avcSample.dts;
} else {
let config = this.config,
lastFrameDuration = avcSample.dts - inputSamples[i > 0 ? i - 1 : i].dts;
if (config.stretchShortVideoTrack) {
// In some cases, a segment's audio track duration may exceed the video track duration.
// Since we've already remuxed audio, and we know how long the audio track is, we look to
// see if the delta to the next segment is longer than maxBufferHole.
// If so, playback would potentially get stuck, so we artificially inflate
// the duration of the last frame to minimize any potential gap between segments.
let maxBufferHole = config.maxBufferHole,
gapTolerance = Math.floor(maxBufferHole * timeScale),
deltaToFrameEnd = (audioTrackLength ? firstPTS + audioTrackLength * timeScale : this.nextAudioPts) - avcSample.pts;
if (deltaToFrameEnd > gapTolerance) {
// We subtract lastFrameDuration from deltaToFrameEnd to try to prevent any video
// frame overlap. maxBufferHole should be >> lastFrameDuration anyway.
mp4SampleDuration = deltaToFrameEnd - lastFrameDuration;
if (mp4SampleDuration < 0) {
mp4SampleDuration = lastFrameDuration;
}
logger.log(`It is approximately ${toMsFromMpegTsClock(deltaToFrameEnd, false)} ms to the next segment; using duration ${toMsFromMpegTsClock(mp4SampleDuration, false)} ms for the last video frame.`);
} else {
mp4SampleDuration = lastFrameDuration;
}
} else {
mp4SampleDuration = lastFrameDuration;
}
}
compositionTimeOffset = Math.round(avcSample.pts - avcSample.dts);
} else {
compositionTimeOffset = Math.max(0, mp4SampleDuration * Math.round((avcSample.pts - avcSample.dts) / mp4SampleDuration));
}
// console.log('PTS/DTS/initDTS/normPTS/normDTS/relative PTS : ${avcSample.pts}/${avcSample.dts}/${initDTS}/${ptsnorm}/${dtsnorm}/${(avcSample.pts/4294967296).toFixed(3)}');
outputSamples.push({
size: mp4SampleLength,
// constant duration
duration: mp4SampleDuration,
cts: compositionTimeOffset,
flags: {
isLeading: 0,
isDependedOn: 0,
hasRedundancy: 0,
degradPrio: 0,
dependsOn: avcSample.key ? 2 : 1,
isNonSync: avcSample.key ? 0 : 1
}
});
}
// next AVC sample DTS should be equal to last sample DTS + last sample duration (in PES timescale)
this.nextAvcDts = lastDTS + mp4SampleDuration;
let dropped = track.dropped;
track.nbNalu = 0;
track.dropped = 0;
if (outputSamples.length && navigator.userAgent.toLowerCase().indexOf('chrome') > -1) {
let flags = outputSamples[0].flags;
// chrome workaround, mark first sample as being a Random Access Point to avoid sourcebuffer append issue
// https://code.google.com/p/chromium/issues/detail?id=229412
flags.dependsOn = 2;
flags.isNonSync = 0;
}
track.samples = outputSamples;
moof = MP4.moof(track.sequenceNumber++, firstDTS, track);
track.samples = [];
let data = {
data1: moof,
data2: mdat,
startPTS: firstPTS / timeScale,
endPTS: (lastPTS + mp4SampleDuration) / timeScale,
startDTS: firstDTS / timeScale,
endDTS: this.nextAvcDts / timeScale,
type: 'video',
hasAudio: false,
hasVideo: true,
nb: outputSamples.length,
dropped: dropped
};
this.observer.trigger(Event.FRAG_PARSING_DATA, data);
return data;
}
remuxAudio (track, timeOffset, contiguous, accurateTimeOffset) {
const inputTimeScale = track.inputTimeScale;
const mp4timeScale = track.timescale;
const scaleFactor = inputTimeScale / mp4timeScale;
const mp4SampleDuration = track.isAAC ? 1024 : 1152;
const inputSampleDuration = mp4SampleDuration * scaleFactor;
const ptsNormalize = this._PTSNormalize;
const initPTS = this._initPTS;
const rawMPEG = !track.isAAC && this.typeSupported.mpeg;
let mp4Sample;
let fillFrame;
let mdat;
let moof;
let firstPTS;
let lastPTS;
let offset = (rawMPEG ? 0 : 8);
let inputSamples = track.samples;
let outputSamples = [];
let nextAudioPts = this.nextAudioPts;
// for audio samples, also consider consecutive fragments as being contiguous (even if a level switch occurs),
// for sake of clarity:
// consecutive fragments are frags with
// - less than 100ms gaps between new time offset (if accurate) and next expected PTS OR
// - less than 20 audio frames distance
// contiguous fragments are consecutive fragments from same quality level (same level, new SN = old SN + 1)
// this helps ensuring audio continuity
// and this also avoids audio glitches/cut when switching quality, or reporting wrong duration on first audio frame
contiguous |= (inputSamples.length && nextAudioPts &&
((accurateTimeOffset && Math.abs(timeOffset - nextAudioPts / inputTimeScale) < 0.1) ||
Math.abs((inputSamples[0].pts - nextAudioPts - initPTS)) < 20 * inputSampleDuration)
);
// compute normalized PTS
inputSamples.forEach(function (sample) {
sample.pts = sample.dts = ptsNormalize(sample.pts - initPTS, timeOffset * inputTimeScale);
});
// filter out sample with negative PTS that are not playable anyway
// if we don't remove these negative samples, they will shift all audio samples forward.
// leading to audio overlap between current / next fragment
inputSamples = inputSamples.filter(function (sample) {
return sample.pts >= 0;
});
// in case all samples have negative PTS, and have been filtered out, return now
if (inputSamples.length === 0) {
return;
}
if (!contiguous) {
if (!accurateTimeOffset) {
// if frag are mot contiguous and if we cant trust time offset, let's use first sample PTS as next audio PTS
nextAudioPts = inputSamples[0].pts;
} else {
// if timeOffset is accurate, let's use it as predicted next audio PTS
nextAudioPts = timeOffset * inputTimeScale;
}
}
// If the audio track is missing samples, the frames seem to get "left-shifted" within the
// resulting mp4 segment, causing sync issues and leaving gaps at the end of the audio segment.
// In an effort to prevent this from happening, we inject frames here where there are gaps.
// When possible, we inject a silent frame; when that's not possible, we duplicate the last
// frame.
if (track.isAAC) {
const maxAudioFramesDrift = this.config.maxAudioFramesDrift;
for (let i = 0, nextPts = nextAudioPts; i < inputSamples.length;) {
// First, let's see how far off this frame is from where we expect it to be
var sample = inputSamples[i], delta;
let pts = sample.pts;
delta = pts - nextPts;
// If we're overlapping by more than a duration, drop this sample
if (delta <= -maxAudioFramesDrift * inputSampleDuration) {
logger.warn(`Dropping 1 audio frame @ ${toMsFromMpegTsClock(nextPts, true)} ms due to ${toMsFromMpegTsClock(delta, true)} ms overlap.`);
inputSamples.splice(i, 1);
// Don't touch nextPtsNorm or i
} // eslint-disable-line brace-style
// Insert missing frames if:
// 1: We're more than maxAudioFramesDrift frame away
// 2: Not more than MAX_SILENT_FRAME_DURATION away
// 3: currentTime (aka nextPtsNorm) is not 0
else if (delta >= maxAudioFramesDrift * inputSampleDuration && delta < MAX_SILENT_FRAME_DURATION_90KHZ && nextPts) {
let missing = Math.round(delta / inputSampleDuration);
logger.warn(`Injecting ${missing} audio frames @ ${toMsFromMpegTsClock(nextPts, true)} ms due to ${toMsFromMpegTsClock(delta, true)} ms gap.`);
for (let j = 0; j < missing; j++) {
let newStamp = Math.max(nextPts, 0);
fillFrame = AAC.getSilentFrame(track.manifestCodec || track.codec, track.channelCount);
if (!fillFrame) {
logger.log('Unable to get silent frame for given audio codec; duplicating last frame instead.');
fillFrame = sample.unit.subarray();
}
inputSamples.splice(i, 0, { unit: fillFrame, pts: newStamp, dts: newStamp });
nextPts += inputSampleDuration;
i++;
}
// Adjust sample to next expected pts
sample.pts = sample.dts = nextPts;
nextPts += inputSampleDuration;
i++;
} else {
// Otherwise, just adjust pts
if (Math.abs(delta) > (0.1 * inputSampleDuration)) {
// logger.log(`Invalid frame delta ${Math.round(delta + inputSampleDuration)} at PTS ${Math.round(pts / 90)} (should be ${Math.round(inputSampleDuration)}).`);
}
sample.pts = sample.dts = nextPts;
nextPts += inputSampleDuration;
i++;
}
}
}
// compute mdat size, as we eventually filtered/added some samples
let nbSamples = inputSamples.length;
let mdatSize = 0;
while (nbSamples--) {
mdatSize += inputSamples[nbSamples].unit.byteLength;
}
for (let j = 0, nbSamples = inputSamples.length; j < nbSamples; j++) {
let audioSample = inputSamples[j];
let unit = audioSample.unit;
let pts = audioSample.pts;
// logger.log(`Audio/PTS:${toMsFromMpegTsClock(pts, true)}`);
// if not first sample
if (lastPTS !== undefined) {
mp4Sample.duration = Math.round((pts - lastPTS) / scaleFactor);
} else {
let delta = pts - nextAudioPts;
let numMissingFrames = 0;
// if fragment are contiguous, detect hole/overlapping between fragments
// contiguous fragments are consecutive fragments from same quality level (same level, new SN = old SN + 1)
if (contiguous && track.isAAC) {
// log delta
if (delta) {
if (delta > 0 && delta < MAX_SILENT_FRAME_DURATION_90KHZ) {
// Q: why do we have to round here, shouldn't this always result in an integer if timestamps are correct,
// and if not, shouldn't we actually Math.ceil() instead?
numMissingFrames = Math.round((pts - nextAudioPts) / inputSampleDuration);
logger.log(`${toMsFromMpegTsClock(delta, true)} ms hole between AAC samples detected,filling it`);
if (numMissingFrames > 0) {
fillFrame = AAC.getSilentFrame(track.manifestCodec || track.codec, track.channelCount);
if (!fillFrame) {
fillFrame = unit.subarray();
}
mdatSize += numMissingFrames * fillFrame.length;
}
// if we have frame overlap, overlapping for more than half a frame duraion
} else if (delta < -12) {
// drop overlapping audio frames... browser will deal with it
logger.log(`drop overlapping AAC sample, expected/parsed/delta: ${toMsFromMpegTsClock(nextAudioPts, true)} ms / ${toMsFromMpegTsClock(pts, true)} ms / ${toMsFromMpegTsClock(-delta, true)} ms`);
mdatSize -= unit.byteLength;
continue;
}
// set PTS/DTS to expected PTS/DTS
pts = nextAudioPts;
}
}
// remember first PTS of our audioSamples
firstPTS = pts;
if (mdatSize > 0) {
mdatSize += offset;
try {
mdat = new Uint8Array(mdatSize);
} catch (err) {
this.observer.trigger(Event.ERROR, { type: ErrorTypes.MUX_ERROR, details: ErrorDetails.REMUX_ALLOC_ERROR, fatal: false, bytes: mdatSize, reason: `fail allocating audio mdat ${mdatSize}` });
return;
}
if (!rawMPEG) {
const view = new DataView(mdat.buffer);
view.setUint32(0, mdatSize);
mdat.set(MP4.types.mdat, 4);
}
} else {
// no audio samples
return;
}
for (let i = 0; i < numMissingFrames; i++) {
fillFrame = AAC.getSilentFrame(track.manifestCodec || track.codec, track.channelCount);
if (!fillFrame) {
logger.log('Unable to get silent frame for given audio codec; duplicating this frame instead.');
fillFrame = unit.subarray();
}
mdat.set(fillFrame, offset);
offset += fillFrame.byteLength;
mp4Sample = {
size: fillFrame.byteLength,
cts: 0,
duration: 1024,
flags: {
isLeading: 0,
isDependedOn: 0,
hasRedundancy: 0,
degradPrio: 0,
dependsOn: 1
}
};
outputSamples.push(mp4Sample);
}
}
mdat.set(unit, offset);
let unitLen = unit.byteLength;
offset += unitLen;
// console.log('PTS/DTS/initDTS/normPTS/normDTS/relative PTS : ${audioSample.pts}/${audioSample.dts}/${initDTS}/${ptsnorm}/${dtsnorm}/${(audioSample.pts/4294967296).toFixed(3)}');
mp4Sample = {
size: unitLen,
cts: 0,
duration: 0,
flags: {
isLeading: 0,
isDependedOn: 0,
hasRedundancy: 0,
degradPrio: 0,
dependsOn: 1
}
};
outputSamples.push(mp4Sample);
lastPTS = pts;
}
let lastSampleDuration = 0;
nbSamples = outputSamples.length;
// set last sample duration as being identical to previous sample
if (nbSamples >= 2) {
lastSampleDuration = outputSamples[nbSamples - 2].duration;
mp4Sample.duration = lastSampleDuration;
}
if (nbSamples) {
// next audio sample PTS should be equal to last sample PTS + duration
this.nextAudioPts = nextAudioPts = lastPTS + scaleFactor * lastSampleDuration;
// logger.log('Audio/PTS/PTSend:' + audioSample.pts.toFixed(0) + '/' + this.nextAacDts.toFixed(0));
track.samples = outputSamples;
if (rawMPEG) {
moof = new Uint8Array();
} else {
moof = MP4.moof(track.sequenceNumber++, firstPTS / scaleFactor, track);
}
track.samples = [];
const start = firstPTS / inputTimeScale;
const end = nextAudioPts / inputTimeScale;
const audioData = {
data1: moof,
data2: mdat,
startPTS: start,
endPTS: end,
startDTS: start,
endDTS: end,
type: 'audio',
hasAudio: true,
hasVideo: false,
nb: nbSamples
};
this.observer.trigger(Event.FRAG_PARSING_DATA, audioData);
return audioData;
}
return null;
}
remuxEmptyAudio (track, timeOffset, contiguous, videoData) {
let inputTimeScale = track.inputTimeScale;
let mp4timeScale = track.samplerate ? track.samplerate : inputTimeScale;
let scaleFactor = inputTimeScale / mp4timeScale;
let nextAudioPts = this.nextAudioPts;
// sync with video's timestamp
let startDTS = (nextAudioPts !== undefined ? nextAudioPts : videoData.startDTS * inputTimeScale) + this._initDTS;
let endDTS = videoData.endDTS * inputTimeScale + this._initDTS;
// one sample's duration value
let sampleDuration = 1024;
let frameDuration = scaleFactor * sampleDuration;
// samples count of this segment's duration
let nbSamples = Math.ceil((endDTS - startDTS) / frameDuration);
// silent frame
let silentFrame = AAC.getSilentFrame(track.manifestCodec || track.codec, track.channelCount);
logger.warn('remux empty Audio');
// Can't remux if we can't generate a silent frame...
if (!silentFrame) {
logger.trace('Unable to remuxEmptyAudio since we were unable to get a silent frame for given audio codec!');
return;
}
let samples = [];
for (let i = 0; i < nbSamples; i++) {
let stamp = startDTS + i * frameDuration;
samples.push({ unit: silentFrame, pts: stamp, dts: stamp });
}
track.samples = samples;
this.remuxAudio(track, timeOffset, contiguous);
}
remuxID3 (track) {
const length = track.samples.length;
if (!length) {
return;
}
const inputTimeScale = track.inputTimeScale;
const initPTS = this._initPTS;
const initDTS = this._initDTS;
// consume samples
for (let index = 0; index < length; index++) {
const sample = track.samples[index];
// setting id3 pts, dts to relative time
// using this._initPTS and this._initDTS to calculate relative time
sample.pts = ((sample.pts - initPTS) / inputTimeScale);
sample.dts = ((sample.dts - initDTS) / inputTimeScale);
}
this.observer.trigger(Event.FRAG_PARSING_METADATA, {
samples: track.samples
});
track.samples = [];
}
remuxText (track) {
track.samples.sort(function (a, b) {
return (a.pts - b.pts);
});
let length = track.samples.length, sample;
const inputTimeScale = track.inputTimeScale;
const initPTS = this._initPTS;
// consume samples
if (length) {
for (let index = 0; index < length; index++) {
sample = track.samples[index];
// setting text pts, dts to relative time
// using this._initPTS and this._initDTS to calculate relative time
sample.pts = ((sample.pts - initPTS) / inputTimeScale);
}
this.observer.trigger(Event.FRAG_PARSING_USERDATA, {
samples: track.samples
});
}
track.samples = [];
}
_PTSNormalize (value, reference) {
let offset;
if (reference === undefined) {
return value;
}
if (reference < value) {
// - 2^33
offset = -8589934592;
} else {
// + 2^33
offset = 8589934592;
}
/* PTS is 33bit (from 0 to 2^33 -1)
if diff between value and reference is bigger than half of the amplitude (2^32) then it means that
PTS looping occured. fill the gap */
while (Math.abs(value - reference) > 4294967296) {
value += offset;
}
return value;
}
}
export default MP4Remuxer;