diff --git a/docs/src/manual/nonlinear.md b/docs/src/manual/nonlinear.md index b4bd9264ca2..12a6d15012e 100644 --- a/docs/src/manual/nonlinear.md +++ b/docs/src/manual/nonlinear.md @@ -556,6 +556,22 @@ f(x::Vector) = sum(x[i]^i for i in 1:length(x)) @objective(model, Min, op_f(x...)) ``` +If the operator takes several vector inputs, write a function that takes the +splatted arguments and reconstructs the required vector inputs: +```@repl +using JuMP +model = Model(); +@variable(model, x[1:2]); +@variable(model, y[1:2]); +@variable(model, z); +f(x::Vector, y::Vector, z) = sum((x[i] * y[i])^z for i in 1:2) +f(x, y, z) +f_splat(args...) = f(collect(args[1:2]), collect(args[3:4]), args[5]) +f_splat(x..., y..., z) +@operator(model, op_f, 5, f_splat) +@objective(model, Min, op_f(x..., y..., z)) +``` + ### Automatic differentiation JuMP does not support black-box optimization, so all user-defined operators must