diff --git a/docs/Project.toml b/docs/Project.toml index 78bc19267ba..cd19a067bb4 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -22,6 +22,7 @@ Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a" MarkdownAST = "d0879d2d-cac2-40c8-9cee-1863dc0c7391" MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee" MultiObjectiveAlgorithms = "0327d340-17cd-11ea-3e99-2fd5d98cecda" +OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" PATHSolver = "f5f7c340-0bb3-5c69-969a-41884d311d1b" Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" diff --git a/docs/src/manual/containers.md b/docs/src/manual/containers.md index 0a362512439..a45452670c5 100644 --- a/docs/src/manual/containers.md +++ b/docs/src/manual/containers.md @@ -315,6 +315,14 @@ JuMP.Containers.SparseAxisArray{Tuple{Int64, Symbol}, 1, Tuple{Int64}} with 2 en Use `eachindex` to loop over the elements: ```jldoctest containers_sparse +julia> for key in eachindex(x) + println(x[key]) + end +(2, :A) +(2, :B) +(3, :A) +(3, :B) + julia> for key in eachindex(y) println(y[key]) end @@ -322,6 +330,13 @@ julia> for key in eachindex(y) (3, :B) ``` +!!! warning + If you use a macro to construct a `SparseAxisArray`, then the iteration + order is row-major, that is, indices are varied from right to left. As an + example, when iterating over `x` above, the `j` index is iterated, keeping + `i` constant. This order is in contrast to `Base.Array`s, which iterate in + column-major order, that is, by varying indices from left to right. + ### Broadcasting Broadcasting over a SparseAxisArray returns a SparseAxisArray diff --git a/src/Containers/Containers.jl b/src/Containers/Containers.jl index bc4220fdf08..3992d22c73e 100644 --- a/src/Containers/Containers.jl +++ b/src/Containers/Containers.jl @@ -17,7 +17,7 @@ necessarily integers. """ module Containers -import Base.Meta.isexpr +import OrderedCollections # Arbitrary typed indices. Linear indexing not supported. struct IndexAnyCartesian <: Base.IndexStyle end diff --git a/src/Containers/SparseAxisArray.jl b/src/Containers/SparseAxisArray.jl index 64aebd67fdf..4c3c3fd852a 100644 --- a/src/Containers/SparseAxisArray.jl +++ b/src/Containers/SparseAxisArray.jl @@ -5,25 +5,29 @@ """ struct SparseAxisArray{T,N,K<:NTuple{N, Any}} <: AbstractArray{T,N} - data::Dict{K,T} + data::OrderedCollections.OrderedDict{K,T} end `N`-dimensional array with elements of type `T` where only a subset of the entries are defined. The entries with indices `idx = (i1, i2, ..., iN)` in -`keys(data)` has value `data[idx]`. Note that as opposed to -`SparseArrays.AbstractSparseArray`, the missing entries are not assumed to be -`zero(T)`, they are simply not part of the array. This means that the result of -`map(f, sa::SparseAxisArray)` or `f.(sa::SparseAxisArray)` has the same sparsity -structure than `sa` even if `f(zero(T))` is not zero. +`keys(data)` has value `data[idx]`. + +Note that, as opposed to `SparseArrays.AbstractSparseArray`, the missing entries +are not assumed to be `zero(T)`, they are simply not part of the array. This +means that the result of `map(f, sa::SparseAxisArray)` or +`f.(sa::SparseAxisArray)` has the same sparsity structure as `sa`, even if +`f(zero(T))` is not zero. ## Example ```jldoctest -julia> dict = Dict((:a, 2) => 1.0, (:a, 3) => 2.0, (:b, 3) => 3.0) -Dict{Tuple{Symbol, Int64}, Float64} with 3 entries: +julia> using OrderedCollections: OrderedDict + +julia> dict = OrderedDict((:a, 2) => 1.0, (:a, 3) => 2.0, (:b, 3) => 3.0) +OrderedDict{Tuple{Symbol, Int64}, Float64} with 3 entries: + (:a, 2) => 1.0 (:a, 3) => 2.0 (:b, 3) => 3.0 - (:a, 2) => 1.0 julia> array = Containers.SparseAxisArray(dict) SparseAxisArray{Float64, 2, Tuple{Symbol, Int64}} with 3 entries: @@ -36,15 +40,26 @@ julia> array[:b, 3] ``` """ struct SparseAxisArray{T,N,K<:NTuple{N,Any}} <: AbstractArray{T,N} - data::Dict{K,T} + data::OrderedCollections.OrderedDict{K,T} names::NTuple{N,Symbol} end -function SparseAxisArray(d::Dict{K,T}) where {T,N,K<:NTuple{N,Any}} - return SparseAxisArray(d, ntuple(n -> Symbol("#$n"), N)) +function SparseAxisArray( + d::AbstractDict{K,T}, + names::NTuple{N,Symbol}, +) where {T,N,K<:NTuple{N,Any}} + # convert(OrderedCollections.OrderedDict{K,T}, d) is deprecated, so use an + # iterator to get all key-value pairs. + od = OrderedCollections.OrderedDict{K,T}(k => v for (k, v) in d) + return SparseAxisArray(od, names) end -SparseAxisArray(d::Dict, ::Nothing) = SparseAxisArray(d) +function SparseAxisArray( + d::AbstractDict{K,T}, + ::Nothing = nothing, +) where {T,N,K<:NTuple{N,Any}} + return SparseAxisArray(d, ntuple(n -> Symbol("#$n"), N)) +end Base.length(sa::SparseAxisArray) = length(sa.data) @@ -71,7 +86,7 @@ function Base.similar( ::Type{T}, length::Integer = 0, ) where {S,T,N,K} - d = Dict{K,T}() + d = OrderedCollections.OrderedDict{K,T}() if !iszero(length) sizehint!(d, length) end @@ -165,7 +180,7 @@ function Base.getindex( end K2 = _sliced_key_type(K, args...) if K2 !== nothing - new_data = Dict{K2,T}( + new_data = OrderedCollections.OrderedDict{K2,T}( _sliced_key(k, args) => v for (k, v) in d.data if _filter(k, args) ) names = _sliced_key_name(K, d.names, args...) @@ -293,12 +308,16 @@ end function Base.copy( bc::Base.Broadcast.Broadcasted{BroadcastStyle{N,K}}, ) where {N,K} - dict = Dict(index => _getindex(bc, index) for index in _indices(bc.args...)) - if isempty(dict) && dict isa Dict{Any,Any} + dict = OrderedCollections.OrderedDict( + index => _getindex(bc, index) for index in _indices(bc.args...) + ) + if isempty(dict) && dict isa OrderedCollections.OrderedDict{Any,Any} # If `dict` is empty (e.g., because there are no indices), then - # inference will produce a `Dict{Any,Any}`, and we won't have enough - # type information to call SparseAxisArray(dict). As a work-around, we - # explicitly construct the type of the resulting SparseAxisArray. + # inference will produce a `OrderedCollections.OrderedDict{Any,Any}`, + # and we won't have enough type information to call + # `SparseAxisArray(dict)`. As a work-around, we explicitly construct the + # type of the resulting SparseAxisArray. + # # For more, see JuMP issue #2867. return SparseAxisArray{Any,N,K}(dict, ntuple(n -> Symbol("#$n"), N)) end @@ -448,7 +467,6 @@ function Base.show(io::IOContext, x::SparseAxisArray) (i, (key, value)) in enumerate(x.data) if i < half_screen_rows || i > length(x) - half_screen_rows ] - sort!(key_strings; by = x -> x[1]) pad = maximum(length(x[1]) for x in key_strings) for (i, (key, value)) in enumerate(key_strings) print(io, " [", rpad(key, pad), "] = ", value) diff --git a/src/Containers/container.jl b/src/Containers/container.jl index 382b9be9ec1..c1812515e36 100644 --- a/src/Containers/container.jl +++ b/src/Containers/container.jl @@ -142,13 +142,21 @@ function container( end # Same as `map` but does not allocate the resulting vector. mappings = Base.Generator(I -> I => f(I...), indices) - # Same as `Dict(mapping)` but it will error if two indices are the same. + # Same as `OrderedCollections.OrderedDict(mapping)`, but it will error if + # two indices are the same. data = NoDuplicateDict(mappings) return _sparseaxisarray(data.dict, f, indices, names) end # The NoDuplicateDict was able to infer the element type. -_sparseaxisarray(dict::Dict, ::Any, ::Any, names) = SparseAxisArray(dict, names) +function _sparseaxisarray( + dict::OrderedCollections.OrderedDict, + ::Any, + ::Any, + names, +) + return SparseAxisArray(dict, names) +end # @default_eltype succeeded and inferred a tuple of the appropriate size! # Use `return_types` to get the value type of the dictionary. @@ -159,13 +167,13 @@ function _container_dict( ) where {N} ret = Base.return_types(f, K) V = length(ret) == 1 ? first(ret) : Any - return Dict{K,V}() + return OrderedCollections.OrderedDict{K,V}() end # @default_eltype bailed and returned Any. Use an NTuple of Any of the # appropriate size intead. function _container_dict(::Any, ::Any, K::Type{<:NTuple{N,Any}}) where {N} - return Dict{K,Any}() + return OrderedCollections.OrderedDict{K,Any}() end # @default_eltype bailed and returned Union{}. Use an NTuple of Any of the @@ -176,7 +184,7 @@ function _container_dict( ::Function, K::Type{<:NTuple{N,Any}}, ) where {N} - return Dict{K,Any}() + return OrderedCollections.OrderedDict{K,Any}() end # Calling `@default_eltye` on `x` isn't sufficient, because the iterator may @@ -189,7 +197,12 @@ _default_eltype(x) = Base.@default_eltype x # best-guess attempt, collect all of the keys excluding the conditional # statement (these must be defined, because the conditional applies to the # lowest-level of the index loops), then get the eltype of the result. -function _sparseaxisarray(dict::Dict{Any,Any}, f, indices, names) +function _sparseaxisarray( + dict::OrderedCollections.OrderedDict{Any,Any}, + f, + indices, + names, +) @assert isempty(dict) d = _container_dict(_default_eltype(indices), f, _eltype_or_any(indices)) return SparseAxisArray(d, names) diff --git a/src/Containers/no_duplicate_dict.jl b/src/Containers/no_duplicate_dict.jl index 139c695e6c9..bbd5b36ad1a 100644 --- a/src/Containers/no_duplicate_dict.jl +++ b/src/Containers/no_duplicate_dict.jl @@ -5,31 +5,39 @@ """ struct NoDuplicateDict{K, V} <: AbstractDict{K, V} - dict::Dict{K, V} + dict::OrderedCollections.OrderedDict{K, V} end -Same as `Dict{K, V}` but errors if constructed from an iterator with duplicate -keys. +Same as `OrderedCollections.OrderedDict{K, V}` but errors if constructed from an +iterator with duplicate keys. """ struct NoDuplicateDict{K,V} <: AbstractDict{K,V} - dict::Dict{K,V} - NoDuplicateDict{K,V}() where {K,V} = new{K,V}(Dict{K,V}()) + dict::OrderedCollections.OrderedDict{K,V} + + function NoDuplicateDict{K,V}() where {K,V} + return new{K,V}(OrderedCollections.OrderedDict{K,V}()) + end end -# Implementation of the `AbstractDict` API. function Base.empty(::NoDuplicateDict, ::Type{K}, ::Type{V}) where {K,V} return NoDuplicateDict{K,V}() end + Base.iterate(d::NoDuplicateDict, args...) = iterate(d.dict, args...) + Base.length(d::NoDuplicateDict) = length(d.dict) + Base.haskey(dict::NoDuplicateDict, key) = haskey(dict.dict, key) + Base.getindex(dict::NoDuplicateDict, key) = getindex(dict.dict, key) + function Base.setindex!(dict::NoDuplicateDict, value, key) if haskey(dict, key) error("Repeated index ", key, ". Index sets must have unique elements.") end return setindex!(dict.dict, value, key) end + function NoDuplicateDict{K,V}(it) where {K,V} dict = NoDuplicateDict{K,V}() for (k, v) in it @@ -37,6 +45,7 @@ function NoDuplicateDict{K,V}(it) where {K,V} end return dict end + function NoDuplicateDict(it) return Base.dict_with_eltype((K, V) -> NoDuplicateDict{K,V}, it, eltype(it)) end diff --git a/src/Containers/tables.jl b/src/Containers/tables.jl index 5a2b11436d5..7b5154863b1 100644 --- a/src/Containers/tables.jl +++ b/src/Containers/tables.jl @@ -35,14 +35,14 @@ julia> @variable(model, x[i=1:2, j=i:2] >= 0, start = i+j); julia> Containers.rowtable(start_value, x; header = [:i, :j, :start]) 3-element Vector{@NamedTuple{i::Int64, j::Int64, start::Float64}}: - (i = 1, j = 2, start = 3.0) (i = 1, j = 1, start = 2.0) + (i = 1, j = 2, start = 3.0) (i = 2, j = 2, start = 4.0) julia> Containers.rowtable(x) 3-element Vector{@NamedTuple{x1::Int64, x2::Int64, y::VariableRef}}: - (x1 = 1, x2 = 2, y = x[1,2]) (x1 = 1, x2 = 1, y = x[1,1]) + (x1 = 1, x2 = 2, y = x[1,2]) (x1 = 2, x2 = 2, y = x[2,2]) ``` """ diff --git a/test/Containers/test_SparseAxisArray.jl b/test/Containers/test_SparseAxisArray.jl index 94a30762b33..215832a1a6c 100644 --- a/test/Containers/test_SparseAxisArray.jl +++ b/test/Containers/test_SparseAxisArray.jl @@ -13,6 +13,9 @@ module TestContainersSparseAxisArray using JuMP.Containers using Test +import LinearAlgebra +import OrderedCollections + function _util_sparse_test(d, sum_d, d2, d3, dsqr, d_bads) sqr(x) = x^2 # map @@ -49,7 +52,9 @@ function _util_sparse_test(d, sum_d, d2, d3, dsqr, d_bads) end function test_1_dimensional() - d = @inferred SparseAxisArray(Dict((:a,) => 1, (:b,) => 2)) + d = @inferred SparseAxisArray( + OrderedCollections.OrderedDict((:a,) => 1, (:b,) => 2), + ) @test sprint(summary, d) == """ $(SparseAxisArray{Int,1,Tuple{Symbol}}) with 2 entries""" @test sprint(show, "text/plain", d) == """ @@ -81,7 +86,9 @@ $(SparseAxisArray{Int,1,Tuple{Symbol}}) with 2 entries: end function test_2_dimensional() - d = @inferred SparseAxisArray(Dict((:a, 'u') => 2.0, (:b, 'v') => 0.5)) + d = @inferred SparseAxisArray( + OrderedCollections.OrderedDict((:a, 'u') => 2.0, (:b, 'v') => 0.5), + ) @test d isa SparseAxisArray{Float64,2,Tuple{Symbol,Char}} @test_throws BoundsError(d, (:a,)) d[:a] @test sprint(summary, d) == """ @@ -359,4 +366,19 @@ function test_multi_arg_eachindex() return end +function test_sparseaxisarray_order() + A = [[1, 2, 10], [2, 3, 30]] + Containers.@container( + x[i in 1:2, j in A[i]], + i + j, + container = SparseAxisArray, + ) + Containers.@container(x1[j in A[1]], 1 + j, container = SparseAxisArray) + Containers.@container(x2[j in A[2]], 2 + j, container = SparseAxisArray) + @test x[1, :] == x1 + @test x[2, :] == x2 + @test LinearAlgebra.dot(x[1, :], 1:3) == 41 + return +end + end # module