diff --git a/src/copy.jl b/src/copy.jl index d20c8d5ae43..0267a331063 100644 --- a/src/copy.jl +++ b/src/copy.jl @@ -323,11 +323,12 @@ function Base.deepcopy(::GenericModel) end function MOI.copy_to(dest::MOI.ModelLike, src::GenericModel) - if nonlinear_model(src) !== nothing + nlp = nonlinear_model(src) + if nlp !== nothing # Re-set the NLP block in-case things have changed since last # solve. evaluator = MOI.Nonlinear.Evaluator( - nonlinear_model(src), + nlp, MOI.Nonlinear.SparseReverseMode(), index.(all_variables(src)), ) diff --git a/src/nlp.jl b/src/nlp.jl index 47af4693a7d..76950a2f27f 100644 --- a/src/nlp.jl +++ b/src/nlp.jl @@ -162,9 +162,9 @@ julia> set_nonlinear_objective(model, MIN_SENSE, :(\$(x) + \$(x)^2)) ``` """ function set_nonlinear_objective(model::Model, sense::MOI.OptimizationSense, x) - _init_NLP(model) set_objective_sense(model, sense) - MOI.Nonlinear.set_objective(model.nlp_model, x) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model + MOI.Nonlinear.set_objective(nlp, x) return end @@ -178,7 +178,7 @@ function _nlp_objective_function(model::GenericModel) if model.nlp_model === nothing return nothing end - return model.nlp_model.objective + return something(model.nlp_model).objective end ### @@ -213,8 +213,8 @@ end Add an anonymous parameter to the model. """ function add_nonlinear_parameter(model::Model, value::Real) - _init_NLP(model) - p = MOI.Nonlinear.add_parameter(model.nlp_model, Float64(value)) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model + p = MOI.Nonlinear.add_parameter(nlp, Float64(value)) return NonlinearParameter(model, p.value) end @@ -243,7 +243,8 @@ julia> value(p) ``` """ function value(p::NonlinearParameter) - return p.model.nlp_model[MOI.Nonlinear.ParameterIndex(p.index)] + nlp = nonlinear_model(p.model; force = true)::MOI.Nonlinear.Model + return nlp[MOI.Nonlinear.ParameterIndex(p.index)] end """ @@ -267,7 +268,8 @@ julia> value(p) ``` """ function set_value(p::NonlinearParameter, value::Number) - p.model.nlp_model[MOI.Nonlinear.ParameterIndex(p.index)] = value + nlp = nonlinear_model(p.model; force = true)::MOI.Nonlinear.Model + nlp[MOI.Nonlinear.ParameterIndex(p.index)] = value return value end @@ -328,8 +330,8 @@ subexpression[1]: x + x ^ 2.0 ``` """ function add_nonlinear_expression(model::Model, ex) - _init_NLP(model) - index = MOI.Nonlinear.add_expression(model.nlp_model, ex) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model + index = MOI.Nonlinear.add_expression(nlp, ex) return NonlinearExpression(model, index.value) end @@ -379,9 +381,10 @@ end Evaluate `ex` using `var_value(v)` as the value for each variable `v`. """ function value(var_value::Function, ex::NonlinearExpression) + nlp = nonlinear_model(ex.model; force = true)::MOI.Nonlinear.Model return MOI.Nonlinear.evaluate( _VariableValueMap(ex.model, var_value), - ex.model.nlp_model, + nlp, MOI.Nonlinear.ExpressionIndex(ex.index), ) end @@ -461,9 +464,9 @@ julia> add_nonlinear_constraint(model, :(\$(x) + \$(x)^2 <= 1)) ``` """ function add_nonlinear_constraint(model::Model, ex::Expr) - _init_NLP(model) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model f, set = _expr_to_constraint(ex) - c = MOI.Nonlinear.add_constraint(model.nlp_model, f, set) + c = MOI.Nonlinear.add_constraint(nlp, f, set) return ConstraintRef(model, c, ScalarShape()) end @@ -476,9 +479,9 @@ function is_valid(model::Model, c::NonlinearConstraintRef) if model !== c.model return false end - _init_NLP(model) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model index = MOI.Nonlinear.ConstraintIndex(c.index.value) - return MOI.is_valid(model.nlp_model, index) + return MOI.is_valid(nlp, index) end """ @@ -487,9 +490,9 @@ end Delete the nonlinear constraint `c` from `model`. """ function delete(model::Model, c::NonlinearConstraintRef) - _init_NLP(model) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model index = MOI.Nonlinear.ConstraintIndex(c.index.value) - MOI.Nonlinear.delete(model.nlp_model, index) + MOI.Nonlinear.delete(nlp, index) return end @@ -544,10 +547,11 @@ Evaluate `c` using `var_value(v)` as the value for each variable `v`. """ function value(var_value::Function, c::NonlinearConstraintRef) index = MOI.Nonlinear.ConstraintIndex(c.index.value) + nlp = nonlinear_model(c.model; force = true)::MOI.Nonlinear.Model return MOI.Nonlinear.evaluate( _VariableValueMap(c.model, var_value), - c.model.nlp_model, - c.model.nlp_model[index].expression, + nlp, + nlp[index].expression, ) end @@ -712,8 +716,8 @@ function register( if autodiff == false error("If only the function is provided, must set autodiff=true") end - _init_NLP(model) - MOI.Nonlinear.register_operator(model.nlp_model, op, dimension, f) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model + MOI.Nonlinear.register_operator(nlp, op, dimension, f) return end @@ -796,19 +800,19 @@ function register( ∇f::Function; autodiff::Bool = false, ) - _init_NLP(model) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model if dimension == 1 if autodiff == false error( "Currently must provide 2nd order derivatives of univariate functions. Try setting autodiff=true.", ) end - MOI.Nonlinear.register_operator(model.nlp_model, op, dimension, f, ∇f) + MOI.Nonlinear.register_operator(nlp, op, dimension, f, ∇f) else if autodiff == true @warn("autodiff = true ignored since gradient is already provided.") end - MOI.Nonlinear.register_operator(model.nlp_model, op, dimension, f, ∇f) + MOI.Nonlinear.register_operator(nlp, op, dimension, f, ∇f) end return end @@ -869,8 +873,8 @@ function register( ∇f::Function, ∇²f::Function, ) - _init_NLP(model) - MOI.Nonlinear.register_operator(model.nlp_model, op, dimension, f, ∇f, ∇²f) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model + MOI.Nonlinear.register_operator(nlp, op, dimension, f, ∇f, ∇²f) return end @@ -898,9 +902,9 @@ function NLPEvaluator( model::Model; _differentiation_backend::MOI.Nonlinear.AbstractAutomaticDifferentiation = MOI.Nonlinear.SparseReverseMode(), ) - _init_NLP(model) + nlp = nonlinear_model(model; force = true)::MOI.Nonlinear.Model return MOI.Nonlinear.Evaluator( - model.nlp_model, + nlp, _differentiation_backend, index.(all_variables(model)), ) diff --git a/src/nlp_expr.jl b/src/nlp_expr.jl index 34f059f63c8..462b3d597cf 100644 --- a/src/nlp_expr.jl +++ b/src/nlp_expr.jl @@ -577,7 +577,7 @@ end moi_function_type(::Type{<:GenericNonlinearExpr}) = MOI.ScalarNonlinearFunction function constraint_object(c::NonlinearConstraintRef) - nlp = nonlinear_model(c.model) + nlp = nonlinear_model(c.model)::MOI.Nonlinear.Model data = nlp.constraints[index(c)] return ScalarConstraint(jump_function(c.model, data.expression), data.set) end diff --git a/src/objective.jl b/src/objective.jl index 06a9d61b3d0..caa0e2418b6 100644 --- a/src/objective.jl +++ b/src/objective.jl @@ -118,8 +118,9 @@ function set_objective_function(model::GenericModel, func::MOI.AbstractFunction) MOI.set(model, attr, func) # Nonlinear objectives override regular objectives, so if there was a # nonlinear objective set, we must clear it. - if nonlinear_model(model) !== nothing - MOI.Nonlinear.set_objective(nonlinear_model(model), nothing) + nlp = nonlinear_model(model) + if nlp !== nothing + MOI.Nonlinear.set_objective(nlp, nothing) end return end diff --git a/src/optimizer_interface.jl b/src/optimizer_interface.jl index 32c0c864eb1..474a6819fd8 100644 --- a/src/optimizer_interface.jl +++ b/src/optimizer_interface.jl @@ -414,7 +414,8 @@ function optimize!( ) # The nlp_model is not kept in sync, so re-set it here. # TODO: Consider how to handle incremental solves. - if nonlinear_model(model) !== nothing + nlp = nonlinear_model(model) + if nlp !== nothing if _uses_new_nonlinear_interface(model) error( "Cannot optimize a model which contains the features from " * @@ -424,7 +425,7 @@ function optimize!( ) end evaluator = MOI.Nonlinear.Evaluator( - nonlinear_model(model), + nlp, _differentiation_backend, index.(all_variables(model)), ) diff --git a/src/print.jl b/src/print.jl index 64642177d8a..521f1b860d2 100644 --- a/src/print.jl +++ b/src/print.jl @@ -399,7 +399,8 @@ function nonlinear_constraint_string( mode::MIME, c::MOI.Nonlinear.ConstraintIndex, ) - constraint = nonlinear_model(model)[c] + nlp = nonlinear_model(model)::MOI.Nonlinear.Model + constraint = nlp[c] body = nonlinear_expr_string(model, mode, constraint.expression) lhs = _set_lhs(constraint.set) rhs = _set_rhs(constraint.set) @@ -442,7 +443,8 @@ function nonlinear_expr_string( mode::MIME, c::MOI.Nonlinear.Expression, ) - expr = MOI.Nonlinear.convert_to_expr(nonlinear_model(model), c) + nlp = nonlinear_model(model)::MOI.Nonlinear.Model + expr = MOI.Nonlinear.convert_to_expr(nlp, c) # Walk terms, and replace # MOI.VariableIndex => VariableRef # MOI.Nonlinear.ExpressionIndex => _NonlinearExpressionIO @@ -588,7 +590,7 @@ function function_string(mode::MIME"text/latex", v::AbstractVariableRef) # Convert any x[args] to x_{args} so that indices on x print as subscripts. m = match(r"^(.*)\[(.+)\]$", var_name) if m !== nothing - var_name = m[1] * "_{" * m[2] * "}" + return string(m[1]::AbstractString, "_{", m[2]::AbstractString, "}") end return var_name end @@ -655,7 +657,7 @@ function function_string(mode, q::GenericQuadExpr) end function function_string(mode, vector::Vector{<:AbstractJuMPScalar}) - return "[" * join(function_string.(Ref(mode), vector), ", ") * "]" + return string("[", join(function_string.(Ref(mode), vector), ", "), "]") end function function_string( @@ -702,7 +704,8 @@ function function_string(mode, constraint::AbstractConstraint) end function function_string(mode::MIME, p::NonlinearExpression) - expr = nonlinear_model(p.model)[index(p)] + nlp = nonlinear_model(p.model)::MOI.Nonlinear.Model + expr = nlp[index(p)] s = nonlinear_expr_string(p.model, mode, expr) return "subexpression[$(p.index)]: " * s end