diff --git a/docs/src/tutorials/algorithms/rolling_horizon.jl b/docs/src/tutorials/algorithms/rolling_horizon.jl index 49f53d789c4..006b5d0e062 100644 --- a/docs/src/tutorials/algorithms/rolling_horizon.jl +++ b/docs/src/tutorials/algorithms/rolling_horizon.jl @@ -204,6 +204,28 @@ model renewable_production = Float64[] storage_level = Float64[0.0] # Include an initial storage level +# We'll also plot the solution at each of the time-steps to help visualize the +# solution to the rolling horizon problems. + +function plot_solution(model, offset) + plot = Plots.plot(; + ylabel = "MW", + xlims = (0, total_time_length), + xticks = 0:12:total_time_length, + ) + x = offset .+ (1:optimization_window) + y = hcat(value.(model[:p]), value.(model[:r]), value.(model[:d])) + if offset == 0 + Plots.areaplot!(x, y; label = ["thermal" "solar" "discharge"]) + Plots.areaplot!(x, -value.(model[:c]); label = "charge") + else + Plots.areaplot!(x, y; label = false) + Plots.areaplot!(x, -value.(model[:c]); label = false) + end + return plot +end +plots = Any[] + # Now we can iterate across the windows of our rolling horizon problem, and at # each window, we: @@ -230,6 +252,7 @@ for offset in 0:move_forward:total_time_length-1 push!(renewable_production, value(model[:r][t])) push!(storage_level, value(model[:s][t])) end + push!(plots, plot_solution(model, offset)) end # We can now plot the solution to the week-long problem: @@ -243,6 +266,15 @@ Plots.plot( xticks = 0:12:total_time_length, ) +# and visualize each of the rolling horizon subplots: + +Plots.plot( + plots...; + layout = (length(plots), 1), + size = (600, 800), + margin = 3Plots.mm, +) + # ## Final remark # [ParametricOptInterface.jl](@ref) offers an easy way to update the parameters