From 5e0a9754524f75a5d686748e9449ab1c94956547 Mon Sep 17 00:00:00 2001 From: Oscar Dowson <odow@users.noreply.github.com> Date: Mon, 10 Jun 2024 09:40:24 +1200 Subject: [PATCH] [docs] add warning about Y <= X, Set() syntax (#3769) --- docs/src/manual/constraints.md | 18 +++++++++++++----- 1 file changed, 13 insertions(+), 5 deletions(-) diff --git a/docs/src/manual/constraints.md b/docs/src/manual/constraints.md index 4eb08ee188e..8665f886cba 100644 --- a/docs/src/manual/constraints.md +++ b/docs/src/manual/constraints.md @@ -1238,8 +1238,9 @@ julia> @constraint(model, x in MOI.ExponentialCone()) ## Set inequality syntax For modeling convenience, the syntax `@constraint(model, x >= y, Set())` is -short-hand for `@constraint(model, x - y in Set())`. Therefore, the following -calls are equivalent: +short-hand for `@constraint(model, x - y in Set())`. + +Therefore, the following calls are equivalent: ```jldoctest set_inequality julia> model = Model(); @@ -1250,9 +1251,6 @@ julia> y = [0.5, 0.75]; julia> @constraint(model, x >= y, MOI.Nonnegatives(2)) [x[1] - 0.5, x[2] - 0.75] ∈ MathOptInterface.Nonnegatives(2) -julia> @constraint(model, y <= x, MOI.Nonnegatives(2)) -[x[1] - 0.5, x[2] - 0.75] ∈ MathOptInterface.Nonnegatives(2) - julia> @constraint(model, x - y in MOI.Nonnegatives(2)) [x[1] - 0.5, x[2] - 0.75] ∈ MathOptInterface.Nonnegatives(2) ``` @@ -1270,6 +1268,11 @@ julia> @constraint(model, x .- 1 >= 0, MOI.Nonnegatives(2)) [x[1] - 1, x[2] - 1] ∈ MathOptInterface.Nonnegatives(2) ``` +!!! warning + The syntax `@constraint(model, y <= x, Set())` is supported, but it is not + recommended because the value of the primal and dual solutions associated + with the constraint may be the negative of what you expect. + ## Second-order cone constraints A [`SecondOrderCone`](@ref) constrains the variables `t` and `x` to the set: @@ -1440,6 +1443,11 @@ julia> @constraint(model, X >= Y, PSDCone()) X[2,1] - 2 X[2,2] - 1] ∈ PSDCone() ``` +!!! warning + The syntax `@constraint(model, Y <= X, PSDCone())` is supported, but it is + not recommended because the value of the primal and dual solutions associated + with the constraint may be the negative of what you expect. + ### Symmetry Solvers supporting PSD constraints usually expect to be given a matrix that