From 3acb4c3a5838b623dcb89e68dc68704a5abdaa94 Mon Sep 17 00:00:00 2001 From: "julien.roux@unibas.ch" Date: Fri, 21 Jun 2024 09:32:12 +0200 Subject: [PATCH] Adding python notebook from Davide --- SIB_Days_hands_on_DESeq2.ipynb | 1 + 1 file changed, 1 insertion(+) create mode 100644 SIB_Days_hands_on_DESeq2.ipynb diff --git a/SIB_Days_hands_on_DESeq2.ipynb b/SIB_Days_hands_on_DESeq2.ipynb new file mode 100644 index 0000000..e2312d1 --- /dev/null +++ b/SIB_Days_hands_on_DESeq2.ipynb @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[{"file_id":"1oSEZ62Ex__Q5lS-pkg7YPle66P1x6_uM","timestamp":1718954670557}]},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["# **Step 1: Setting up Your Environment**\n","\n","In this part of the hands-on, we set up an environment for data analysis and visualization in the Google Colab notebook. First, we allow the Google Colab notebook to access files stored in your Google Drive, enabling the use of data stored remotely. Then, we import libraries to set up a comprehensive R toolset for accessing data, conducting statistical analysis, and visualizing results effectively."],"metadata":{"id":"O5HiVZ5cFomt"}},{"cell_type":"code","execution_count":1,"metadata":{"id":"MIR4jT1H89Rj","executionInfo":{"status":"ok","timestamp":1718954597570,"user_tz":-120,"elapsed":1,"user":{"displayName":"Julien Roux","userId":"07397163786130913749"}}},"outputs":[],"source":["from google.colab import drive"]},{"cell_type":"code","source":["drive.mount('/content/drive/')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":300},"id":"6p-tvSUV9UsC","executionInfo":{"status":"error","timestamp":1718954627661,"user_tz":-120,"elapsed":27667,"user":{"displayName":"Julien Roux","userId":"07397163786130913749"}},"outputId":"1d89f1c9-7179-4f1e-92d3-384ca87679b4"},"execution_count":2,"outputs":[{"output_type":"error","ename":"MessageError","evalue":"Error: credential propagation was unsuccessful","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mMessageError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdrive\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmount\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'/content/drive/'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/google/colab/drive.py\u001b[0m in \u001b[0;36mmount\u001b[0;34m(mountpoint, force_remount, timeout_ms, readonly)\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmount\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmountpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mforce_remount\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout_ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m120000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreadonly\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 99\u001b[0m \u001b[0;34m\"\"\"Mount your Google Drive at the specified mountpoint path.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 100\u001b[0;31m return _mount(\n\u001b[0m\u001b[1;32m 101\u001b[0m \u001b[0mmountpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0mforce_remount\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mforce_remount\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/google/colab/drive.py\u001b[0m in \u001b[0;36m_mount\u001b[0;34m(mountpoint, force_remount, timeout_ms, ephemeral, readonly)\u001b[0m\n\u001b[1;32m 131\u001b[0m )\n\u001b[1;32m 132\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mephemeral\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 133\u001b[0;31m _message.blocking_request(\n\u001b[0m\u001b[1;32m 134\u001b[0m \u001b[0;34m'request_auth'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m'authType'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m'dfs_ephemeral'\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/google/colab/_message.py\u001b[0m in \u001b[0;36mblocking_request\u001b[0;34m(request_type, request, timeout_sec, parent)\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[0mrequest_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparent\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparent\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexpect_reply\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 175\u001b[0m )\n\u001b[0;32m--> 176\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mread_reply_from_input\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrequest_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout_sec\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/google/colab/_message.py\u001b[0m in \u001b[0;36mread_reply_from_input\u001b[0;34m(message_id, timeout_sec)\u001b[0m\n\u001b[1;32m 101\u001b[0m ):\n\u001b[1;32m 102\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'error'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mreply\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mMessageError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreply\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'error'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 104\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mreply\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'data'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mMessageError\u001b[0m: Error: credential propagation was unsuccessful"]}]},{"cell_type":"code","source":["!pip install rpy2\n","%reload_ext rpy2.ipython"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"K0zv_-tc9iC0","executionInfo":{"status":"ok","timestamp":1718954646278,"user_tz":-120,"elapsed":12822,"user":{"displayName":"Julien Roux","userId":"07397163786130913749"}},"outputId":"34594e5c-6a91-4e0e-c5b2-cc4f18ce689e"},"execution_count":3,"outputs":[{"output_type":"stream","name":"stdout","text":["Requirement already satisfied: rpy2 in /usr/local/lib/python3.10/dist-packages (3.4.2)\n","Requirement already satisfied: cffi>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from rpy2) (1.16.0)\n","Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from rpy2) (3.1.4)\n","Requirement already satisfied: pytz in /usr/local/lib/python3.10/dist-packages (from rpy2) (2023.4)\n","Requirement already satisfied: tzlocal in /usr/local/lib/python3.10/dist-packages (from rpy2) (5.2)\n","Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.10.0->rpy2) (2.22)\n","Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->rpy2) (2.1.5)\n"]}]},{"cell_type":"code","source":["%%R\n","\n","install.packages(\"ggplot2\")\n","library(\"ggplot2\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"qKvJcozECSI6","outputId":"e43f4a91-60f2-4fb7-e436-0817179e80df"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Installing package into ‘/usr/local/lib/R/site-library’\n","(as ‘lib’ is unspecified)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/ggplot2_3.5.1.tar.gz'\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Content type 'application/x-gzip'\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: length 3604371 bytes (3.4 MB)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: downloaded 3.4 MB\n","\n","\n"]}]},{"cell_type":"code","source":["%%R\n","\n","install.packages(\"RColorBrewer\")\n","library(RColorBrewer)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"NcvmKR04E4md","executionInfo":{"status":"ok","timestamp":1718910975774,"user_tz":-120,"elapsed":4764,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"07267e4a-d9d9-4b1d-b958-b1288bdaf6c5"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Installing package into ‘/usr/local/lib/R/site-library’\n","(as ‘lib’ is unspecified)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/RColorBrewer_1.1-3.tar.gz'\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Content type 'application/x-gzip'\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: length 11638 bytes (11 KB)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: downloaded 11 KB\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The downloaded source packages are in\n","\t‘/tmp/RtmpI0pBSN/downloaded_packages’\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n"]}]},{"cell_type":"code","source":["%%R\n","\n","install.packages(\"hexbin\")\n","library(hexbin)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"GWI0dRPqFH6d","executionInfo":{"status":"ok","timestamp":1718911032693,"user_tz":-120,"elapsed":7870,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"0fdc2e6e-2ec8-41b3-a120-53283fb466e6"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Installing package into ‘/usr/local/lib/R/site-library’\n","(as ‘lib’ is unspecified)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/hexbin_1.28.3.tar.gz'\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Content type 'application/x-gzip'\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: length 1199967 bytes (1.1 MB)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: downloaded 1.1 MB\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The downloaded source packages are in\n","\t‘/tmp/RtmpI0pBSN/downloaded_packages’\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n"]}]},{"cell_type":"code","source":["%%R\n","\n","install.packages(\"tidyverse\")\n","library(tidyverse)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"3UkJi5f7G0tL","executionInfo":{"status":"ok","timestamp":1718911616493,"user_tz":-120,"elapsed":5711,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"f24c2c35-ad4e-4784-b0a6-2b58eb9d35dc"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Installing package into ‘/usr/local/lib/R/site-library’\n","(as ‘lib’ is unspecified)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/tidyverse_2.0.0.tar.gz'\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Content type 'application/x-gzip'\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: length 704618 bytes (688 KB)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: downloaded 688 KB\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The downloaded source packages are in\n","\t‘/tmp/RtmpI0pBSN/downloaded_packages’\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n"]}]},{"cell_type":"code","source":["%%R\n","\n","install.packages(\"BiocManager\")\n","library(BiocManager)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"vffGml_G9_q8","executionInfo":{"status":"ok","timestamp":1718910716055,"user_tz":-120,"elapsed":5759,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"70ded634-aa66-4c39-d4bf-d8c02d32f9a8"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Installing package into ‘/usr/local/lib/R/site-library’\n","(as ‘lib’ is unspecified)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/BiocManager_1.30.23.tar.gz'\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Content type 'application/x-gzip'\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: length 589753 bytes (575 KB)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: =\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: downloaded 575 KB\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The downloaded source packages are in\n","\t‘/tmp/RtmpI0pBSN/downloaded_packages’\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Bioconductor version 3.19 (BiocManager 1.30.23), R 4.4.1 (2024-06-14)\n","\n"]}]},{"cell_type":"code","source":["%%R\n","\n","BiocManager::install(\"DESeq2\")\n","library(DESeq2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"_U_WfRuy93JH","executionInfo":{"status":"ok","timestamp":1718910738320,"user_tz":-120,"elapsed":18269,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"1a9578bc-0fe6-4a8f-e251-a2d76b87a4c1"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: 'getOption(\"repos\")' replaces Bioconductor standard repositories, see\n","'help(\"repositories\", package = \"BiocManager\")' for details.\n","Replacement repositories:\n"," CRAN: https://cran.rstudio.com\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Bioconductor version 3.19 (BiocManager 1.30.23), R 4.4.1 (2024-06-14)\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Old packages: 'backports', 'bit', 'brio', 'broom', 'bslib', 'cachem', 'callr',\n"," 'crayon', 'curl', 'data.table', 'DBI', 'dbplyr', 'devtools', 'digest',\n"," 'evaluate', 'farver', 'fastmap', 'fs', 'gargle', 'ggplot2', 'gh', 'gtable',\n"," 'highr', 'htmltools', 'httr2', 'isoband', 'knitr', 'munsell', 'openssl',\n"," 'pkgbuild', 'processx', 'ragg', 'remotes', 'rlang', 'rmarkdown',\n"," 'rstudioapi', 'rvest', 'sass', 'stringi', 'systemfonts', 'testthat',\n"," 'textshaping', 'tidyselect', 'tinytex', 'usethis', 'whisker', 'xfun',\n"," 'xopen', 'zip', 'codetools', 'lattice', 'MASS', 'Matrix'\n","\n"]},{"name":"stdout","output_type":"stream","text":["Update all/some/none? [a/s/n]: n\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: S4Vectors\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: stats4\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: BiocGenerics\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","Attaching package: ‘BiocGenerics’\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The following objects are masked from ‘package:stats’:\n","\n"," IQR, mad, sd, var, xtabs\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The following objects are masked from ‘package:base’:\n","\n"," anyDuplicated, aperm, append, as.data.frame, basename, cbind,\n"," colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,\n"," get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,\n"," match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,\n"," Position, rank, rbind, Reduce, rownames, sapply, setdiff, table,\n"," tapply, union, unique, unsplit, which.max, which.min\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","Attaching package: ‘S4Vectors’\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The following object is masked from ‘package:utils’:\n","\n"," findMatches\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The following objects are masked from ‘package:base’:\n","\n"," expand.grid, I, unname\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: IRanges\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: GenomicRanges\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: GenomeInfoDb\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: SummarizedExperiment\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: MatrixGenerics\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: matrixStats\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","Attaching package: ‘MatrixGenerics’\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The following objects are masked from ‘package:matrixStats’:\n","\n"," colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,\n"," colCounts, colCummaxs, colCummins, colCumprods, colCumsums,\n"," colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,\n"," colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,\n"," colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,\n"," colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,\n"," colWeightedMeans, colWeightedMedians, colWeightedSds,\n"," colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,\n"," rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,\n"," rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,\n"," rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,\n"," rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,\n"," rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,\n"," rowWeightedMads, rowWeightedMeans, rowWeightedMedians,\n"," rowWeightedSds, rowWeightedVars\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Loading required package: Biobase\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: Welcome to Bioconductor\n","\n"," Vignettes contain introductory material; view with\n"," 'browseVignettes()'. To cite Bioconductor, see\n"," 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: \n","Attaching package: ‘Biobase’\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The following object is masked from ‘package:MatrixGenerics’:\n","\n"," rowMedians\n","\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: The following objects are masked from ‘package:matrixStats’:\n","\n"," anyMissing, rowMedians\n","\n","\n"]}]},{"cell_type":"markdown","source":["# **Step 2: Data loading and exploration**\n","\n","This segment of the tutorial demonstrates how to load and inspect the bulk RNA-seq data from Chucair-Elliott's study (GEO accession: GSE135752)."],"metadata":{"id":"xrEUqmFVFz6v"}},{"cell_type":"code","source":["%%R\n","\n","## Load the DESeqDataSet object from Github\n","dds <- readRDS(url(\"https://raw.githubusercontent.com/julien-roux/SIB_days_2024_workshop_EDI/main/DESeqDataSet.rds\"))"],"metadata":{"id":"e8y8iIQpA7SA"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["%%R\n","\n","## Apply count data transformation\n","vst <- varianceStabilizingTransformation(dds, blind = TRUE)"],"metadata":{"id":"U9Bv5Q3EBCpu"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["%%R\n","\n","## Mean vs. SD plot\n","px <- rowMeans(assay(vst), na.rm = TRUE)\n","py <- sqrt(rowSums((assay(vst) - px)^2)/(rowSums(!is.na(assay(vst)))-1))\n","ggplot(data.frame(px = px, py = py),\n"," aes(x=px, y=py)) +\n"," xlab(\"mean\") + ylab(\"sd\") +\n"," geom_hex(bins = 50) +\n"," scale_fill_gradient(name = \"count\", trans = \"log\", labels = \\(x){ format(round(x, 0), nsmall = 0L, scientific = FALSE) }) +\n"," geom_smooth()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":515},"id":"zBRu-2WUBXO5","executionInfo":{"status":"ok","timestamp":1718911043966,"user_tz":-120,"elapsed":4497,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"cb6b6178-2e28-40f3-9c4f-192db4a39213"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = \"cs\")'\n"]},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOy9eZxU1Zn//9ytlq7e2RFBQAiiiOAGagTUqFlwiUziGJO4JNEvZmKcjBknJpM42XUyEyaTxF+Mk8XgiKMB40QxToCocQNBEUHZFWSn99rr3vP741SfPnXPU9W3tq7b3c/7xUtvn77LubeqPnX6PJ/zPBpjDAiCIAj/ode6AwRBEAQOCTRBEIRPIYEmCILwKSTQBEEQPsWsxknj8bjjOJU9p2EYjuP4KqSp67phGOl0utYdycEwDNu2a92LHHRd13U9k8nUuiM5+PBBGYahaRo9qH4xDAMAXL3SdT0cDteoR9WiKgKdSCQq/oqGw+FkMllx3S8Hy7IikUg8Hq91R3LwYZeCwWAwGPRbr3z4oMLhsGEYfuuVDx9UJBJhjLl6ZRjG0BNomuIgCILwKSTQBEEQPoUEmiAIwqeQQBMEQfgUEmiCIAifQgJNEAThU0igCYIgfAoJNEEQhE8hgSYIgvApJNAEQRA+hQSaIAjCp5BAEwRB+BQSaIIgCJ9CAk0QBOFTSKAJgiB8SlXyQRPEwDBj4bVi++11j9SwJwRRDWgETQxWZHXmP7paCGKwQwJNEAThU0igCYIgfAoJNEEQhE8hgSYIgvApJNDEYMVl23h73SNk5CCGGCTQxCBGiDJJMzEkIYEmBj2kzsRQhQSaIAjCp5BAEwRB+BQSaIIgCJ9CAk0QBOFTSKAJgiB8SlWy2ZmmqesVln7DMEzTZIxV9rTlYJqmpmmWZdW6Iznouu63LhmG4cNe+bBL9KA8wuXF1auKa44fGIK3RBAEMTSoygg6k8nYtl3Zc5qmmclkHMep7GnLhDGWTqdr3YscAoGA37qk67rjOH7rlQ8flGmaAOC3XvnwQQUCAfWjZxhGrfpTPWgETRAE4VNIoAmCIHwKlbwiagCVqiIIL9AImhhQ1MJUVKeKIPJBAk0QBOFTSKAJgiB8Cgk0QRCETyGBJgiC8Cnk4iCKQAT0SrZe8APJxUEQXqARNOEVWVXLtF4IUSZ1JogCkEATnlAVuXyNJnUmiMKQQBMEQfgUEmiCIAifQgJNEAThU0ighzXe55HV+WKaQSaIakMCPUwROTFK02hSZ4IYAMgHPRxB0xV50VzSZYIYSGgETRAE4VNIoAmCIHwKCTRBEIRPIYEmCILwKSTQwxFXrI9WXROEPyEXxzCFFJkg/A+NoAmCIHwKCTRBEIRPIYEmCILwKSTQBEEQPoUEmshB5OioyeEEQciQi4PIola0KsrpUebhBEGo0AiayAuNhQmitpBAEwRB+BQSaIIgCJ9CAk0QBOFTSKCHMt4nkdE9KcpHELWFXBxDFrmiVWGprYg68/3Jv0EQFYQEegiiCu6MhdeiolnxgTNJM0FUEJriIAiC8Ckk0ARBED6FBJogCMKnkEATBEH4FBLoIYhawipf7M77ngRBDDzk4hiyeJfat9c9ks/mQRBEDaERNAFAA2eC8CUk0ARBED6FBJogCMKnkEATBEH4lBKDhIyxX/ziF+3t7alU6s477wyHw5XtFlERysyMQYk1CKK2lCjQmzZtamhouOWWW959991MJlPZPhHl4ypAVazIlnk4QRAVQWOMlXDYihUruru7k8mkrus333xzIBAAgHXr1r355psAsGTJkubm5sp21DRN27ZL622V0HXdsqxkMlnrjuRgWdbYMy5X2/etf9LjGU48e3E5h6sYhmEYRiqVKvkM1cCyrHQ6Xete5GCapq7r9KD6xbIsAFB7NfT+lC9xDjqTyYwZM+a2224bP3782rVrK9sngiAIAkqe4pg0aVJbWxsARCIRMYRcuHDhwoULAaC9vT0ajVaoh1nC4XAymXQcp7KnLQfLsgzDqPidlkkkEkHby+xnOYcHg8FgMOjDB+W3LoXDYX++o3zYJcZYLBaTGw3DoBF0lvnz5+/evfu+++57+eWXFy1aVNk+EQRBEFDyCNowjC9/+cuV7QpRKcItY+Lth0s+3AxFMonajJgoIEkQMpSLY0gx5+rb+Yas0d4l77TLb+YbskYPmGJ6r9FFEMMEWqgydBDqzAm3jAm3jClBnTlmKGKGIgMjlDMWXusqvuW93C1BDGFIoAmCIHwKCTRBEIRPIYEmCILwKSTQBEEQPoUEevAx+4qls69YqrZvWrnM9aOrpTBbVj8o/5hJRDOJ6MAE66jyFkGglJiLozDt7e22bVf2nP5cSRiJRDo6Ogbsiqouv/GHn7laIpHI9Es/V5Q0uzjt8ptVH3Q5islXEnZ1dfW750D6oH24QI6vJOzp6al1R3Lw4YPKt5KwpaWlVl2qEjSCHoKUo84AUKtVKkADZ4LIhQSaIAjCp5BAEwRB+BQSaIIgCJ9CAj1oQA0VHl0W6lrqAqATwbT2miAGHnJxlM6AuThc4hhsbAWAZFeb3ChUVY25uw73HohDRbmEOJ53F8dA4kNzArk4PEIuDsIvqCqZ7GpzqTO6W752GkoTxGCBBJogCMKnkEATBEH4FBJogiAIn0ICPewY+CAhQRClQSWv/A4XRKGVsj6iVUj2rX/S4+GFIXUmiJpDNrvSGfhkSSrVkNGKn5Nsdh4hm51HyGZHEARB1BgSaIIgCJ9CAk0QBOFTSKAJgiB8Crk4fEdhwwZaGgq1c5Qc1lPPSeYNgqgJ5OIonWq4ODxmuvCYJaN8O0dFpJlcHB4hF4dHyMVB1ICK5yEq84Q0cCaI2kICTRAE4VNIoAmCIHwKCTRBEIRPIYH2C/kWWKsTwfmmhgcmv341TkhFAAgChVwcpVNBF4eX9BcezXPVS3JUcumsAi6Oks9ZPj40J5CLwyPk4iAGDo+Sio6mVVzZ7ApcoijKKZ01kOckiKEECTRBEIRPIYEmCILwKSTQBEEQPoUEeuBAJ1hPu/xmtbHMWBmtACSIoQG5OEqnKBcHmntIVudMIur6bWmImHsJZa7k/mxZ/aC6Q2kWkcK5OEroZ0XwoTmBXBweGT4uDhLo0vEo0KiomaGI2ohqYrGU/HFCx/IVkWlKluQREmiPDB+BpikOgiAIn0ICTRAE4VNIoAmCIHwKCTRBEIRPoZJXVadABal+XRMo/KiKRBRltqx+0GN/3l73CBXEIogBgFwcpVNssiS0gtRpl99crDTLqMeWH3P33iWPNbHIxeERcnF4ZPi4OKoi0N3d3RVX0mAwmEqlqtHbkjFNMxQKDeTH6QMXf8bV8s6ff+tqCYVCiURioHrkCcuyAoGA3z7kPnxQwWBQ1/V4PF7rjuTgwwcVCoUAwNUrXdcbGhpq1KNqQXPQBEEQPqUqc9CZTKbiUxymaWYyGV9NcQAAYyydTtewA+rVA4FAbbukouu64zh+65UPH5RpmoC9prXFhw8qEAioHz3DMGrVn+pBI2iCIAifQgJdFdAyTugK6TJT1FOGe4IYwpCLo3RQFwdaw8l7oxe4l0MkV3Id7sOYO7k4PEIuDo+Qi6Mshq1Alzme9a7RBdIV+fDjRALtERJojwwfgaYpDoIgCJ9CAk0QBOFTSKAJgiB8Cgl0JaGsFARBVBBKllRh5ERCsl4Xjh8Wq+yoD4T/uG/9k+oVxfkpyRFBDCLIxVE6xSZLglJr+hV7Qu8MjEaTi8Mj5OLwCLk4CIIgiBpDAk0QBOFTSKAJgiB8Cgk0QRCETyEXR1VQq1IViOZ5qUsiaqn0e85965/kIZ3SXBx8By/BwypV3qoVqPeGIGoLuThKB3VxoFWpPHot8kmD65xcE/MZQuSYOyr9+b4P1BN67A/0J9M+d3F4v/FqQy4Oj5CLgygFVbmgbCeces7TLr/Zo10PFZoyUzKhoDc+eKEkroRPIIEmCILwKSTQBEEQPoUEmiAIwqeQQFcSIxAs+dhgY+vsK5a6GmcsvNZVOQUAtqx+0ON0c5l4P+eg9nIMzMMkiBIgF0fpyC4Ol7baqSQoVakKEGxsFdtv/OFnfEMOVZmhCN9AbXayoJQZc6+Gzc7nLg6OH2x25OLwyPBxcZBAl44QaHXkCwDJrjaP55HVufDhXrTDhx+nQSHQfoAE2iPDR6BpioMgCMKnkEATBEH4FBJogiAIn0ICPWggawFBDDcoWVJZjD3jcrEtYn3ew4Pcm2GnkrI/r+TwYPnUtkoWleMiCBfk4iidcjI2CNucDGrLK1aqSo65e7+dYrvUr4uj4pXAvOBDcwK5ODxCLg6iHyifDkEQ1YYEmiAIwqeQQBMEQfgUEmiCIAifQgJdCugEdLCxlf+TG81QRI0HBhtb1bRKaAokMxRRc+HPWHit2gHvjShFTal72ZlfuuRSMuTiIAggF0cJ5FNn+cdkV5uqy5lEVE27YaeSar6hGQuvVQ9HS2e9ve4R741qt6GMaGcBDXWdc89LKz3m4vBSnrFS+NCcQC4Oj5CLg8Dxos5oC+Sx1qEZSlGR8l5Py7vmluNFyXes2j55/tUez0kDZ4KQIYEmCIIol4cffrgapyWBJgiCKItYLPajH/2oGmcmgSYIYvjy9a9/fe7cuWedddYvfvEL3vLNb37zggsuWLRo0S233JJKpVavXn3VVVfxX33uc5/73e9+t3bt2ssuu+yLX/ziddddt2jRop6enltuuWXHjh2f/exnK949Euji8DhJyiuquECLj4j6KTLo9C66EByd10ZnwMtcye3daKG273lpZTn9QaGVnET5PPvss88999yGDRvWrl37yCOPRKPRtWvXrl69+i9/+cvatWs7Ozsfeugh9SjLsl5//fV777334YcfHjdu3NNPP3333XdPmTLlN7/5TcV7SMmSikb1SPD0RkIWC6gzl2NegaWwNHM55vpbWJrlfUQf+IYr75Jczqpw+gv5Hgs3ovS7J/+t9/Ja6rElH04QgldeeWXBggW6rjc0NKxZs4a3LFq0yDAMAFiwYMH69etPOOEE9cCZM2fW1dUBwOjRo9vavCZHKwES6FJAfWyotQ6wgTMqzYCJZr6qhuqFzFBENYQEG1vV3Hj5xp4upfM4js6Hd1dfUda6Mg8nCBlN0wo7dzVN0zRN/JjJZPgGV3BONZzKApriIAhimHLeeec9++yztm0nEokLLrigra1t/vz569at46q9Zs2aefPmNTY2HjlyBABs216/fj16Hl3Xk0nk7+byoRE0QRDDlEWLFl166aXnnXeebds333xza2vrggULPvzhD/NZjlNOOeX6668HgObm5muuuaa1tXXmzJnoeHnixImapl144YXPPfdcZXtIKwlLBJ0o8DjFUdQ5UbyvefFePaB6EwVyPugyUz9XMHO0DxfI0UpCj9BKQoIgCKLGlDWCXrt27VNPPXXfffe52of8CJrbMCB3fCrGcfKabHT4rDoc5ENEYFAeGIpD+i3FUrjyFlrISpyz38G+RxeHa0+1okq/A2EvJhAv3SiADweGNIL2yPAZQZcu0B0dHb/61a/a2tq+/e1vu341hAVaSLNMPleGCprDSE2ykUlEVelBMygB5vRAzRuAyRma36Pwl0rhE+bb88DGp9RkSeVYs8s3b/hQd0igPTJ8BLr0IOFvfvObT3/608uWLRMtq1ev3rhxIwDceOONFX9SpmmapllVR0vJ1NfXl3wsKrtmKKKec/+G/z3pgk+6GlEfHqrO+zf8r8cueb8d73uaplnOU0KfRsln45TZpWpgmqamaT7slQ+7BAC6PvRnaEsU6BdeeGH69OkjR46UG5ubm7mpW9f1io+g+Tn9KdAVv9lqnNP7CauxJ2OsnDuqxhM2DKMapy0HXder8dkpEx8+KG5DdvVKNiwPGUoU6A0bNgDAO++889577z3zzDOXXXYZAMybN2/evHkA0N7eHo/HK9hLjh+mOFCqcbMVP6f3E1ZjT9u2y7mjajxhXdercdoyMQzDb73y4YPSdZ0x5uqVYRh8dZ93drY7XaniLj26TpvQMHDfBCUK9Je//GW+8Y1vfIOrM0EQxOBixdvpN44U98fBR6aYN8wKVKk/KuVO4qgRwiHMjIXXqtO7ya4277Wm0LiWOo+M1liZsfBa1575FoKjoJ30cmn0WMhTjgs8J0tC93x73SMeszJ5rKdVVOUtYtjBHHCK/Dews6y0UMUT6iccdUp4rDVVYJGLF30skEHJC2iyJDMUKUqaXS35juXXUm12+fbst1HtkvfKW649fWhOIBeHRyrl4vjuC9HXD2eKOuQjJwdvnB0q6pByGPph0PJBRQp1SpRcIxUAMomoR4nMJKIlqzPkGXuWc0LIY9crM7OSRw+f98pbNI4mXDDGGHOK+gfgHiNu37796quv/vznP3/VVVcdO3bMtu1777139OjR/LddXV0f//jHP/nJT37qU5+ybXv79u2XX375Nddcc+mllx49erTfHpJAEwQxTGHMYU6x/9xTDmvWrPnYxz72wAMPnH766evXrz9y5Mj8+fOnT5/Of/vAAw8sWbJkxYoVs2bNWrlyZTKZ/OUvf/n444/PnDlz8+bN/faQkiURBDFMmdpijAprAHA87rx2oJCf48JJwZCpAcDoOveg9m//9m8vvvjiZ5555tChQ//8z/9smua4cePEbzdv3vzRj34UAObMmfP8888vWbJk+/btF1544ciRIy+66KJ+e0gjaIIghik7j6We2RF9Zkd0w/44c+wC//6yJ8b3PNyTdp3kJz/5yVe/+tVHH330yiuvXL58eYHLhcNhAJg+ffpzzz03a9aswjtzSKD7B11gjTaioPOzKB4jcmYo4vHqZS6G9m5E8R5grMbVUbzX6CoHmtce1BQ7Ac2YA+Ce4mhvb+fByZaWluPHj7t+O3fuXL5qZP369bNnz/7e9763du1aABg3blxnZ2e/PSQXRyFc2iqXoXI1osh7Cgnr9yNdOIOSfM7CkT0091C/oNmU1BOK7nmR5j0vrSzs4ihweJnJkgrsWb45od9+Fgu5ODxSKRfHt/58bNOBRFGHLJ5R/7mzm+WWPXv23HHHHSNHjmxvb//FL36xffv2H/7wh88///wHP/jBz3zmM5dddtlNN91k23ZTU9MDDzywb9++W2+9NRKJJBKJ5cuXNzU1Fb4cCXRevI98vZdz9W6W8DhGRk/oPYeRd8pM2YwmS/J+eDUGv+XoTpU6SQLtkYoJ9LNHihboUxo+d87ApWSiICFBEMMWxlhxYz6mTHFUFRJogiCGKcxxmFPk3/pFCnqZkEATBDFM4T7oIg+hETRBEET14SsJiz2mOn3BoSAhAloOCqVw0K/fOCFqmUBdHFY4mzE9He+LIHl3cQjQC6H3i/ZT4L2sF3oSjxWt8u1QEcjF4ZEhHCT8xlPvbdxX3K1dOav1C+eNKeqQciCBdqMqSz6N9mjJKLPU95yrb1cb4+2HPR7uUTjQwi5o5S3A/C1FVcnykk9qAKiI7pRfeUuGBNojFRPo/9372r7invaVp4+45fxx/e9XIWihSomUmV3Ib6AqM2CLcQYvNflqISoFg+KTJdEcNEEQxADA8x8VdwgJNEEQxEDAWLECTSNogiCIgaAEH3TRro/yoDloN65ZxXDLGOGgEBQ1Ae2xrBTKjIXXqvFAx04HG1tdjd6LReVD7VW+fqrtmUTUS+ivzE5S8SqiwjCn+H9ks8MY4FwcXAjCLTl+Gm5xKzk8WKCoVb4OyIRbxji2O9VhsqtNreR04tmLSw5eFUiBhO7pehoFbHOuX6GNBfBe6cojPjQnkIvDI5VycfzT49s27O0o6pCr545buuikog4pBxpB47y97hGXOgOAFa4vx7yRr6iVR1BrnfdiUR7ZsvpBj53csvpB9WmgI9w9L608sPEpVyM6ms4H1a8iqkEp6UZpDpogCGIgYH6fgyaBJghimMIccnEQBEH4EgaOz9ON0hx0uQxYISX0QuhC8NlXLPV4Ie97lsO0Rderjd4XH6JQ/SqiAjgMHKe4f+TiQBlIF8fcJV8R28zO8A00Rnfo9dUdHdkocAllpVD69atxVdUNS27ctHIZ5AruG3/4WYGreN+zXwp/naBplfrNtVT4QhVRZ9mcMDDpmfqFXBweqZSL486HX1u/61hRhyw5Z9IXL5tR1CHlQALtRlZnTuzY++pub697xLKsSCQiBBrK1ugyB86qCQ/yiC86cK64THtP5VGOuaVkhO4MWJGtfiGB9kjFBHr5+leLFehzT/q7y04p6pBycM9B//rXv1Z3YozdeOONA9EdgiCIgYIxYE5xI9Qa5+J4+eWXAeDAgQNbtmw577zzbNt+4YUXzjvvPBJogiCGGIzZjBVb8qqQQD/00EM/+9nPXnrppa6urhtuuMGyLNM0f/vb3+7atetLX/pSJBLp7u5evnz5qFGjPF7NHSS8//7777///vr6+m3btv3ud7/77//+723btg3wlwZBEMRAUEqQMO8s6+HDh5999tlIJAIADzzwwJIlS1asWDFr1qyVK1cmk8lf/vKXjz/++MyZMzdv3uy9g7iL49133w0Gg3y7vr7+3XffLeamCYIgBgEzxjcvPnPi4jMnzp82mqcezffvQ7NO4HuObQ7nO9tdd9313e9+l29v3rx57ty5ADBnzpzXX3991qxZsVjswgsvfO+99y666CLvPcR90FOnTr344ovnz5+vadqLL744ZcqUYu56sCKsBYH6ZtGom4H6sZMBoOfQHnlnHlk69PpquZFHlvqtIBVsbOVhOjkuh4aq0D1FiE8YObiFA3Kjf/y3c66+XfxWvkcjEHRda/YVS9H+yOEyEZyUz+ndxSEeghw/LFyNpd9gXfnWDleRF8rBP3zYtv/4Kzs8FSd65vXsIPUT552M7vDoo4+ee+65J554ovqrcDgMANOnT3/uuee++c1vLl++/PrrEeMpCu7isG37qaee2rx5M2Ps1FNPXbx4sWkWsaRl0Lk4UE9uqHm02uiSaY76kc5XQUrNQvfGH36WT5rVPVX3hW5YslYCQCQSOfniz7pMeACwaeUy9TZVmc7XJTUzCXhODxIMBifPv9rLnuDBZVjCniiqOaGy9atKgFwcHqmUi+OO/3rule2HijrkE+dP+/LiOWr7Zz/7WQDQNO1Pf/rTt771rXg8PmLEiOuvv/473/nOGWecsXnz5vnz5y9atOj++++3bfu2227zeDlcdg3DWLx48eLFix3HicViRakzAQBvr3tEVUPUdlbmohKXOnNUdYbBXJXKu26WqbA0dh52MFaphSe/+c1v+MYll1zyhS98IRqN3nTTTatWrWpqavra1742a9asW2+99ac//WkikVi+fLn30+LKe//996dSqS984Qvz588/cODAXXfddccdd1TgJgiCIHwDKz5ZUoEgIef//u//ACASiaxYsUI0Tpo06emnny6+g3mChL/61a9uvfXWJ554Yt68eQcOHPj9739fwqkJgiB8DSu6aKwvahLW1dUFAoGnn376+uuvNwzDMIyB7BNBEMQAwJjfi8biI2jDMO64446//vWvF1544SuvvJJOI2uIhwxzrr5dLWoVbByh/u3jZFJ1I09Qz4BO2qLmBDuVVBvVeKAZiqh7ojPL6KXViWleC8aFFa5Xz/nGH36GTsWq8cB0vEedVUeP9R4hPO3ymz2eE20fvJPIVM2rJvB0o0X980WypMOHDz/++OOXXHLJ9OnTH3/88VNPPXXGjCLygwwiF4crqUU63hNsHOHaR9MNJ5NyNaoJOvIpjtqIeieSXW2gBBL5ni4Z5Tk3+P7q1eWYO7+7fOqsntOVjgOVjHDLGPWEmUS0zOwirgfFDXleBLfY0lkCn5gTyvSiDAA+eVAylXJxfOnnz7z0NpJppwDXLjj1Kx8/t6hDygEfQY8ZM2bp0qXTp08HgGuuuaYodR5EqCmH1KE0AKjqjFL+OFodPNqppDrI1Q3Lpc75rr5p5TIv6szPqSZL8jiUhjwGlZLVmZ/Qo04VVTrLb9CoucYwv6cbJf8cQRDDFOZU3sVRWUigCYIYppRSUYVG0ARBEAOA/2sSDt+SV+j0n2Yg31ipng61EQUNCaLz2n4DnVlGUT0n+fAeNiycjqPfxoGhGpcevLPnQwUHWJH/YECnOIZpRRX5wyayTMjqrOkGACS7josWkUEJLbCCZv+Rg5AiWJcv/YXYFiov51dCOyl6Il99z/OPqDH3wt8csjoXVlVZndFQpyq1JYQK5RsXe3rPZ+Rxz6LMCVXNpiRO/u4rT1AuDi9UysVx27JVL75VXKrO6y4+485PLijqkHIYdgKN6gXqbkYHzrJ2CFAPA24I8VyVymM/0U6iA1JUo9HbQQUIzQTiUaPLTJaUjzKNfR51ZyALYlGyJI9USqCX/vvvixXoT10y585rFxZ1SDlUZQ6a1xGo7DlN02SMDcnSASL1tk9OWPHDLQtZYlONCxW1p2EYJXeg4i8ZxzRNXderdPKSKedBVQm+ttnVK03Tij0PY0XPQQ+FIKHjOBVfUeL0UtnT+oGK/7VR5gkrfni+VAED1k90T8dxSu5AxV8yjuM4mqZV6eQlU86DqhJ8rObqla4XH1FjrGjb3BAQaNu2K/6KWpaVyWSGpEBnMhlfnbDih+cT6AHrJ7onY6zkDlT8JeNYlqVpWpVOXjLlPKgq4TiO2qsSUgb5PxcH2ewIghiuMFasDxrAB7k4ysTPQUKOHPkpM0LIkeOEwu/B7L5veOGUkI0QZigbSHzt0XvRvqnnl8txoZ0UwUm00hW6p+ziEBeSY32oiwNNHqLm0EC9GYJ+A31ozbBB7eIokDyEgoQeqVSQ8JZ7//uvm3cXdcj1l51z16c/VNQh5TBMBRoAZiy8tiLSLGOGIrKAcpidUV3GwcZWoc6C1x69V1Vn1CKCovpG0DJX6J7x9sPqhbasflDtT7CxVc0EYoYi6iNCy8oUJdNo2bBKOSiK1Z3yC2L1mxeJBNojlRLoL/zg4b9u3lXUIZ++/Jy7PnNZUYeUw/BdqOL9w+ZRnSF3eCvIk10IMeFVfCmEmg0qH2jJQVTcVXWGPI/Ie5EtFPSbqYYrO2hRyRCk2KaRs9gAACAASURBVFUqzBngKQ6agyYIYrhSfMkrChISBEEMBKUsrSi4/5EjR2666aZQKBSPx1esWOE4zg033MDXhfz2t78twWcyfKc4CIIY5vCiscX9K+j62Lx585133vnYY4/NnTt3zZo1DzzwwJIlS1asWDFr1qyVK1eW0MPhK9BnX3e32min4mqj9zAdmqZDDUWaoYic5YMTPfJeOZfOJKLqZLdjp9XUH973NAJBNTUSOhWLhlu9z92rk++zr1iq9gddwj53yVfmLvmKesKKT+hTVaohCONrVYr6V+h8l1xyyYIFC1Kp1MaNG88+++zNmzfPnTsXAObMmfP666+X0MHhOMUhpNkIhADATiVAkmauC64sE1wovSgO12iXYPEf+a+E5nKN5hW2ylFnuVfx9sM83Ccn/TACQX473veUxVHYNoQ08w2uVuJO5Xt09c3L05PNZyLvh/xa5FNneWPjYz8CSe5LroaF9k1sl3xC+blRyNEPTDtxVCRkAUBbZ8+rbxXy2y0665RgwAKA0a0Nhc955MiRL37xi/fcc8+4cePk9nA4XEIPh53NDh04p3ra1UY0E5D3UWE1EjB5PBbNCIq6L7znDkUzOqlDV8jzZ4R30C6VeXVKllQOQ9hmd/M9v3x+0ztFHfLZxR+8++Yr8v22ra3txhtv/PnPfz5+/HgAWLZs2YgRI66//vrvfOc7Z5xxxsc+9rGirgXDcwRNEAQBvXPQxR1ScIy4bNmy9957b+nSpQBw4403fu5zn7vppptWrVrV1NT0ta99rYQekkATBDFc4dPKRR5T4Hf33HPPPffcI7esWLGi+G71QQJNEMQwpaSisVTyaoiCWkTQxYdlXwiZPY+MnuhxT7+BdhKdGkan+L3n9fdu0iA7x1CBlcBA9m8YjaDR8GAm3gMAumGB5GfgP+phC6RSVRyXIaF+7GTxq55De/hG04kfEI3icK7OLosIV+d+/Q/5UCOEYn87lRRODLGsPDJ6orCLoHsagb5As+vrhDsrRLBOLrAijuL66HpEan4lyBVNl9jxfcRR/FnxVePCyMEPcRlmxNX7TavEDz/x7MVqPS3ZpFFYhctPzUHUnuzq7eKOqUpP8jBcXBwF1Llf0thuoebRaqNhBdTGROdRZM8A4rnpt9qhwLvxg9v4XKgubMgzlkdH/SjqOLff6ouCwgn8ZLzfuPdCtGVSQZkmF4dHKuXiuOHunzy3YWtRh9x49UXfuPVvijqkHIbRCJogCEKGFZ8PmqY4CIIgBgLmFF1RpfgpkbIggSYIYtgyLGsSEgRBDAKKH0HTFEeFEXGhhvFTRSN/VYxgnZ3sizO4XByiUc3OYYXr+YFGsE6+lp1OQW6osHNfdiGpawVzr6mjL1TI7Ey4ZYwrjRFPl6FGKdUKJvlCaplEVDbYZRI9IOXckEn1dKD1tORYH+riyOfVU9N66IbFawjI5bhmX7GUPxx5MbqwxyQ6johGl4tDvk3X7Vvh+jlX3y5fhfP2ukf6jROiLo7CjcQgpZQ5aHJxoJTm4lA/jQ3jp6rfmXYyJucM4uiG5Wq0U0m1WJRLo7ONVkBIswDNMmEEwnLpQo7IZCSDmklUbRLtrpbI6IlcnWVQbQ3UN6uGYiMQVA0Ys69Y6sVJbQSC8nceZ9PKZbLKc5JdbbJzkZPoOKJaMvIZP9C6X+qe+WRa1VzUTlcljx25ODxSKRfH9f9w719efbOoQ25ectm3vnR9UYeUw1BeqIJ+CNG/aFR1RhtR35g8Bu9rTKfURjRdEepjQwtQqdIDxXjRVHXOB7rcA7XHeVzngu6GluNCv8NQRyOqj+iNe6/7hZ7TeyMx+GCMSl4RBEH4EQYO2ewIgiB8icOKt9mRQBMEQVSfkoKEA+qDHrJz0OgEdNPEU3gVFRnm2CJbhUA3LDWuZQTCmuH+Sgs0tKrntJMxdR4ZnWAN1CNhDY9z4pBnWhydwkZRD7fC9UggNBBUA3pzl3xFXR0ebByhLi7PV2QL60/Yybin70WSExm1P5CnSAIKOndfZgYlYvDBHHCK/UcuDoyiXBz51Fn+kVe6kpMNijCay2bHN1yWOAAINLiccwlQYoZcmLxIM08M4pItVxan3gu57Wui0aWtBa7uAj2c+0ZcF+LRQrmaiQgqytIs0n3IgTu1yJbAlZxENwOgSLOrIFbvhdpAkWbVGAO9dg6ed0mAxhXl2lSuxqpCLg6PVMrF8bdf+pd1L28q6pDPX/uxf/n7m/vfr0IMQYH2os4c9MPppN2WA3XUDABWXaPamOpGfBqoHqEDZ7TylnfUIX++q5d5OJrpSdPdJeXRQov5vIZqI5o6yvvhqEbnsyqqjSjV1mgSaI9UTqDvWftSsQK9+NtfGTiBpjlogiCGKw4DysVBEAThQxgr3mZHPmiCIIgBgEHRLg4qeVV50AlodL4YzWSPzmaif+mgy74HL+iMrXdQp4RV11TOOf0GaiYhN8igoWgLh+NFoG3bvvfee0ePRlbAFssQHEG7QvAF1NlJJ3Wrz6LA1Tkd71F9ZszOyKHC7A7MAa3vG467OOQETLLNI9GR9ZnxiFZ2515/HnfLc/FKxzoL3F2oaVTfOXtrtcg2QRHk5N8WPHInzlmgqBWPB4pQIVdnuSCWfKAal2OOLccJ+cN0JXXieTasuia0P66OqRmUQCmIJcu98OfJ9yVuh7/QQSsI0tcwfx35f4URsEA5Lv6j2IGrs6sYGN/HlawDbSRqDmNFrwz0svuRI0fmz58/ffr0ErslMQRdHIJzP3OP2ogOnNGhIpr7Aq8LhWXeUM3RAJCOdamN3FKm7InItKzOnEwSSeWhGipA0i8ZNBMImjoDNVyj8oqm8kDzaXjvEprGRE2rBHmem+pzV706UExaJdRMgnYSJZ9Mk4vDI5Vycdz+jR9teWcXAPTE4rv27i+w56nTp5imAQCXLZz31aWf8XLyCy644IUXXiiqPypDcARNEAThhX+585ZUOgMAjLHCgz/D0AE0AAiHkJFK9SCBJghimNLUiPyV7CuGRZCQIAhiwHjppZeuuuqqbdu2XXXVVb///e/LORWNoAmCICrJ/PnzV61aVZFTDdkgIU/T7kqXwXHFCbnbQS6tBAB1I8cDQDqaE9MLNo0CAJa7+tmxM6DUAcBSMmW9epkEkuBfjhOiYS6xNFyXzCSoi0NkF5HPKapwyeFQYR+U13PzC8XbDslX5yE+V8d45g3X7fCLuh5mZNQEyBNKdcUJ+eHyhUR+j679O0Rj44RpvYf3OSDFjculCURYVY6moklXhEVywyPfF41nX3c33+g+sEs0cvsgGjX1EidEI4Q8FPnuK0/IQUKXaaRWDOEgof8ZggKtVtDIJ9OqbTnRcYRLs0w62hVU7BPMTjuKP5o5DmreEOosyCfThdU5u5thgqTOHDNULyd+EieUCyRy0vEe1dnt2Gk1PUi87ZDqvkjHOrF8dTHVi5LoOMKlWSafTKuHoxfq2r9DqLN0eMZ171yCXaYXrtGuyjK6Yalvgw2PfF9Is6D7wC7V2V2UTBeQZtduaCN6zgGABLqGDIs5aNRah6o26gZT1Rl6B84uPKpzPryoM7+0S50hT0Ur1MeG2gfRTEnh1rHI4dhKEzOErNBR1TkfqNFQVWeQxs4y6jeTGapXLYlmMKw+JTQb1FnX/pPaKBcdFqCWRC/pAzm0pIUozLAQaIIgiMEICTRBEIRPIYEmCILwKUNNoNHkNZHRE9VGNLyj6dgDwfIimVheJDUiB3mmKdVJW6uuMdTsLlVl1TWpRS3RvP51Iyeok7ZWXaOcLSTbHyxMh87Io09DNxFrJnqPGjavjc6Ao3is5qkblnrOQKQJmdfWdPUJh5pGqa+abprqvTsZZLYanShHp+nRclxoPqma2zYI/1Cii6Ozs3PZsmWBQCCVSn31q18NhXKCYzVxcbikmUe9XNKM1nBK9XSCIkb8R3foTNMBQNM0uS2TjIGiO1wEXaU60K8EbueQ67OItEry51x0L586i+2+TEByzRfmgCLNPKmTS5p5XNH1NLibzYs08zQgLt3hxkSXYhZIlYe+FijyCyROGIggGZTkLyrxhOVAong48m3yLwmXNPMn7JJmHn50STMv2eWS5o2P/QjyVN4im51Hho+Lo0SBfuONNwzDOO2005YvXz5t2rRzzjlH/u3ACzQ6cG4Yh4Td0ah9OtatNhoWOsRG8hChCpLsRpQ0z7AdFb4E1k+3zUOWZgE61kNPWKbtBB04o8XAXN9qHFSj0YeJj+WxETqeKEq13GB/FaGpgdF7RPGeowrNJ7Vl9YOULMkjw0egS1xJOHv2bADIZDK7du36yEc+whtXr169ceNGALjxxhsr/qRM0zRNsxqubYLwA/X19aZpappWX++vBBGmafqwSwCg5//TashQ+lLvzs7O+++//7rrrhNa3NzcfMIJJwCArusVH0Hzc5JAE0MV27Z1Xa/GZ6dMDMPwYZcAwNUr9K+0wU6JAt3d3f2Tn/xk6dKlra19M5jz5s2bN28eALS3t8fjSFbfMik2HzRBDCL4R8YwjGp8dspB13Ufdokx5uqVYRh1dUOqpBGULNBPPvnksWPHfv7znwPAJZdccu6551a0V8MddBbYCITUOWhXqReObpjoQschj6uqC0czDFCehlXXgAYeCMJXDLJcHDMvvZH/uGX1g+JXYmmsWGIrh85ErE/2VOi9zipu4eCISJRV1yAanb7gfl9ISjjAUlEprU9DdqpHjtGJOJhsbBD6KyqSyIeI38qZgEQ0TzgQACDckl2KnaPRvS+orNFohFB0SSyVliNa4mnIPXf5UnpPng2j5VhZel0TutGnmH3OOemvUSGU4gGC9GDFayFfWlxIjuChWaK03qvLe1rhiOvSID3hTLIv9CTuXaTXCDWNFL9NdB7Deo4UzREPNnbsffXk4s1MQUKPDJ8g4aARaJctiYPqRcuU09VGtPCrWi9K03VZnTlOOiWrMwc1aaAmX/QJqyeEPNWeUI8HOt2GughQpwRqv0Wvrj4NwB67nUoi967psjpz8Keh/BEAeTwV6I2jmaeMIFKOC70QanoB9AkrpnLAMoEAJtNOJiWrM8cMReShBgm0R4aPQA/9MGhRoIsjUDElZFD7oKrOwxk0IZSszgShQgJNEAThU0igCYIgfAoJNEEQhE8ZNEHCcDg8dcF1cgufv3NlNx8xbS4oS3u5IcGRM1H0RnvkeFe4NZtJR/Y8CBOI3Kj3NsqloQqkAfISJ3TSSVAiY9zm4Ypi8UiXKzbFz+aaQ+ceBtmpAgAmj55h8S45TigcJnJuCvEM5RXzIuQoP+FAfTPfkJ+wcJvId8SfsOt2zHAElCX4vLKXncwJWPGV5a4aXeER40HJWxJsaAWAdCwnfMdLNLjCd/VjJwNAz+G9OYc3jgCAVG5wmLtN5Jf+xQezyf7lrP88KYcLNclGOByedO6V+X7rhWqk76AgYQ0ZTALNF6qcdvnNamhlxsJruTTLOHYGyUmWTrm0iSuIUGcOl2NXOg7eqOc2cmnwkqQtn0xzac7d0xH62NfzTFo1ITDHVmOYzHE0JUCX6uk0VWNDHpl2XZ1rtJOba4lrtMsQwvcR6szhT9jl13YyaTXbCXNsM+x2mKRj3XLRxWwnk1E16Ue87RCXZplUT3tQydWXjnWp1XNix97n0izTc3ivmrIu1d0uOyw5VrheqDOHa7RHdQZltFGUzlavShYJdA0ZfAKN/vb8z9+rNqI+LdlcLLDqMHnFngz6uDL5E7N5ORxN3KNjqZrULuGZ3jCLmINlGUUFGgfvJOJMQBOx2sqXEORxrRlBNH8Tas7DXCLYOVVzHpolCjVapOPIepaeQ3vVxvUPf1dtROtXeSxOmG9PlDIPLwAJdA2hOWiCIAifQgJNEAThU0igCYIgfMrgE2h0rg1drYvOM8rlNjhmqA5ZQIhNFmuGqUbk0AloNYER5FuRiNbTwkKOaiwR8twj2nkzjCzaRqewGVbTQD3cDNerk7ZGIIRN/WuG5e6n+kIAgBVBkv2bQWRhusi7ktuIFKBqPAGp24DuiSbXP7jxz2ojOt2Mos4CD64JaKK2DKYgoXAgcfj7b/6NOR8VLoJy8ErY4+TPuQjBy7UB+9QqjzqLbfF90K868xwgLmnOVlfyIM38Qi5p5rLoqmqIpkPi0ULdzIk3ZuLdoHyF8K8oWZpFRcGcZEm9ETO5n0LX5G8LKQDYF6Cz09lOyuosvHSyOvNzuqSZ5xVxSXM62gmK4PJMKS5p7j6wG5QCVKJCmAx/wu/9dZXcOG7uxQCw9t8+L1rOvu5uvtGvXgsBrbg6D4A0U5CwhgwagUbfiC2TZ6mNqk8LADQNrYSEDBXViD86HE5hyZLQPdH8Pnh6OWzgjH4HuHxsBc6pK0NXyJMXCR2hWxHkQgDYF5gyGEefOZq1A7WdoBWtUN8ImgIJHWKj9atQjd7/ylNqY8XHpINi4EwCXUMG3xQHQRDEMIEEmiAIwqeQQBMEQfgUEuj+QVckEjJoXn+iX9DKCQQhGDRBQr7Ue/qFn+A/Nk6Yxjdk/1aoJZtdIbfkRzYAJS8sFgmA5KIqwhdhy5VWemNf8uEi7icqIYFk1ZAfaV+jlL9JNAoDQ0CKaKFrskWoMCCnlRDfHFLf7N6KTbIxTthOjABS6yvQa59IdBwVjaEWkTqqL7AmHlFOASqsKpWQHjvZF7oUgTt5T2HASHb3PUyRKEMOxjaMz7oyokf3ZVvG9aXOiB7JNsoRVBG63Pfik6Jx/FmX8o0DG/4kGkdMP5NvoOFBgRyCQ70ZhQ0bMqJIEFoYqN/DB8xaR0HCGjLIBNpxnBkLrxXqLIiMnqgegldCwmwAqIsATR+ho2WlsPKj3h0dmuKPzqfRASXpDzBHzT5hJ2OqbVnTsaL06KuPprPAbhzPBIKBJuhATdzoc1OzHUWP7pPVOdt4ZJ/qb9F0XVZnzvizLpXVmTNi+pmF1bkEUMX0Xr+tGqbpYiGBriGDb4pDVeehB56ECE2Yh4kpuiZliBEZdSLSOBppRMuYqeoM/Y2dCWLgGXwCTRAEMUwggSYIgvApJNAEQRA+xb9BQhFI4fVTeJBw5qU3AkDdyJyqGWiEkNk2KIE+KxwBJbOShlWQ4p6NTO6S6GxxJtuV8l8DpZCSEawDJfkOD5S5llnzxPyyk0/rtZ3InRdOCdlTIWJ0udOsrPe3fdG2bJUsllsly7CQToYikGtuEY2upeQ8HOe6cW7JcC2e5ukvXIvj68dNBoD48YNyY2TMJFAKUGVtHrlv1O4DOwGgaeIM0bL18WV8Y9qHbxKNO57+L74RbumrmBNvP6w28kQfrkgd30HsXxqu8N3sK5aCsui8zAhhgf3Lh4KENcSnAu0Kc29Z/aBak5DLtKrOTLm0nU5aSoIOJ5NWDQPMsdUyH5lUHCnOZGfkNECcdKzLUOwKTibl8jBwjXbVTOEareWek2u0y2XMP9suB0WvRue8mlyjXakquEy7Ml04mZTqyc0k42qjnUqoTol0rEvND5fsOu7KTAQAqe72esV9ET9+kEuzTOzY++5zMga90izgGi3UmcM1WqgzB1Vb3pjOTXiSrYLWklMFrXyZ5tIsY6eSFZHmwgeWCQl0DfGjQKMmJJRRM+epjapAQ27l07498QJU7kZ0oQp6Fcc9uAbIk8oHX/yCFi3EHB1oelXXHwEcNc8n5LHH4dlQ0apUeL0o9+F4ulcszRNaawrN/dT9/g618f31z6iN3kFXi6BFJsvUaDV/k+yjF5SszgUOLwcS6BpCc9AEQRA+BRncEUQVYToDgzkWMAOYAaADM5htMmYA6x0uaI6m2U46pekZxphmpAEymp5C05wSxBCGBJqoECwIEAYWAggB1AGEWCrCWBBYECDAWABYACAQj2KluD2ipU0rCizGoAdYN7AuBt0M2jU9xBysXgFBDHIGsUCPPWOhOk1pWMGM7V7hbUUaRYaKvj0DIZdXAQB001KXWWuark4ZG4GQenXdtJDZYU1TJ5fRwzXDVCwioBuWq7CAbgZ0M+AKLll1DameDtexwcaRar5/K9KQibunFK26RjWLv1XXKEXPDICIrtVbkXF2Ugeo0yDCoE7T6oDVgRaGjHu6DJsSz/m9ptmgOaDZzM5olq5pvQ+Zacwx0tFOMzxC0zTm9M5uM0vTmkFrdgVnJ83/TCZ5NB3fn47vTfXsSsV2paN7wyPGuNwgaJCwbuQJ6nNDSWOVE8xQRI3yhVvGqLPVaAEBlBkLr0ULZanT0GgjMZTwY5CQUzhUOPaMhWJbKJ3stRCJOORCSlymXcErLtOuGBeaDYPLtMv/kL16bpINLtM55+x9zmg5LjnThdBoOXglNFqOpwlpkG0eQm6CjSP79uwVFyvSIDWKw8UjqnPSJmj1ZnAUsDqACLAIQARYGCAM/eMAJEBLGAGm6SnQU7qeBj2VSbQBpAKRIOhpTcuAntG0DH+Yss1OGDneevRfReOMq74IAIyZe9c+YZj1utmoW81NE87S9HoNGjNJwwyO13QlxsgymeT76cTOniPrk91vZRIHUZudbDJBZVqECmV1Fo89pxhYfuMHKs1oeNBFgWhhaemZSoOChDXEvwINeTRaluY++qsiKO2J2CdQ9wWq0WjOIDStEgrqlMAr3irGPgAkqRPqx5Ad0FIjP9YCaNCgDrR6jUVAawCoB6jToAGgrv+gsZYASGh6DLQ4aHEj4Gh6UtPjmpbU9CToKQAwAoiUMwd5wrFjB9TGvX/5H7WxYFpOzQiMskLjzeAJVnhSoGG6GTjBJdlOpiMVezsd3ZqMbrFThyFfGTNvQ+l8oMYPtKyaF3Xm+KHwKwl0DRnEUxxEHoIATZpWB1Cf/S/UATTwbQDpGwJLbweQBi0KEAOtB1isdzuqB2xNTwDkfO/i+ZsGGmanjtipIwCvA0CgvlnTDMMaa4YnW6GTrfA0K3iCbjaHGueFGuc1ANjpY6meLan4m6noFpq5JnwOCfSgwwKtTtMiGtSBFtG0ek2r07R6BhFNi2gsAlq/r6kDwONsMdB6AGIAPQBRBlGAHoAUWq1V071McfgCxuxM6v1M6v1E5wsAoBlhMzAlGJkZiJxqhU4yrJHhloXhloUaZJLRt1PR15M9r9lpr0NaghhISKD9hGZoUAdana5FdKNJgzDXYoA60Oo0rU6DCGhYPuu+qgT8f07W6gAxBlGAKGM9mhbrVeFY33JwKMNTMUhgdjzV80aq5w0A0I36QN3MQP3sYMMZutkciJwWiJxWP/pT6cTuZPd6O/VnO3Wk1v0liD5IoAcCDQKghTU9rOsNoIU1LaxpYYAwaGENwhAIaVqdbkQYw8UXI8ZYnLEoZAU3yliUsSjwcbGOzJ6jRQmGG47dk+h+NdH9qnbEMkMnBSNnBOvPMEMnWaGpVmhq/ahPpqI7YsfXxdpfcDKd/Z+OIKqMr4OEHDlUOHb2guyWJDcigiRbygIN2XCBXO5E2jPbqEl/zgufmZyOQxgt5DhVb2PQsBoBQgAhOw1cbTUtrJsNmhYCFgQIQlaLi1ixqWtpx4kxFmMQAxYHFmUQ1fQUQJyxqJ3pAogBOCDX05IcbSK66EgvgTCuOBk5AVNj79PoCwGJsmFybqNw69hsY7TTdSy/PP9/ovOYaBMJ9d/6nx+JxpnX3M43ROqMkxb8jfjtwU1/5htyDE1YIFzZhVRE4g75aai2RZCyoPA9jcCoUP3ZZviMYP0HenexE50bo8fXOc4OYBlQ0j+pGIHsOcUEkRyHFG8tNDyoukHAH+FBDgUJa8ggEGjOJf/4W7URDVKpTol0rBvJBBTv1pTJVjsV1zRdgwDTIgAhDcKghZltGWYzQAi0ELCQpoUBggDhfFG2vLAU0+LAEgBxxhIM4hpL8BbG4gAx5vQwiHNFKHA7+UCTfqj3CJKaCDLxqJBmQaq7XUhzX2O0M0edOcyR1ZkTGXWirM6cmdfc7kpsBAAnLfgboc6FQWVazdMEAA5asQzzxkSPvMc3rODYyOiLI6MuscLZbxfH7kl0v5jo/IudOgh5ZFp9mLphqS4ROxXvV505mUTUP+oMJNA1ZVgINKB1j1jASUeANff6zOoZ1GlQp2lhxoqYmWUsoUGcQQIgyVicQUKDBGMJ6P0vQIJBAliCD3sLnQpb2jEwAg15rGyo2w99zyQ63LO3e9c9ivZTxfsijqoKdN8JG2Y0T7wq2DBPN4QPeke8a13XgWfAcdvm0IeJeg1dC2cgzzPn+XX9Awl0DRlWc9AaOKOYMwHYKHBaACKa+9cAvY5qDRhjcYA4gzhoScZiAHGNSy0kGIuDE+sdDvdRjW87YuBJdr/dc/ThnmOPhurPDDV+0Ko7xQpPs8LTmkdf23F4dfTI03a6nxkPgqgIw0Cgmc6cScyeAM4EYK4EmEkGbaD1aCzGsoazqJPuzOpyX+b77IBaVl8GNqXuGeKwTKL7lUT3K4Y1OtR4YX3rAkdraBz7N41jrol3vNR9+IlU9J1ad5EY4gxtgbYgM93JnApM/CFpg35A0w+C3gbQLtyvTBpLM/C6LJAYJtjpI9Hjj8XantCtUxtGfdSqmxpuOT/ccn6yZ2vP4SdS8dfRhawEUT6DYw764jt/Bcoy62whpWiOHYqbN9LxFGRmsvRMAD4/mNStdxnsBf2AWAvHz+bKdMOnceVGySnhnkF2V8kyDABwMrkhPsMEZSk5P6drhTc3WqgpkEBJXc/3dBegijSph/PJ2VQ0pypVqGkkAKTj3XIjz+vPb0HAp5WFH4OzbeVPoDdFBmfPmof5xri5l4jGgxv/DxTTQraeFlZWyrUkms/husuDGRYoSYv4FLAZyolG8JfGZeFAJ6D5VLUrt1H92MmgvL58qtoMRYKRGZGxV9Y1z+PmHJMdO37gsVj7cyK6i05A83Xk8r0XWL/umoaec/XtALBpZU5wlbubXHuqmTrKh+aga4jfBZpLs4ym6QzFOAAAIABJREFUG65CSlyjha/OSY+1o2czJwQAmhbTAts0a4cGGehNmuESev6ZcUXYso25ATok0tj7MXZJG5dp1zm5TLuzMmXSauWRTCLqKnMFAHYqoe5ppxJcml2Hq3GzVLSLS7OAa7Sr5Aq/EVfEj2s0l2YB12ihzhyu0VydBVymXXqEZhfiMu0SuGyFsNxoZzreo0bnzFC9GmhldqaANMvE2w9zac453LFdUUR+I6GmqZHWD9e1LmAQAACDdbQfWpnseZE5bhO6K8UHv/GC2UWycPHl6izgMq3WhAOl6kqlZJoEuob4WqBVdYY8JWKB5wxihh2fZSenAQPNiOnWZs3YDVqOqubJi4RMa7iqqXJQjcbtduhzxVaLoAmY0CxIKqjLIk9JKq+ls5LdSATsvRdWqY1lui/Q7EJoGiPUzozmIUJHr+oTRl9xtZ4kAPQc2qM2iu8V3awPN1/aOPrDDtQBgA49XUf/GG//M2PZ81cjAROa+NR7bcNiIYGuIVWZg7Ysy8RqAFYVlmnKRM9ldhMA6MF3zbpNThp5HxNEBXEyPdFjv4+1PRVuubhp9GJHa6gf9cmmUR/tPPpkvGONOpoeYIJBLCdikRiGUZHzVBDDMEC5O20orpWtiow6juOgI82qwdJj0z3nATM0LWVENuqBfQN5dWKYw5xE7PgfE51rws0Lm0ZfYUNj/ai/bRr10Y4jf0jFVqnW6QGjIn/IOo5T8WUNZcIYY4y5eqV7+6NzcFEVgbZteyBfUSczzu45H0DXrWNm5BXQ3cVTCGIAYCwda3823vmXcNOixtFX2NDYMPr65lEfOfruQ7G2tTVxemQyyNRQsTDGKnKeCuI4jtorwxiCmb98/Z2DTvhauTExJz3e7rmAga6Zh82G52R1RtfgoXO76KStio7P7SJX0U1sahib4kSDRWYQmUg1scPR8JeoJiPTtX+72rhnLTJHeWDDsx77iU74esR7envve+K1ArD561BucDJ7uIVM0zeMn6o2ovDpZuakYu3PHN5xR8/RFTqL2Vpr60m3n3TGz8NN53g8T2HUYlqQZ/FhgYIsXhoJP+DTIOFFX8l5w3FVbZ48S7Sko53A1Tl6PgPdCB4Ntm7IJHsnnSVlF3Ewua6gkH553qqvAJX0VWz31i2U1dnuVUBZnaWqVH2iKYJRsjoL9xiWgClHnbntxCXNmWQMXOmKei8kf6WZoexRPYf2isbGCdP5xq5nHxKNkxdlP5+yXo8/60N8Q9ZrEYmSjTTidmR9VCscghQq7FdzxankPUXATVVnL9LMv8wC9c1yY6L9sKvR7q2kI3+Xdx/YxTfCmLLLUTtxKk03ND0cbvlwfeul3OkRcHYd3vdQOrHHdTvy1QtX3pLVWbx5ZHUuXP5KFmK+gxfjBwUJa4gfBdqlzpyWqbNdLZnkyOTxucB0I3g02LJeuDXUiqiQryoVdu/qhx99RAzzP4CGFqDyatJAoxz44ZjVwVZq4AKWIgMAjm57RW30jkvj8oFqNFoNAB0Oh5pGqY2JzqNqY5kDZ9zDgx2uVuCFPJ4K2eaom02TJn8iCucwMABYHXv9vd2/czLu3FICVKPLNGl4HyOr5ySBriG+nuIogJOJpNrOAKbrwSOyOhOE33AynXt2PNC29xsh9haAFtPmjJz6w6nTb9B0TxNrxHBmUAo0c8zE8bnMMXWrM9T6Gqkz4X8y6UPvbb+3fd/3Amw/gNmtLRo77b4Z0z5cdNJaYjgxGAVaS7bNZpmIpqeCrRtcZUwJws+kY+/s3/71FucRg3Xa0NimXzth+j2nnXxWrftF+JTBJ9Cprml2chRoTrB1k6Yjs5wE4W/YOzuePrTjzgZnDUAmpU06anxx8vSlIvc0QQj8FSQ8//M/5BvBxr6sEaNPO59vpOM9mfi4ZPtsYGA1vGGE9gCALi1ZjLdlY9xo6N+Q3RHJbHgh13iAuDiYuBEprCf+KJWXSgtHR55aU5JFodfOlROJ6jWZyFFBEYASCTfa97wpftt68hy+IVLjnzh/sfitsGSMm3ORaGzb9XrvzfZFxkQASnaViGcoB8EioyaojYWRQ4XiacsRPOFvScf68l6hEULxuFI9feW4rLrsk5GX5ovHLsJ6gYbsqnTZeCNuHK11IL86Ygc5gmdFskaa2LEDohGtHiBKseTYRVJxMzDmxGlfSOizAEBnsUb29Osv389j1/JrEWrOFruR152jLo7CqC4O6M/4ARQkrCk+EmihzoJg40ihzgBgp+p69s9mjmGE91r1r8t76qYp1FlgheuxgDieI8NjJz2myACslImTSatOW8fOAHPPoWu6oSpgINIkqzOn9eQ5auGSE+cvVg3O4+ZcJNRZYKeSqj0AdZKhzg3vMo2ipgdJxzoLS7Mg1dMupLlvt0wKyTwV7xHqLF3aUm88n0yr7ameDqHOAjTfiJcqWafNuKTT/HhGGwkAlr2nPr580xvr+K/U5E2AOXOK0mhViNFGAQl0DfGLQKvqDAAnnnel2GaO0b3vDCcd1qy2YNMLrsAg+jFAjVY1FGjIY6RDszJlMM+cWpypa/8O5FjMkoUmNkKr5NVQoCHPahHU9IauY0JfIPVC6DNHBRqFKd+pUIZAA4CmWVNO/mQ8+GGmWQBOXXJNXfKJDW9u8yjQUM1CWSTQNWSQzEEziB2e5qTDupEONL5Ktg1iiMFYeutr/9HS861A+k0APRa8pK3+ntlnXF3rfhE1ZnAIdLLzhHR0JGisbsw7mp7o/wCCGIRs3PzK9lfvaIz9Qmedjt7aGblt4pQvnz5lSq37RdSMQSDQmURj/PhJABBqfc+sKyu7LkH4n82bHm3p/mY49RcNWEw79ZB2x/SpH54zZXSt+0XUAL8I9F8f+EdXy6QLl+im5dhW7NAMYJoVaQs17+s5tFddbttzcHc6t/AVACTaD6vTf6mejlSPe89kd3uy2z0Vm+rpUAOMmUQ0Het2NabjPepUbLK7XZ0o7H5/h5qx6OCmNYfffMHV+PQ3r372e9e599z4Z1BQZx73PP+IGvBBJ6DtVFJNgRQZPVFNwGQE60SGCoFuBoJK8E3TDXVtuhWuV5NvBBta1UZN19XpZs2w1MXcumGqs9VWXYN6R2onddNSdzOsoNpz3Qyo89d2OuUo2d3CrePqx56kXijcOhYU1NlqIxCW05u89uaWbeu/PTLznyY75ECoDT5+VLtp1pQPQJ4JaCtc7yq8AgAzFl5LWZAGO34JEgp4tHDShUv4j937p6d7WnQz0TDx9eiRnfKeZrgeAHoO7pYbea67RG7Gr2xpvlzBDdQ3AUCyuz1nz4ZWVZcD9c1q2M2qa3DpMpcb1wm5Qar7/ZxQHs9YdHDTGrlxzKwLAODpb+ZMO37oaw+DIs2NE6YBwIu/vEtuFBXq5JAO/3zmU2f5R36Drmo1PEmFKwmfYSGalexuU9WNObYqwel4j0sx+WN0Bfd4vM4VaO2tfZUTyuPfHK4KYfx20Au5sg/yPV2FaXjdLNdt8rii64uKuzzDrePkRp6dynWheNshUDACQfW7J3bsfRGnnTNtQo9+cbdxMQNDg1RD6n/DmXWvbXtX7Ox6wrwgVmVrX1GQsIb4TqAB4LqHspnDkh2jooemgMYaJ26NHd+k7omOJlzVVDloyiE0Fq8pCY/QhKJo8Sq0gpQ6ugeA6NH9auPGx36kNrqqz3EKhOxdH6fZVyxV90H9BqiBF31uaC66lHKbaNJU1LmRSSL5UfOkQEKeMJpzFS0GhubMQt0+6I2jrpXI6BPVxtix99VGVaNRb4zan9Onz2nTl6T1kwDAsnc3p5Yb7MiGbe+hLwSaj7QcjSaBriF+meJQsdPB2JFJABBqPWCGqXgVMXzZvH3TiMS/N6RXaiydNqYcC90VtS4685RJte4XUXUGunKgRxhA9OAU5hhGMBoeiQxGCGJYsWHbXoBfz5m5pSN4fVqf3G1dndBnnz7tUROObdxxsNa9I6qFT0fQyfZxmVijpjn143dpWg1qBRGED9m0dUOrNJQ+Yv19VD9v7rTxte4XUS38KNB2Mhw7MgEAwqP2G8G86ZDUdc8A0HPYvdYO8kwIxo4j4w40V3r3wT1q49GtL6mNBzb8SW18/ud3qI3odPPA8MYffuZxT3QeNtiATPOpS+NACdwVAK2nha66NLB57YqD3o6OFaoPNiCTyJm42+oDeabUVYcJ9Ea/XYjp5te2vRtJrxmZ/F7A2cUg0GF8/Jjx+dnTZsydlg1Uog9zYOwcVE+r4vgrSHj9I/sBoGvvlFR3o1XXXT9xqwbQvmeL2EFEfmR1FiFvWZ3DLVnfqKzOwqUgq3O4NXu4rM78kyOH8hrGZRfdHt32smgcNXM+39j/8h9F4/izLuUba/71JtH4wf/373xD1uu5S77CN/rVaxEqRMOD8mdg3/on1ZCOCBXK6oyGH0WosF91FhFRWc7i7UdAevgAIIyJaHhQjrX25WySfCPi/Snro6gdI2feEHta4b4vBrGkmzl9kTeRzSpnsXhvxFi+HWGnk6+e7M6+T2R1NnsvKqtzKtrVe84+deYJjxrG5Sw/4UZP+XYKV2/ZsvrBXbv3PvPGuD9uHG87ms7izc7vA8mXN2zLfgQKV2BBsyblw2OQsHAmJi8X8s7wCRL6RaC5NGcPf/tUO201Td7VdWCduida/BS1JaARfzRFBjpiQkuvJjqQEDma0aKCb8cCoMMT75dGNVrkTpNBB87eM5OgLxDqhEHrkGlowWZsTzOEDD/tlPultNNYzVkLs+uUB3oh9I8D1MqCyjT30gHAnj179h2v+/W6KQfawwAQyrzWmFqhQ7ywTKOUkyypnHpapTF8BNp3QULmGHbGAgA9SEu6CaIQkydPnjwZxjVvffK18c9uHpswz0wZ05pTy886BQBAyDQxePHdHLSdDAIDTXcME6vKShBELtNOnnT1Ofubkz/VWYejNbYHb+0OXMXAOOuUif0fTPgb/wl0IgQARjBBpdoIwiOTJ08O2u+MTHw/nNnIQIuaF7eFvmLro88+bcrZp1GupUGM7wQ6k+wVaIIgPLNh23sbt77dlPpVc/IhjSXS+onHQv+YCFwAAKTRgxdfBAk/9XA2t4CmG13vTk51NUXGHkwnnueNaSksfnz7Br5h1fXVs+graiXFykV4RE6pI1wZch70jr1Zl8iI6WeKxr/+4k4AOPcz98j9fOW334TcxdPvPvdwR0cHVC1a7ZF+XRyFyxr1GyoUlZZGTJsrGvmS4roROWko+NtJDoKJ5EdMekuYoaxPQ65LIDxncpYr4dWTY2iBSNY+kVv7Krsnc+S3dHZbrrwljGjCjwFSxhLZhoF6M3Srt4xZum8YIYLPcmgajRA6mSQAGFZO5Rc1IUn3gWzCA7l+guziEI2ul++sUyba+sgO69NpYwoABNOv1ccf0lkMANZvyUlcw0HfEvIbRgQJ0XcRGiEUT1iOUnqv0eWlCtcwCRLWWKCFNAs6dpxmp4Jm5K+6lWNePvTGWteeVl2jals2AmE1cm1YATX3Rf3YyUKaBSOmn8mlWebcz9zDpVlm9hVLtz79QCQS4QLNKVw6aGBwxdzVz09RGi0XweOMmDZXzfZQN2Kc+kbSNE1NTcdsW6izIJOMq47gZNdx1UmdScaEOved0ymr3goo2Vcy8W4zrFw63q1b7npaTjqh+oKYnS4gzTKGFVLze2i6LtRZEG4Zo+65ZfWD6As35+QxoOnR4BWx4OUAusGON0Z/adq7IFejC0tzYd5e90hhaRZkElG1MZ9Ge3y7Dh+B9tcUB2OanQ4AgK539btzOobsIw+U+hqVVJmQW39TcHz7a2qjqs6QZ7lHzdXZC+jnCv3AoLmoju/YqDaiq37QOlWqOkOe9RroOhdVnauBqs75GlXJhjxWThQ0+5Kqzvn2RNU5k4iu37IbmBNJrGqO/pvO2m1tRHvkzljwIwy0Sk13eLfWoQtn0J6XeaEhib8E2kmGgGkaOGBQdiSCKJ31W3av37Lbymxv7fmXQOYN0PRo6KquyB2O1kSRw0GEvwSaRwhB785T2pUgiCJYv2W35kSboj+rjz+isUzKnNHW8I20ORMocjhI8JdA28kQAGhG//MbBEF4Yf2W3QAsnFrTHP2B4RxhWmNn5PZo8EoAfc+ePXv2IBN9hH+osUAvvy4np62TDANA3Sj3NOUf7rzozcf/1dXYtX+HOluXiffYypJZ72XqB8UkclGod5TvHtUHsmX1gx4PR3OJRI8gK9lk2wZHtwKMuUPKjNnq8m4jGFYbNcNUJ4I13VDLLJihiJqxSDMspNKVYbrqtgAAs221mEMm3mMrd4SWaEh2HlUb0zFkTxQ19J1JRNVG9CV76D+/99B/fs+032vp+U4w/SoDLRb6aPMH7uuIBQDApdHq4fvWP4m+DdBG9F2ENoI3ht5Hsih8YbMDgE89/K4Zrm9766R0PNg05WCotat95xsA8Ic7L+I7hMPhZDJ51nV3A0DX/pwKUg3jp4KStYAXavIizTwKUcL7wLIsl4vDD6CZE7zfoyid1e/hPNOTS5rP/8J9oARgeY4ql62C11vRc+sKapoBAC695v48Vx473qjlyij3vbkE18mkXXEqHkl2hfKyZa5cJ7QzkGsQhN5CPMr7LQyKNPNLuKTZijRCrpUQAKy6JsgTuHbB78Ulzbyx31dtz549//yjB+KBC5P116VtvSGcuXHh7lNOyPZ58uTJrsP5sS6bnettgDai7yK0EaXft+vwcXH4RaA/u/I4MDi8aTo42oiZe826JAD85uq+IkxcoB3HQaO6sldUgAa+vX9198sgEuiBBC2yVTdygtrIy0J6Ac+Ehy02xWtiKYejDhM0hxGa5gl1EInMeTJoAlsH6ySacss7HkcYfLz8flvdA3+eergzpGvw4TkHPjrnAM+67tJoTs3fUSrDR6B9NAdtpyxwNA3ACCNvdIIgyodL8AmtsbuueuusKccdBn/cOP7HT32gM2YBAM1K+w0fCXQmHgQAPZimEioEUT0mT548efLkkOXcfNHuT573rmWw7QcbfvDEqTsPZTO1kkb7Bz8JdCIAAGaIhs8EUXX4UHrhzCNfWbxtREOyI2r9+KkZf35zDJ/yJI32CX4RaJZJ21ygw1hmdwl0rk2kMJep4HQzMTB07H1LbUx2tauNaHp7dBaYMWTNN5rJHi2NFj26z+PVa0hpVgeu0ZNGRr/+8bfmnNRuO9pjr0z8//5vWixpAE13+ANfBAk/8z+HAKB9x5R0tK7ppEOhkZ1yeJAjgoT8RzSdypyrb+cbsl4XLhZVDhQkLIAIFcqxr5Ypp/ON9t2bReOY0z/IN2R1bj7p1N7D+9RZFCeT9dEMZh0asjqLcJ9QZzk5UarXayHcHfHjB8Rv60aewDe63t8pGiOjTszu2X5IunTWDyqbhQL12cXocvoXUVFQfmeKRyTHIcU3B5qQqN/GEuAqzBisfmPck6+dwJg2pilxyyU7x7Vk7YOnnXaaH95RMsMnSFhjgebSzDn25imObbRM2/3fNzSqe7oE2g+QQBfGexYFkUlOJtyKFKu2IlhCDDz3BfLGxi0ZmG1Z9WsDgOqthv6KB8qoQwQ0JcXA/+UnRspvH2j8rzVTuhNW0HKuv2DPWVPbACAYDCaTSdTgUSuGj0D7ZYrDSZuObQCAEepnioMgiMrCw4YAMGN819c+vnXK6J5kWn9w7dTHXp5oO9m/RWi6oyb4RaAziSAA6FZGN0opB04QRJlwjW6uS31l8duXnn4QAP68ZcyPn5rREc3+3UAaPfD4RqCTQQAwgzR8JoiawTVa19jV5+y/YeHugOnsPFR/z6Mn7zrc58AjmR5I/CLQDi9FSPMbBFFTxFzzuScfv/OKbaMak50x68dPzVi3ta/CDmn0gFF7FwePE3bsmpzqjtRPODBmdisA/PQ8d4yFgoQe8U+QkIMWA0Mb5TXioh7CvBu+Ixpf/vXX+cYHb+vzQjz/09sBYMGXcuon/OU/lgLAgi/9NLfxNgC44NZ/kxtfuP/vAeDcT/fVZHjloWydszM/8VXR+Nqj9/KNs6+7WzSuf/i7fEPYh0DyacgBwMJxP3nPvS+s6OmpfTJ0IcGJtPHQ8ydv3N0IAOecfPxTF+wNmNnPYA3DhsMnSFiiQMdisWXLlhmGYRjGHXfcoedWEiohF8dHvtXspM1x56bqRvZJsCzTJNAe8ZtAA8CMhdce2PhUV1eXq1H1h82+YqlaqmbeDd8R0iz44G3LuDTLLPjSz7g05zb+lEuzzAW3/tumh77helDnfvqbQp0FZ37iq0KdBWdfd7dQZ8Gcq29X/finXX6zF1cG3y0cDhuG4QeB5nCZtgLBx18cufqN8YzBxJHRWy7Z2Vrf52isiUyTQPfDqlWrWlpaFixY8Nhjj40bN+7888+Xf1usQMeT2tXfHgEMJl2cNEN9/SGBLgEfCnQwGAwGgy6Brjk+fFB+E2gA2LNnD7fZvfFu86/XTUmkjYZw5nMX7Zw+rq+K7sBr9PARaHfSW4/s3bv3rLPOAoApU6Zs3bqVC/SqVatefvllAPi7v/u7kSNHej9bQwNMuSyRjuqyOgNAQ0Of6dUwDMuyqjEhUzK6rhuGIXfSD5imqaOlUWuHYRi6rtOD6hfDMDRN89WDOv3003fu3BkKhc79QGLSmF3/8cdJB9uDy576wLUXHPrQ7GN8n4MHDwLA9OnTB6xXpmkCgKEkBx96lCjQMoFANpfj2LFjTznlFAAwTTOTQdI5FkAzjECje3Qsn0TTtEwm4yuB5jM8xd5ptdF13W9dgt6Xr9a9yMGHD0rTNB/2avr06W+99RYAjGqI3f3xd361dtJru5sefn7czoOhGxbtE1PS27ZtmzZt2sB0iX+zuh4Umi12sFOiQE+dOnXnzp0TJkzYsWPHlCnZ4mbz5s2bN28eALS3t8fjyEKsgtSrTa6T+HCKwzTN4u+0uui67rcuBYNBTdP81isfPigAMAzDb73SdX3ChAl8PtrQ4OZF28c2j39q0wmv7mw51BG49UM7WyLZKemtW7cOzHSHruuMMdeDMgyjrg6pGT+oKfFPvA996EOvvvrqD37wg8OHD/O5jjJRbRsEQfgHobyaBh+be+DWS3aELPu9Y5Hvr5q581DfnAwZpStL7W12Lm57sR7IZlcGPox9UZDQIz4MEoLyoIT+HukK3f+nkw92hHWNXXn2+3zxoaCqQ+nhEyT0V5AEAH56Xg+NpgnCtwjlHd2YuPOKbaed2OkwbeWrE5a/cFLG7psFpnF0RfCdQBME4XOERocD9v+7dPvlZxzUNHjh7VE/fmpGd7wv4R9Nd5QPCTRBEEUjNFrX4Mqz9t+8aFfAdHYdrv/+qpnvHcupoU4aXQ4k0ARBlII8y3zmlLY7r9g2oj7ZHg3c9+SMV3bmLIMgjS4ZEmiCIEpE1ugJrbF/vGrbtLHdGVv/zV8mr1o/wZH8BzTdURok0ARBlI6s0Q2h9O0feeeDpxxlDJ55Y9z9z05LpHMW+5FGFwsJNEEQZSEKsgCAobPrzt973QV7TYO9+V7z91fNPNQRkncmjS4KEmiCICqAPJT+4IyjX7r8nfpQ5khn6L4nT3n7QE6VUZru8A4JNEEQlUHW6Gnjuu+6cusJrbFY0vzJ09PXbR3j2pk02gsk0ARBVAxZo0c0JP9h8bbZk9odpq14caJrJQuQRnuABJogiEoia3TIcm65ZOfV5+xHV7IATXf0Bwk0QRAVRtZoTYNLTz9408JdluHsOlz/wydOeb8t7NqfNDofJNAEQVQeV7Kks6a2/cPit5sjqeM9wfuePGXzu82u/UmjUUigCYKoCi6Nnjgy+k9XbZ08uuf/b+9+Y5pI8ziAPzPTmZbimoVSAuyGiBWFglRfeHeAOYyiZnO5NUt4ZXLeKz1eLLeaqJuY+GoTJWzVtL7R5C4qxL4SdcNSIlmXLsaQ4GqqBpY/ekXX1JxbCRWKSNuZfdGExUHvEpb2+dF+P6+gtJNvnzz5zvBMp/MmKp3/rvTG/ULd87HcsRgKGgCSZeFHpBljq7Oih/4y/KfSkKqx63c+/vf3tmhcX0Ho6IVQ0ACQXAs7Wpa0v9cFPvvDM1FgP/4n90xXWXhG1j0fHT0PBQ0ASadb7thV9fwfO8eMcjzwIrvlG/vTULrdqmq5oKABIBV0HV1VPHn0058sH7yZjChfd5YPPLLwCkYZChoAUkTX0UU5r7/8dGhdwVQsLl78Ye2394qScAO+lQ0FDQCpo+voD7JiX3wyUrP+F01jXfc++tf3trkYSuk3GAsASCldRxsk7W9/Hm/841NB0O4Fck99WzYZUXhlowYFDQCptvie3zs2/vfz3WNmY/xpKLvlG/vwzwYuwahBQQMAB4s72v5x+PBff7KufhOekb/yrI7GhHe+MKOgoAGAD91lLIyxwg9ff7lnqPyjV4cbp2QDzhiioAGAK11HZxtj//xkZLMtyisPKShoAOBs8XIHJKCgAYA/dPQ7oaABgAR09GIoaACgAh2tg4IGAELQ0QuhoAGAFnT0PBQ0AABRKGgAAKJQ0AAARKGgAQCIQkEDABCFggYAIAoFDQBAFAoaAIAoFDQAAFEoaAAAolDQAABEoaABAIhCQQMAEIWCBgAgCgUNAECUIRkbVRRF05b5lukGg4Extuyb/T0kSRJF0WQy8Q7yFkmSqEUyGAwEUxGMJMuyIAjUUhEcKIPBoGmaLpUgCLzyJE9SCjoWi6mqurzbFEUxGZv9PTRNUxQlGqV1f3iDwUAtkiAIkiRRS0VwoBK7fGqpCA5U4nBNl0oU03A9ICkFrapqPB5f3m1qmhaPx0kVtCiKiVS8g7yFYCRVVQmmIhhJVVVBEKilIjhQmqYRTJUMabjPAQBID0k5gk7S/xqiKJJaZopGoy9evMjKyuIdRE+SJN4R3jI7Ozs9PU1tHZPRG6hIJKKqqtFo5B1Ej9pAvXr1ShA3Y4LnAAAD/0lEQVQEWZYXPpiWSxwCqdNuK8udO3fOnDnj8Xh4B6HO6/XeuHHD5XLxDkJdW1vbkydPjh8/zjsIdadPnzabzU1NTbyDJF0a7nMAANJDUpY4MkR+fv6OHTt4p1gBiouLa2pqeKdYAdavX2+xWHinWAGqqqoUReGdIhWwxAEAQBSWOAAAiMISxxINDAy0t7cXFBQwxg4cOGC1WnknokVV1evXr1+7dq29vZ0xNjMz43K5JEmSJOnQoUNpecJ9aXQDhXn1PuFw2OVyKYoyNzd39OhRVVUzYUahoJcoEons2bOnvr6edxCiwuHwhg0bioqKEr/29PTU1NTU1dVduXKlv7+/traWbzw6dAOFefU+4+PjDQ0NlZWVly9ffvDgQTAYzIQZlZ67nRSIRCK3b992Op3nz5+PxWK845CTk5NTUVEx/+v4+LjNZmOMrV27NhAI8MtFjm6gMK/ex+FwVFZWxmKxx48fl5aWZsiMwhH0ElVXV1dXV1sslqtXr968eXP37t28E60YGXL+fWkwr/6HcDh87ty5vXv35uTkLHw8jWcUjqCX6NmzZ4nvajGbzTjS+b9sNtujR48YY2NjYyUlJbzj0IV59T5TU1Nnz57dv3//unXrWMbMKHzMbokCgcCFCxeys7NVVT148CDBC775Gh4e7ujoGBoastvt27dv37x5s9vtVlXVbDY3NzeTumSfL91AFRQUYF69k8fjGRgYSJw1ra+vdzgcmTCjUNAAAERhiQMAgCgUNAAAUShoAACiUNAAAEShoAEAiEJBAwAQhSsJIRV6e3tPnjxZVlY2MjJSVFRUXl4+ODg4Ojra2dmZl5fX2trq9XoVRSkpKXG73ZIkNTU1jY6ORqPRLVu2uN3u3t7elpaW0tLSiYmJ58+fd3Z2rlq1ivd7Akg6HEFDKsiyPDg4eOrUKa/X29HRsWnTpkuXLlVVVXV1dfX19fl8Pp/P19PTI4piW1tbKBTauHFjX19ff3//rVu3/H6/LMt+v7+1tdXj8RQWFnZ3d/N+QwCpgCNoSBG73Z64y2dubq7D4WCMWa3WyclJn883NDS0bds2xtj09HReXp7Van358uWuXbvMZnMwGAyFQiaTyW63m81mxlh+fv7ExATXtwKQIihoSJGFd4ae/1nTNKPR2NjY6HQ65/968eJFv9/f3d0tSVKiuHUvx+WvkCGwxAGcbd261ev1zs7OMsacTufdu3eDweCaNWskSXr48OH9+/fn5uZ4ZwTgA0fQwFltbe2+ffvq6upMJlNxcXFzc7PFYmloaNi5c2dFRcWxY8eOHDly4sQJ3jEBOMCXJQEAEIUlDgAAolDQAABEoaABAIhCQQMAEIWCBgAgCgUNAEDUr+uqOydeW2piAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["%%R\n","\n","## Distribution of expression values\n","myPalette <- c(brewer.pal(9, \"Set1\"), brewer.pal(8, \"Set2\"))\n","boxplot(assay(vst)[rowData(vst)$gene_type == \"protein_coding\", ],\n"," boxwex=0.6, notch=T, outline=FALSE, las=2, col=myPalette[dds$tissue])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":497},"id":"mqb6g0b5EdIy","executionInfo":{"status":"ok","timestamp":1718910985318,"user_tz":-120,"elapsed":780,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"4de62c3a-7ce7-423b-ea4b-b18e59a8be70"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOzdeXxM1/8/8DP7ZJnsFYmESEhQJI3UvoSKWoqSWGrfqkXtVbS1FVVaWmqptap2H2tRRfGtUEutIQhizyJ7Jpkls/3+OHE7v7l30iRmksu8ng9/3Lxzc+Zm5nrPvee+ckdgMpkIAADwj7CyNwAAALihQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT4krewPKJjMz8+TJk5W9FQAAxYRCYbdu3SQSiT0Gf8Ua9IkTJ/bv39+mTZvK3hAAAEII2bRpU0REREhIiD0Gf8UaNCGkRYsWI0eOrOytAAAghJALFy7Yb3DMQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDwFBo0AABPvXp/6g0Av/766+nTp4OCgoYMGeLv71/ZmwP2giNogFdPvXr17t69W7t2bYVC8TLjbN26deDAgRMmTLh582Zp1r9y5crKlSs3btyYnJxcmvXpjYQiIyO3bNliXr948eLnn3/+2WefnTlzpjzb/cKpU6eaNWsWGhr6zTffvMw4vIUGDfDqadSoka+vb+vWrS0a9NSpUwMDA1u3bn39+vVSjqPT6WrVqlWtWrXSrK9Sqf7888/Lly9rNBrzularzcjIyMrKKioqMq8PGjRo3LhxEyZM6N+/v3ndy8tLpVLl5ub6+PiY1/ft2xcWFhYUFLRy5Urz+rVr17788stx48YdPnzYvB4dHb1kyZK4uLhp06aVZvtfOWjQAK+PhQsXxsTE/PLLLw0bNjSvz5w5s06dOq1bt7548aJ5PSwsrEaNGo0bN/bw8CjN+C1atGjSpEnHjh3r1atnXt+xY0fHjh27det25MiR0owTEhLStGnTyMjIsLAw8/r777//7bffjhs3bvTo0eb1qlWrurm5KZXKWrVqlWb8c+fOtW7d+s0335wzZ455/caNG0OHDo2JiVmyZIl5/fbt2z179mzcuPGMGTNKM36FQYMGeCXNnz+/SpUqpVz5q6++iomJWbly5dtvv83+rkAgsKgsXry4Tp06TZs2PX78eGnGHzRo0NChQydOnNitWzeLb1WpUuWNN97gfFD241rj6+sbGRkZEhISGhpq8S1vb+/g4GCLYtOmTX/88ceYmJhZs2aZ18PCwgYOHOjj4zNw4EDzemho6Lx584KCgvh2JI6LhACvJGt3iI+Kiirl4TA1efJkT09PdlGpVEZHR0dHR1t86/3332evX4L33nuPs96hQwedTseuBwQEcDZuaw09NDSU3bWtkUgkgYGBCoXC4j1DKBS6u7tLpVIXF5dSDlUx0KABXkknTpxo1aoV+5OWLCYHGN7e3pzdp/SH4ZS1btiwYcMyvTFY6/KRkZGRkZHsevPmzd98883Sjy+Xy52cnNh1kUgkFHLMHIjFYrGYd/0QUxwAr6Q1a9ZkZ2eXfv3Zs2fXrFmTXT979mxWVha7XrNmTYsreNSjR49ycnLY9datW1tMfFO//fbb77//zq4/efLk/v37/73dLzg5OVWtWpVdv3Hjxnfffceuh4WFLViwgF0PDg7mXN/X13fNmjWl356KgQYN8FoZM2ZMSkpK6dffv38/Z6McPHhw/fr12fUdO3b8/fff7Lperzcajex6RkZGRkYGu37mzJljx46x63/++ee6devY9bS0tMuXL7PrSqWyTG9UhBBXV1fOulQqLdM4FQANGuC1olartVotu/7jjz8+ffrUfo+7bt26AwcOvPw4hYWF+fn57PqNGzcsMnYle/bs2YYNG9j13Nzc//3vf+x6QUHBzz//XPrxKwYaNMArqUwpDkJIUlJSbm4u57c4L74tW7aM84jVGr1er9fr2XWbpDhKwJniIIRkZmZyhsEzMjKOHj3Krufl5f35558vvz22xbtJcQAoDbumOAgh2dnZnEeyr3SK45WDBg3wSkKKo2RIcZTKgQMH6tat6+HhER0dnZSURItHjhxp0KCBt7d3x44d09LS7L0NAK8fpDgopDjK7+nTp4MGDVq3bl12dnbLli0//vhjQkheXt7AgQPXrFmTnp4eFRU1duxYu24DgENBiuM/IcXxr7Vr17Zo0UIoFMbGxtIj6KNHjzZq1KhZs2ZisXjKlCm//fYb50VnACgHpDgopDj+W0BAQK9evejysWPHWrZsSQhJSkpiprHc3d09PDwePXrE/tmsrKxLLElJSXl5eXbdZoBXAlIcFFIcNvDHH3/89NNPf/31FyFEpVKZT947OzurVCr2jyQkJLDvjHXixAlvb+/p06fbdWsB+A8pDgopjpe1devWr7766ujRowEBAYQQFxcX8zmygoICzikhzhu1TJw4MTU11Z4bW5LZs2fHx8eHhobOmjXL19e3sjYDgCDF8V9ejxQHMdnZvn37GjRokJqaylR2797dunVruvz06VNnZ2edTlfK0SZMmNCnTx/bb2Xp3Llzp2nTphcvXtTr9eb1ixcvbtq06dixY4WFhZW1bfawf//+mJiYtm3bbtq0qbK3BSz16dMnLS3t5cc5c+ZMZmYmu75x48aEhAR2/eHDh9nZ2aUf/8CBA4cPH2bXHz9+fO/evdKPY01CQsK3335bph9RKpWcda1WW44NGD58uE1+EU72nYPOycn55JNPDhw4YJ6PiYmJSUxMPHHihF6vnz9/flxcXGW9cQ0fPjwqKqp///4Wp3IFBQUZGRnsCbvQ0FA3N7eGDRuKRCLz+vXr1xcuXBgfH895Svjq6tixY79+/Tp16tS7d+/SrH/s2LEWLVqEh4cvXrzYvG4wGHJycjIyMiw+huPGjRtDhgzp3LnzqlWrSjO+RqO5dOnSsWPH7t27V/rfgi0rK+vdd9+tVavWBx98YF5XKpUdO3b09fXt2bPny4xfuZDi+E9IcRTbt2/fs2fP6tSpI38hKytLoVBs3bp17Nixvr6+T548sfhog4o0d+5csVj8zTffuLm5mdcnT54cHh4+cuTIzMxMix8RCoXsibBhw4bVrl17woQJnDnNVxe9Pa6zs7NMJivN+jExMfPnz+/Ro8fkyZPN6+fOnevTp0+bNm0sPscoJCSkc+fOCoWia9eu5vU7d+4MGzasY8eOS5cuNa+npaVt3LhxwoQJFhcnDAZDcnJyQkKCxfRXUVHRn3/+uXnz5vPnz5vXvb29//jjj8DAwG3btpnXFQrFkSNH6tWrt2fPHvO6RqPp0qVL1apVe/ToYTAYSvNUVCKkOCikOP7b0KFDjUajxoy3tzchJCYm5ubNm1lZWb/99hutVAp/f38nJ6fAwECL+urVq8PCwnbu3MkO6m/dupU96/cas8nEXIsWLebNm9e1a9dJkyaZ152cnOrVq1elShV6cYIRFBT0/vvvy2SyHj16WNS/+OKLhg0bfvLJJ+b1lJSUefPmdevWzeIPDQoKCi5cuDBnzpwrV668zPbL5fJDhw7VrVt37969FidP1vTs2TMoKKhjx45KpbI06w8ZMqRWrVoxMTEWf7f10UcfhYaGvvPOO+ykE1IcFFIcr7OyntRYu7IxatSo0n++8vTp03ft2uXv779s2bKIiIj/XH///v3Hjh3z9vbu3bt3ma6TlNKxY8d27NhBCOnVq9e7775r/q3u3buzz1sPHjw4d+5ctVo9cuRIi15Jz5NK/9CcZyQymax+/fo+Pj7Vq1cvzSCBgYE//PDDwIEDLT7fyMvLa8qUKSdOnKB/IWXBy8uLc7R33nmndNtekj179rRt25YdQ/r0008vXrxYt27dr7/+2nwDNm7c2L59+yNHjli8Aaxevbpbt25btmxh711IcVBIcbzOrJ2Ude/enbO+Y8eO3r17s3eUDh06sFeeNGnS4cOH/f39V6xYUbduXaa+YMGCrKysKVOm1K5d23z9Bw8e3Lt3z8PDo06dOub/IUNDQ3fs2BEaGmqn6Eh4ePjZs2eNRuNbb71l8S2hUMi+5P3ee+8JBILExESL7kwIadq0adOmTdkP4efnx/lpeHXr1p07dy67ztm4CSGenp4WE8fltnv3bs76l19+yVlnZ4rKYeLEibGxsVOnTi1Tj+OEFEfJkOKoBJWb4jCZTB06dOC81Hv//n3O9fv16/fs2TN2/cMPP0xKSrIobty4MSoqatiwYTdu3LD41vTp08+ePVuuTS6VjRs3btiwgV2/evXqX3/9xa4fPHhw0aJF9tseo9GYm5tb+vV1Oh1n1MRoNB46dMh221UGQ4YM4axHR0dz1uPi4gwGA7ver18/lUrFriPFQSHF8TqzdnsUztm0EkyePNnaBB+nGjVqsC8lDx48uEWLFuPGjeM8UmAfUX7//ffh4eHNmzf/448/zOvLli0LCQmpW7fub7/9VsrtEQgEnIcVSUlJnBN5bm5unEdASUlJnFdgiJWnNCcnhz0PQLfH3d2dc5z09HR2USwWW3xOMzNO586dOcfhPHInhNgqwmHtipO1axi7du3ifAm2bNnCeSRoDVIc/wkpDh4xGo3dunWrXr16586d1Wq1xXctruMzrE1xWDv1tsbJyYnzP+QXX3zh5+dX+nHGjBnDnn+YOHFiXFzc3LlzLSaOx40bN3r06EWLFlmkI0oQGxsbGxtb+u1p1arViBEj2PWUlJQbN26w61euXJk9eza7/uzZs0OHDrHrSqWS890lPT194sSJnJtk7XLcgwcPOOsnTpzgrHPeqo0QYqupFYuIiM0hxUEhxfFqEAqFBw4cCAkJOXz4cOmPRDj/+pyUPcWxbt06zkvY1nTt2pXzyli1atVKmXUrHxcXF87DCltNzOl0Os4rQtZkZGTs27ePXafnfex6QUHBoEGD2HW9Xj9y5MjSP24Jynpf3ClTpnDWrR2+zZ8/n/NXW7RoUVFREef6SHGQ1z3F8fo36JJVSoqDEDJ37lzOv1l/5513OB/i/PnznDftdXJy4nzXqVKlCvuKTWFh4d27d+/evcs+k0hMTLx58yZ7nO7duw8fPpxdv3Tp0q5du9h1m6Q4ysFoNHKeX5fArikOQsg///zDWV+/fj1n/eTJk5y/Qnx8POcRcUhICOdTV44UB2eUqIQUB+f1Xmvee++9Tp06sesdOnSwiFFSAQEBFhfPqRJSHJwnc68HR2nQYWFhnPVypDg4D3M6dOjAmZBdvnw556n3kydPCgoK2PXnz59z/inE/v37mY87MPfpp582b96cXR84cGCrVq0sivv27fvggw8GDx7MPlK4ePHihQsX2OMIhULOI+i0tLSHDx+y602bNp02bRq7jhQHY/PmzTYZ58SJE5wnJaNHj+Z8jy8hxVGmk8LQ0FDOI+KGDRuWKe7m6enJeQYQGRnJOTXXvHlzzmMFa16PFIejNOiffvqJs25t3mDChAmc9Q0bNnD+r0hOTuZc/++//y7lnypQCxYs4DyStYn+/fsPHz58/Pjx1qKpbNeuXTt9+vTLP3RgYGBcXBy7bu1iYI0aNSz+XpySyWTdunVj152dnTnHF4lE1uasy8oiZP2fgoKCyrS+p6cn53uSQqHgbBz4RBUKn6jyOuNVioNYn2MlViYKd+/efevWLXZ9165dFn/fXDKkOBhIcVBIcfCBozTocePGcdZf6RQHISQxMZHzf+Pjx4+fP3/OrkdERJj/yQwDKQ4GUhzlgxSHPThKg05ISCjT+q9riqNZs2ac56FIcfwnpDhKhhSHPThKg7bGoVIchBC9Xs95ERIpDgZSHBRSHHzgKA0aKQ7q559/5jwyRYqDgRRHyZDiqEiO0qCR4qCsnYdagxQHAykOCimOiuQoDdoapDiYwZHioJDioJDi4ANHadBIcVBIcTCQ4rAtpDjswVEaNFIcFFIc5YYUR8mQ4rAHR2nQ1iDFQSHFwUCKg0KKgw8cpUEjxUEhxcFAioNCioNCiqMyIcVBIcVRbkhxUEhxVCRHadDWIMXBDI4UB4UUB4UUBx84SoNGioNCioOBFIdtIcVhD47SoJHioJDiKDekOEqGFIc9OEqDtgYpDgopDgZSHBRSHHzgKA0aKQ4KKQ4GUhwUUhwUUhyVCSkOCimOckOKg0KKoyI5SoO2BikOZnCkOCikOCikOPjAURo0UhwUUhwMpDhsCykOe3CUBo0UB4UUR7khxVEypDjswVEatDVIcVBIcTCQ4qCQ4uADR2nQSHFQSHEwkOKgkOKgkOKoTEhxUEhxlBtSHBRSHBXJURq0NUhxMIMjxUEhxUEhxcEHjtKgkeKgkOJgIMVhW0hx2IOjNGikOCikOMoNKY6SIcVhD47SoK1BioNCioOBFAeFFAcfOEqDRoqDQoqDgRQHhRQHhRRHZUKKg0KKo9yQ4qCQ4qhIjtKgrUGKgxkcKQ4KKQ4KKQ4+cJQGjRQHhRQHAykO20KKwx4cpUEjxUEhxVFuSHGUDCkOe3CUBm0NUhwUUhwMpDgopDj4wFEaNFIcFFIcDKQ4KKQ4KKQ4KhNSHBRSHOWGFAeFFEdFcpQGbQ1SHMzgSHFQSHFQSHHwgaM0aKQ4KKQ4GEhx2BZSHPbgKA0aKQ4KKY5yQ4qjZEhx2IOjNGhrkOKgkOJgIMVBIcXBB47SoJHioJDiYCDFQSHFQSHFUZmQ4qCQ4ig3pDgopDgqkqM0aGuQ4mAGR4qDQoqDQoqDDxylQSPFQSHFwUCKw7aQ4rAHR2nQSHFQSHGUG1IcJUOKwx4cpUFbgxQHhRQHAykOCikOPnCUBo0UB4UUBwMpDgopDgopjsqEFAeFFEe5IcVBIcVRkRylQVuDFAczOFIcFFIcFFIcfOAoDRopDgopDgZSHLaFFIc9OEqDRoqDQoqj3JDiKBlSHPbgKA3aGqQ4KKQ4GEhxUEhx8IGjNGikOCikOBhIcVBIcVBIcVQmpDgopDjKDSkOCimOiuQoDdoapDiYwZHioJDioJDi4ANHadBIcVBIcTCQ4rAtpDjswVEaNFIcFFIc5YYUR8mQ4rAHR2nQ1iDFQSHFwUCKg0KKgw8cpUEjxUEhxcFAioNCioNCiqMyIcVBIcVRbkhxUEhxVCRHadDWIMXBDI4UB4UUB4UUBx84SoNGioNCioOBFIdtIcVhD47SoJHioJDiKDekOEqGFIc9OEqDtgYpDgopDgZSHBRSHHzgKA0aKQ4KKQ4GUhwUUhyUg6Y49Hr9Z599JhQKMzMzaUWr1QoEAvkLvXv3tvc2EKQ4XkCKo9yQ4qCQ4qhIdm/QcXFxzs7O5m9ZOTk5Pj4+mhd27txp720oAVIczOBIcVBIcVBIcfCB3Rv07NmzLS7f5+XlWfu/Zz9IcVBIcTCQ4rAtpDjswe4Nmn39ITc3V6VStWvXrkqVKjExMZxTqzaHFAeFFEe5IcVRMqQ47KESJsUVCkXXrl0nTpwYFBQ0Z86cuLg4zufx1KlT7JPf+Ph4b29vG25MJaY4RowYwT6IthYhOH/+fK1atdi/ezlSHAKBgH09MzEx0WQyvfnmmxb17t27c563Xrp0KTk5uVevXhZ1pDgYJaQ4OC92nTx5ctq0aeyXJj4+ftSoUewdNSQkhHP8cqQ4OPfqElIc1v4XcHrvvfc46x06dOB8zw4ICODcJUpIcZTp4uSrpRIadL169VavXk2Xv/rqqyVLlqSkpPj7+1us1rBhQ3bLe/LkCefRxH+yYYqjd+/e7B2lQ4cOnOsvX7588ODBnL+ItRSHt7c3+3/p/v37u3bt2qxZM4v6p59+yvm4nBOyhJCff/7Zy8uLPZtx8eJFo9HIbtBCoZBzYrSEFEfTpk3ZdaQ4GJs3by5TGsGaEydOtGrVin0+N3r0aM71S0hxlOlxrXXDhg0blumNwVqXj4yMjIyMZNebN2/O3j9LgBRHOaWmpiYmJtJlo9FoMBg4D2O9vLwasVSpUoUzzfafkOKgkOIoN6Q4KKQ4KlIlNOirV6926tTp4cOHBoNh3rx5UVFRnPtBxUCKgxkcKQ4KKQ4KKQ4+sG+DzsrKopOSBoMhICBALpenp6d36tRp1KhRLVu29PX1vXjx4vbt2+26DRRSHBRSHAykOGwLKQ57sG+D9vb2pmFnk8lEF3x9fQkh06ZNe/r0aWZm5pEjR8p6Jlg+SHFQSHGUG1IcJUOKwx4c5U+9rcG9OCjci4OBe3FQuBcHHzhKg8a9OCjci4OBe3FQuBcHhRRHZUKKg0KKo9yQ4qCQ4qhIjtKgrUGKgxkcKQ4KKQ4KKQ4+cJQGjRQHhRQHAykO20KKwx4cpUEjxUEhxVFuSHGUDCkOe3CUBm0NUhwUUhwMpDgopDj4wFEaNFIcFFIcDKQ4KKQ4KKQ4KhNSHBRSHOWGFAeFFEdFcpQGbQ1SHMzgSHFQSHFQSHHwgaM0aKQ4KKQ4GEhx2BZSHPbgKA0aKQ4KKY5yQ4qjZEhx2IOjNGhrkOKgkOJgIMVBIcXBB47SoJHioJDiYCDFQSHFQSHFUZmQ4qCQ4ig3pDgopDgqkqM0aGuQ4mAGR4qDQoqDQoqDDxylQSPFQSHFwUCKw7aQ4rAHR2nQSHFQSHGUG1IcJUOKwx4cpUFbgxQHhRQHAykOCikOPnCUBo0UB4UUBwMpDgopDgopjsqEFAeFFEe5IcVBIcVRkRylQVuDFAczOFIcFFIcFFIcfOAoDRopDgopDgZSHLaFFIc9OEqDRoqDQoqj3JDiKBlSHPbgKA3aGqQ4KKQ4GEhxUEhx8IGjNGikOCikOBhIcVBIcVBIcVQmpDgopDjKDSkOCimOiuQoDdoapDiYwZHioJDioJDi4ANHadBIcVBIcTCQ4rAtpDjswVEaNFIcFFIc5YYUR8mQ4rAHR2nQ1iDFQSHFwUCKg0KKgw8cpUEjxUEhxcFAioNCioNCiqMyIcVBIcVRbkhxUEhxVCRHadDWIMXBDI4UB4UUB4UUBx84SoNGioNCioOBFIdtIcVhD47SoJHioJDiKDekOEqGFIc9OEqDtgYpDgopDgZSHBRSHHzgKA0aKQ4KKQ4GUhwUUhwUUhyVCSkOCimOckOKg0KKoyI5SoO2BikOZnCkOCikOCikOPjAURo0UhwUUhwMpDhsCykOe3CUBo0UB4UUR7khxVEypDjswVEatDVIcVBIcTCQ4qCQ4uADR2nQSHFQSHEwkOKgkOKgkOKoTEhxUEhxlBtSHBRSHBXJURq0NUhxMIMjxUEhxUEhxcEHjtKgkeKgkOJgIMVhW0hx2IOjNGikOCikOMoNKY6SIcVhD47SoK1BioNCioOBFAeFFAcfOEqDRoqDQoqDgRQHhRQHhRRHZUKKg0KKo9yQ4qCQ4qhIjtKgrUGKgxkcKQ4KKQ4KKQ4+cJQGjRQHhRQHAykO20KKwx4cpUEjxUEhxVFuSHGUDCkOe3CUBm0NUhwUUhwMpDgopDj4wFEaNFIcFFIcDKQ4KKQ4KKQ4KhNSHBRSHOWGFAeFFEdFcpQGbQ1SHMzgSHFQSHFQSHHwgaM0aKQ4KKQ4GEhx2BZSHPbgKA0aKQ4KKY5yQ4qjZEhx2IOjNGhrkOKgkOJgIMVBIcXBB47SoJHioJDiYCDFQSHFQSHFUZmQ4qCQ4ii3VzfF8fTp0+Tk5EGDBplMpuTkZIvjYnaKIy0tLTk52dXVVaPRJCcn5+XlmX8XKY6K5CgN2hqkOJjBkeKgXt0UR0FBQU5OzogRI27dupWTk8NMmIS+VbvdqLb0X6uBLS1OEdgpjtpv1243qu3yYz9+/P1HbYa3HjVqlPl3keKoSLw7pLeTcePGLVu2jF3ftm0b50Wk7t27c6YLbJjiKP0ghJAxY8ZwhlITExM9PDzYwYzHjx9zzgVHRERwnufGxsZae2Pg1KpVK84pFJriYB/MXrlyZffu3fPmzbOo0xRHx44dLepKpfLUqVPsU12a4ti6dSv7oZVKJedlgAcPHnDmf0+cODFjxgx2vYQUh7XMT5m8ZIpDrVb36NHDYDDcunWrT58+EolkxIgRffr0KSoq8gn0cauh0GRr9p3baygyjuk9hj7hzlVdGo4qDswpHxcYk4rbqHtNd5m7VJ2lWXdgLREKhnYaSg8tZR4yZn1trtZ4pHh9nwY+erVeV6ATSoQiqbBP+76rV68mhAwfPvzatWvZ2dlisdjNze2dd95ZuHAhIaRt27Y3c24UFegEAvLpkskNvBvSq3CdOnW6lPqPrlBnMppm/jQjTFGHnqWtWbPm0qVLjx8/zs/Pv3jxYmBgIH0v+eijj3af3W0sMug1BrmnTK8xZN/OJoSsXbv22LFjOTk5KSkp9+7d8/LyoifKCxYs2LlzJzPlKJVKz549SwhZtWrVrl27mLpOpztx4oRQKJw3b97iX76TuEhePEXKrKfZzs7OL/My2cpr3qBv3bpFA3bXr1+nR5oLFiyIiorS6XT0wFCpVF66dIkQEhYW5urqWlRU9NtvvxmNxkePHu3atUsgELRp0+aNN95Qq9UrV67U6/VNmjRZsmQJIeT9998PCwvTarVz587V6/WJiYlz5syRyWS9evVq1KgRIeT//u//dDpd3759r127RgipV6+ev7+/0Wjs1q2b+TWfAQMGDB48mBAydOjQwsLC58+fz5o1SyqVdu3alR4Srlu3zvwMtFmzZq1btyaEjBs3Li0t7fbt2ydOnFi9enV0dPTo0aMJIb/88mMxllUAACAASURBVEtaWtrp06cTEhISExPr1q1L5wQmTJhgPnnSpEkT+r/3zz//ND+ACg4Obt++PSFk9erVly9ffvjwoVqtvn79ep06dehcwfr1681nqwMCAmibS0lJSU1NTUpKSk1NvXTpkkKhoDOS+fn5mZmZDx8+zMjISE5OVigUdAZTqVRmZGQ8ffo0Pz8/OTlZJpNVq1aNGZamONgNuuQUx969e5mKwWDIz8/X6/VDhw7du3evQCCgl86USiWdzacvvUAgCA8P57x+wIzz6NEjQsiDBw+Sk5PFYnFAQADnoS6l1WqZdkPf+xs3buzm5sasUEKK4/PPP2e//S9atGjChAnMwZ1arb6edy1qamQkCSeEZN3Mpju20Wh0r+nWZGbxRH/uvbyi5xzZD3MSV0nT2Y3psipdlX3+v49DW3/Xgi7o1frUbcVXuZOTk/2/9PUnvoQQk9F0aeUlZn1mfEKIcmlxMkqj0XDW9+3bp+5UKIwQyAzi+5KkxM2JtEFnZWVFffaWVFH8DJydUXxqePr06YyWaXIveaDRXynM/XPBnz+Rnwghjx498hzh7lrNxWL9u3fvGt7TuQYXn45cm33VaDQKhUKNRvPm8HpedYrPCC8uuFTWE2j7ec0bdGpq6m29X7XW/Ws2J0pC0s7ve/LkSVRU1JUrV97pOdgtqKG6UNZt/CJVevKKORP79et3586doRNneoQ21cprTF59RJV2f8H4nA8//DAlJeWrFZt9G3UhhBCiLEi5I5PJwsLCsrOzl28/EthuiCBq0PFC94I7t93c/mjUqFF+fn6nXoN8Granm6HNTR/Z6a25c+caDIb4W6l1BnxN64Wp95gJhN0nLob2nUNqkgJCNFnPvM+epQ16/JcLqrUqviymU+UlJq6nDXrj/pOhfWdLahiUQlGOKt908jBt0D/99FNure4G57fuFUnOXSsK+Ws1bdDXrl1Tt/738t2Zv76hC3PmzHnq/m/C2j9nE23QO3fufB78Pqle32QynTUJE/fsoA163759jwPeE0qK5+4Tj66nDXrSpEnOBw+ZCMkzGjds3XZco7mjKyKETJw4MXvbdiEh2UbjzM1bzhRpH+h0hJDPP//84fr1coHgucE483+7T2k1T/V6Qsjq1au3b99uMBiePHkSExOj1WpPnjwpEokWLFiwfdZsV6EgzWBovXfvHb3+Xk6OQqFYs2bNyk/GugoFT/SG1nL5M4PhfGqqj4/P2rVr140f7ycSZer1g6pVu16kO3U3qWbNmrt27do2ZkyoWOKj12+Ibhuv1W66eCE8PPz48eNffPGFm5sbfdzs7OzNmzfXrVv3999/nx0bW0csIXr9zAYNb+h03/9xpG3bttZ2uUuXLs16771omVyg15/84+jloqIhG3/u06dPUlJS5zff9H/xTpBjNM7aujUuLi4lJeXdoCBPofC+Xn9k7ly1yfTZr7/27t07IyPjzap+fiLRc6Nh85dfKk2mz5Yts5hteP04+zqJpMVPkUHMHXU1J3aWSFyLj3wFQhvEgfjmNW/Q1phMJreghoHvDKNfPr/8O3Nc5uJX279Fb7qcdeMkU5d5+HrVKz6pFwj/PeASOylc/IpTQXpVPjO+3KsaM47y8U1CuE+cGQKhSCwvPrYSyZzJi9k8sZMr87hFec9JzvEX6wuZ9YnZ3J9cLncPLm64Rp2WXDtX8uOKRKIqkf/O0kr++nfG2cWvNnlxQCe++++uIvXwFUmLD0OY61cmk2m8ws3nxaHlFV3Ri00zTnVzCxQVr9YrK4OpT1K4hYolFvX79+9PuZkYLpESQkji7f5ZmXq9XiQSabXame7uTaXFbwwjsrPoYU5OTs6nbm5tZcXzOeNysjUaDSFEp9N95KroLC/ezqm5OfTqrslk6urkHOtUfAI7Oy+XvsQZGRk979wdQOd/Em8vzM+jcx0Gg+E9ufOHLw57lyrzOWM2DJPJFCWVjXYtnmz5tbCQjq9SqdrK5LPdiwNw/1Op6MW6goKCcIl0oUfx4dthjZpOsmu12lYy2TLP4izgSa3mGVfoDV5vjn6REACAt9CgAQB4Cg0aAICn0KABAHgKDRoAgKfQoAEAeAoNGgCAp+zeoPV6/WeffSYUCjMzM5nikSNHGjRo4O3t3bFjx7LeZhcAwEHYvUHHxcU5Ozub/2lsXl7ewIED16xZk56eHhUVNXbsWHtvAwDAq8juf0k4e/bsiIgI87vkHD16tFGjRs2aNSOETJkyxdfXV6vV2uTjQgAAXid2P4Jmf1hDUlISc2Nvd3d3Dw8PejMaAAAwVwn34lCpVOb3t3V2dub8AMDdu3ez77KflJRUq1Yt+24fAAA/VEKDdnFxMf8g6oKCAs4bMHJ+zvTEiRM5P8oPAOD1Uwkxuzp16jCfsf3s2bPCwsKyfjgQAIAjqIQGHRMTk5iYeOLECb1eP3/+/Li4OB5+ViMAQKWzb4POysqSy+VyudxgMAQEBMjl8vT0dIVCsXXr1rFjx/r6+j558oR+QAkAAFiw76Grt7c3vXu6hZiYGLt+djUAwGsAf+oNAMBTaNAAADyFBg0AwFNo0AAAPIUGDQDAU2jQAAA8hQYNAMBTaNAAADyFBg0AwFNo0AAAPIUGDQDAU2jQAAA8hQYNAMBTaNAAADyFBg0AwFP4KBOA15xBo1c/V5tMJkJIzt1cf3//ktc36Y3MslFvsvn2eHt7Zz5Md/JxIoQUKXVyudzmD1EmkZGRW9ZtLsorMhqMUoU0WBzi4uJSuZvEQIMGeM3tXbvv/eHd85LzCSFt2rSZ/N3kktf/sPvIPVv+V5SvI4ToCnXrv5xi2+1ZvHhxeLuGdHvca7r9fehcyeu3bNly1aGVci8ZIUQkE3do0KHcD20y/vt+YzQUL/fs2XP37t07f9ip1+hd/FziD8eLRKJyP4RtoUEDvErkcrk6U618rNTkaIViYU5Srs/bPoQQiUSizS/KuZOrzlILhILClMJqjarRH9Hr9UQgoMtGo5EeShNC6rjXyX+sNOmMhJD8x8oWga1pfebMmRuDN6anpxNCoqOjO3bsSOsmvZGYCBEQQojR7Ci7Ro0aN85cp3V9gb5DZPH6VapUeXAxWZujIYTIPGQhVWvTurOzs+lFczQaTK6urnS5efPm2w5tEbuICSEiqahhjQhaHz9+/Pbt28/vOE8IqVat2okbJ2ndzc3tzsNbRXlaQojERWLQGmhdKBTq1frijTMRg6Z4OTY2dvOYX4mAEBNxq+kWUz+GfhpqTk7O/fv3nao4GbQGtyDFwYMHIyIiyvfq2BwaNMCrxNnZ+dfvN/cb00/5WClxkXSI7jBq1ChCiEgkOrzpcIe4DoWphUKJsMM7HcaOHUt/pNeouLenNTIZjISQ7MScb7/9dsaMGYSQZcuWRfdoo3xcQAhp0aLF9OPT6fqzZs1yb6OQ58oIIXfVSYcOHerSpQshZFzf8b/+8os6Q0MIEUqES8cto+svXbq0UaNG9+/fJ4TUr19/7j9zaX3VqlWNGzem9ZCQkD8urqT1SZMmvTmsrsRFQggx6k1jx47dt28fIWT69Om7o3ZfvXqVEFK9evUfb/xI109ISLhXeM892J0IiNHXuHv37uHDhxNC5s6d27Fjx78unCGEKKorDm85TNcfO3Zsq14t1RkaIiAetd0nDpxE6y1atGgc0OTwkcMmg6ngWeGXp76k9eXLlxta66KbtyKEEBNZMn3JpEmTnJ2dbfvClc9r3qBFIpFerWS+1KuV/Dl5qWAGg4G8OP4xGQ02H18oFKpMRnrZ2UiI1sQ9d8mUBQJBkdkqRVbWrzBhYWGrNWo9ISkGfbBYfK5I+1n16oQQkUhUaPr3aLHQZKqwXchovmz29Jw4ccKlqrMmWyNxFmdlZaWnp9Np5e3bt3vUdjcZTUKJ4MLD83fv3g0LCyOEiORiJ5/ieV6D1pielE6Xs7KyRLLi30Wn02k0GjodvOHg+hYLmtG6Jkvz66+/0gY9ffr0VdVX0SPrRo0a9ezZk65z6dKlPNc8Z19nQkgqSb1x40ajRo0IIYcPHy7wUjoXOBNCCjyVR44c+eCDDwghT58+9Yn1YX6dvCN5dOHy5ctPdI/pOEW+mgMHDvTv358Q8vXXX4ePru/i50IIMRpMUz7/lDborKyspJwk+rNSheTBgwctW7YkhISGhob7Rpy4eYJ+q9eaXnRh/fr1tyW36g4IMxlNLn4uI0eOjI+PFwgEWq1W5iUr3hoBkblL9foXB+CV7TVv0C1btmzq98OfP09WPrnp4lerRYNg5nyNbwyaQoNObTIYCCE6ZZbUU/ofP2DW0Uzk32WtVmvUFwnFUkKIXlPAdJOuXbt+u/UHVXoyIUTuXe2b8f1LHr5KlSrXHl03GY2EEJHMyfO/ruRMmDBhyt699B2gmkjcd948Wo+Ojl6/639VRCJCyBsioV+XzrQ+aNCgqevWuwgFAkJqiMRvDxtG63Xr1v1NrT6n1RoICRaLtW9FSCQSQohAIFCb/cpqk0koLCmD5ObmlqjTpUikemJyEQgfGvT0yk94ePgUlSrHaHxuMISIxVd0RYGBgYSQyMjI6GlTf5o3/6lBX1MsnrFmTUBAACGkffv2iyLCp1y6/NSgrymWPIpq9H2LFiU8rre3d0JR0aWiolSDwUsovKzTNq5ShRBStWrV6zpdoq4oy2hyFQj+0mrGhYQQQlxdXe/p9Ul6fbrB4CwQJOp0UV5ehBBfX19l82bfnL9wTVfkIRRlGAyr3n2XEJKbm/vr8U3NvmpCHy7tQvq6detmzpyp1Wq3/LmlxfymtJ51I2vDhg0LFy4sYVN7j+nd+IsooUhICMlOzJk3b953331HCBGI/31iBSIBszxnzhy3Vgp5vowQ8tyQvmPHjj59+tB61GeREmcxIUSTpZk5c+ahQ4cIIWvXro36LFIoFhJCjDrjT8t/og3amrlz50ZOjJB7ywkhhiLDyqUraYPW6/USVwldRygSCKXFu/TXX3/dcOSbzlWdCSECsWDcjLEDBw4khCxevDg9KLXRlLcIITJ32YgRI86cOUMIuXnzZrVW/u7BbvTHz/1xwWAw0FkO3uL1xr08kUhUv379o2evEUKMOm1oaKhUWtz4jIZ/3yRNRoNAIOAe4t+VOGpisVivyme+1KuVYrFnCWOIxeJ6vrKs22fUWc8EQqFelV9vaPEVjxXfzBg7c4by8Q1CSJMmTabt3fti2/49kDKZHcrFtos6dnobbbhiJ8Woj3vQ+qRJk4ZPmZH/8BohRBFY76f//UzrH3300Q8//FCYmkII8XUyDBgwgNadnZ2z0pJNJgMhRCAUMY34xx9/bNu27Y0bNwghcu+AQ5fimfU12SlimTMhRCCSinU6Wm/SpIkxKor+T6ha1XP1Rx/R+uDBgzdv3rzu+HFCiL+//9XVq2m9cePGb3TrumvXLkKIn5/fldmzaX3o0KF79+7dcPBgkclUTSQ69NNPtBEPGTKkz9cLfi0sVJuM9STSarE93d3dCSERERHr1SqjiahNJh+hMDUi3NvbmxAyYMCAnnv29Dh06JnBECGRDlr4TbVq1QghUVFRzSdPWr1wYarBECQWL96xg65///79wwsWtJXJHhpEb0qka9eu7d69u5eXl1wuHzBgwPyzfz826B/rDfM//JDZhTjVqVOny/x5n02bfkevCxKLu40e3a5dO0JI1apVR69ZPW7Eh7f1ukCRqMeYMW3atKHPydBlS8eOHXtTp/MTiVrFxvbr148QIpFIvvjii6ExHR4Z9J5CYdzw4XRi1Gg00skBSuIiMeqMhBCTySSW/XtoL5KLTfn/cVIikolk7sVHjooartnns0te/6e9q1p8XXxkrSvQbdmyhTZooVBIuzMhROYpU2u1dFkoFApf9HqhRFjyGyqhjVhR/KuJpKKSn2e6vtRDxvRukbx4G5KTk6tEVnGtVpzEOLv9fMnj8Nlr3qAvX768cvepkB5TdIV5YifFjvgDsadORUdHN2zYsI48O/HgD4Wp9+WeVUPd9e+88yUhxNvbuzA9ueBpYlF+lkjukv/wekBAa0KIv79/mGvhozM7ClPvSZw9NNlPW09dRwh54403PuzZbu3mz/OSL0tcPN4OrzdixG8vHtz8v0fxskAgWLt2baMW7bR5zwVC8XtdOtGTNUKIn5+foUhNl8ViMXPlpF+nFr8dX1+Ydo8QIpI6z/12Gq0vXrw4NDQ0OzOTEBIeHj5ixAhaj4iIKFJm0uWanuJatWrR5VGjRjk1GRCYn0kIIc7uEydOXLVqFSHkxx9/bNDsHdXzh4QQ5ypBe88ep+snJiY+yidiuSshRKrwuXz5co0aNQghCxcurN88pjD1HiHEpWqtI7uK3wDWrl375rXrbdzcCSFuGu0nn3yyadMmQkhCQkLBX6cbSKQCQsJy89auXfv5558TQo4ePao5eLC/swshJFilGjdu3I4dOwghf//9d+7Ro/UlEr2JNJZJ58+fv3PnTkJIjRo1IoYO2bxmTaHJ9ECvP/pl8QTiu+++u2fAgInr1mUbjSFi8c8LFzo5ORFCjEajRqOh77oSAcnPL34fvXPnzrHvvusid0ozGsLEksWLF8fExCgUigsXLsQ6uQx4ka/6JuHG7du3mzdv/vTp07Vjx05SuD03GqqKREuGDYuJialSpYq1XU6v1586dcpfJEozGt4QCq9evVpQUEBfzatXr7oLhYQQqUBw584dg8FAz28uXrzoJRQSQiSEpKSk5Ofnu7u7q1Sq6dOnT3Jzu6PTuQuFtzZvOdKzZ+We/wlE3EfWYD+veYPOzc119q3p7BtMv3T2Dc7JySGEODk5DRs2bOTEzzVZT/Wq/Ji4j3x9fQkh/v7+y7/69ONPZ6ozHkndqwzvF9u5c2e6/pw5c7rEDdDkpEpcPMZ8OCQyMpKO+fbbb6/8dQ8hxGQy+vj4eHh4EEIUCkXjIPfE+O2FafdFYplOnffuhiV0/UWLFnmGNVM+SRQIRf9348nFixfffvttQkjPIWNCe8/Uq/MJIc9z0+fNm0fPT2fOnLm/UaO8tDRCSLNmzehsICFk7NixzpGxVTKfEELSpfLly5d/8sknhJCPP/64Vo+pek0hIaTIZJw0adLGjRsJISkpKT6tBzHPzO2/vqELGRkZQknxYZRQIktPTw8JCSGEzJ07N7TPLLGTghBi1BctXrywR48e7GeYOfM4fvz4dFfXN4TFB3FxO3aSTZsIIT/88MNcd4+6EgkhxERI1zlzaIPev3//BIVbmLj48Cd23366sHfv3ikK98gXR099DxzQarUymSw+Pv7hL5s+dlWoTaaaYvEnn3xy7NgxoVBYUFCQkJAQKBK5CoR1JJJ9+/a1atWKELJp06Ym584vreJrNBGJQPDhgm+GDRsWGBgYHx/f39k17sUloJxr1+/fv8++as+0n0uXLnWROzPrP9Hrr1+/3r59e/ZTQV28ePGNk6d+8i6eY1159drhw4d79+599+7dWz+t3u3zBq0vOfv37t27e/fuff/+/bStW7d5F9e33bi5ZcuW0aNHZ2dnV7ueEOvpRZwIIeSkVnPt2jXeTtCBnbzmDdqaZ8+ejflyYWDbwZqcVKmr1487jnbp0qVx48ZGo3H//v1y72o6ZZbExePatWvZ2dleXl4qlWrGjBlVm/RQPX8odlZsPBj/wQcXGjdunJeXN3zyrFqx04rys4RiyZXHN9etWzdy5EihULhw4cImbTpo856LJPK+vWPp5QudTrfvr6t1By2im1Hw7Pb27dtpgxbJnGUevjIPX0KIUCLPz79E1xkxYoRz0wH+GY8JIY9FkqVLl06YMIEQ8tuZBGYcvSr///5vJ23QBoPBxT+U1o06bca1MyU/FZ9//nlo39kCkYQQYtLrvvjii5MnTxJCjEYjPXwmhAjFUjoRTAiZOnVqza4TxDIXQohAJJk6dWp8fPHsh+DftsbEuojRaHQVCl6sQJzMppLMj8GEZl+YH5yJyL9vACNcXJvJit9L/jz7d15enqen57p163rfutPrDV9a77di5fOpU6tUqaJSqQLFYoVASAcIEInUarXFthE7/Cmt0WhUmJ3LKwRCo9FICCksLAw0u7pYXSQuKCgghBgMBg/Bv+u7C4Uag+0v4cIrykEb9NOnTxWBb3rVa0W/NBp0d+/ebdy48a1bt04nF4T2nknrqZcP79mzZ8SIEampqXfViuD23Wg95/bZs2fPNm7cWKVSyTyqOvlUd/KpTggx6rSZmZmEEL1eP3bsWL+WfVSp94US2ZFrKUxWSSD89zk3X7bmzK1ndQeNp8tFec+vXDlus2eBEFI8p1nSvLkFlUolD64mkjrRL5nGXQE4LxNotdpqZqfePkJhUVFRhW0SgF05aIO2xmg0Mq2HECKSOhmNxhLWt6awsPDGc31o2+LpCOXjm+fOnWNmJwAASgM3SwIA4Ck0aAAAnkKDBgDgKTRoAACeQoMGAOApNGgAAJ5CgwYA4Ck0aAAAnkKDBgDgKTRoAACeQoMGAOApNGgAAJ5CgwYA4Ck0aAAAnkKDBgDgKTRoAACeQoMGAOApNGgAAJ5CgwYA4Ck0aAAAnkKDBgDgKTRoAACeQoMGAOApNGgAAJ5CgwYA4Ck0aAAAnkKDBgDgKTRoAACeQoMGAOApNGgAAJ5CgwYA4Ck0aAAAnkKDBgDgKTRoAACeQoMGAOApNGgAAJ5CgwYA4Ck0aAAAnkKDBgDgKTRoAACeQoMGAOApNGgAAJ5CgwYA4Ck0aAAAnkKDBgDgKTRoAACeQoMGAOApNGgAAJ6qhAat1WoFAoH8hd69e1f8NgAA8J+44h8yJyfHx8cnIyOj4h8aAOAVUglH0Hl5ee7u7hX/uAAAr5ZKOILOzc1VqVTt2rW7ceNGeHj4ihUrQkND2avdu3fvypUrFsW7d++KRKIK2UwAgEpWCUfQCoWia9euK1eufPz4cVRUVFxcHOdqhYWFOSweHh41a9as4A0GAKgUlXAEXa9evdWrV9Plr776asmSJSkpKf7+/harhYeHh4eHWxQ9PDwyMzMrYisBACpbJRxBp6amJiYm0mWj0WgwGKRSacVvBgAAz1VCg7569WqnTp0ePnxoMBjmzZsXFRXl4+NT8ZsBAMBzlTDF0alTp1GjRrVs2VKj0URFRW3fvr3itwEAgP8qoUETQqZNmzZt2rRKeWgAgFcF/tQbAICn0KABAHgKDRoAgKfQoAEAeAoNGgCAp9CgAQB4Cg0aAICn0KABAHgKDRoAgKfQoAEAeAoNGgCAp9CgAQB4Cg0aAICn0KABAHgKDRoAgKfQoAEAeAoNGgCAp9CgAQB4Cg0aAICn0KABAHgKDRoAgKfQoAEAeEpc2RsAwAtisXirqjC+SEO/vKPTDRDjfwdUMuyCAIQQEhsb2759e/OKp6dnZW0MAIUpDgBCCBEKhZ6enp6enr/88gtdqOwtAnCAI+giZXZh6l29Kl/s7FaUn1nZmwN8t3///gkTJlT2VpRE9Vz16OhjdabGyVtemFpIIorr6iz1o6OPVelqJx+5JktDgit1KwnR6XS3fr2jzdMKBAKpm9TP4G/zh3h+6blILtIV6GWeUl2h7j/XTz2XlnMnR5OjcfJxUmdpbL49NveaN+g6deoMbV+fkKfbj27v27cvaR0SHh5e2RtVOYKDgx+f/S4tLU0ikXh7e9dr2LCyt4ibRCJZkJ/nIhCmGQyBYtEdvU4otOV5npOT0yKl8n+qwsd6Q3Wx6IFeP1kut+H4Mplsn0p1pUj7xGAIFIlSDYZvSxxfIpGc1mo/zsl6qNcHicWpBsMIiYQQIhQKr+iKpubmPDLoq4vEqQZDJ6GQEOLh4bFs1o8ajWbt2rV9Gvdxe8stOjqaECKXyzf/uEWr1a5atSq2XWyVKlUiIiJKeNwKsHnz5qysrAMHDohEoi5dunh7e9t2/FGjRiUkJCQnJ1+/c/39t993+9qt5PVHjhzZLKFZamrqgQMHPur1kfRdqZj3lxn4vn0vyd/f/5tvviGEJCQk0AWHtX79ekLIunXrvLy8evbsWZofKUy9SwQCuizR6+24cWZmz55d8Omnz549W7x48ZIlS8RisUQiseH4/fr169evHyGkS5cuhw4dYq/g7Oz8MuNHRUU90utKGN9CzZo1r2VmmEymDz74YOOWLUKh0M3NjRDi7++///LloqKiqVOnjp4zRy6Xh4WFEUKEQuGgQYMIIfHx8UOHDjXvet26dSOEHD9+vHv37gEBAS/zW9hEUFBQUFBQYmKiWCxu1KiRzcdv1qxZs2bN/vnnH5lMNnLkyP9cv06dOnXq1Hn48OGdO3d69epl8+2xh9e8QTP2799v/qWbm1te8uXC1Lv0S4NW7T2mIyHE3d3dX/9EcfY7WhcUFFSt2pzWI3yMphd1BSG1a08ghMhkssKUu7c3T38xjsqzxXhCiFQqDXLWMONINBr/xv0IIUKhUJ3xyGx9tdOQWLqszUl7cHBZcV1TIIyuT5eL8jKY9Y36oqh3m9NlXWEuUzcZ9HVaFh8R5+fn32fqRmO1iJrmv/jQoUMFL3pu8WMZDHf/N5/5sq6nkS4MGTLk5s2bTL1Gv350QSQSPTqySiAs3nP8jbnEpiQSCZ0CXrt2rV0PcCx2if+s22p8Ng8PD0LIwYMHLX7fBg0aEEKOHDnC+Txs2LCBs75ixQpeHRj279/fruNHRUWV6VwhKCho6dKl9tse2+LRC2lXFrts3bp1C1LuslerXr36pUuX2HUfH5+jR4+y615eXuqsp+y6k5PT5cuX2XWRSKS1Mg9+/+ZlrVZr/oh0QZ2dwrm+6vkjzvqZM2fUajXzpYuLi8UGWKy/d+/evLw85ksvLy+6MHDgQM7xN27cmJ2dzXzp7u7OudrLs3eXsTa+rR63rOOUdXvsvf22YtsZKk62eqp5yFFSHD/88INN6suWLTMajez6ypUrzdsrY+3atQUFDfePbwAAFxlJREFUBez6pk2bzNscIaRatWrBwcEXLlxwdnYODg6m57mMPXv2PH78mD3OwYMH7979/95p5HK5p6fnP//88+zZM09PT6lUav7dv/76y+Kdw9vbOzg4+Pnz5+np6cHBwfRojnHlypVTp06ZVzw8PIKDgzUazb1794KDg20+sUjl5uZu3LjRHiMzyvrS22p8a5YuXWoymdj1FStW6HQcl7/WrFmjUqnY9Z9//jk318anNS/j7Nmz58+ft9/4jx8/3rNnT+nXz87O3rRpk/22x7YcpUGX9XzWWv3QoUN6rtnYY8eOmR+3Mk6dOpWfn8+ux8fHZ2Vlsevnzp1LT09n12nDZdevXLnC2bivX7/+4MEDdv3mzZsWDZ26c+fO7du32fV79+6ZT3QwHjx4cO3aNXbdVrKzs0+fPv2Sg1wqKjqoVq8qUB5Uqx8bLF81/kxxUL/99hvne/8ff/yh0XDkDU6cOKFUKtn106dP5+TklOmh7er27dt37tyx3/jPnj37559/zCthYWFktzDr29ybk2+rVxS9VfUt8+9mZWXFx8fbb3ts65U51Acok86dO8tkMqPRuGfZsgkTJgwUCKpXr17ZGwUVYeLEiRMnTrx27drPP/9sq/OhyuIoDdrapfmy1uVyOeecmlTKHdmxVpdIJJzhhLLWpVKpTcaRSCSch28lrG8xeWJb1h639EJCQkJCQgwGw+HDhzkv8Zf1pS+rso7j5ORkcf2Wkslk7CsHpOy7VmWRSCR2nfO11X8lfnKUBm2rKY7du3dz7m1btmzhrFuLIixdupSzvmDBAs76jBkzOOuTJ0/mrI8ZM4bzjYSd4qD69u3LLhJCunfvztm4Y2Ji2rVrx/kjNhEYGLh8+fKXH0ckElmboOTbFMfevXs5X7Jt27YhxVECaymOevXqLViwgF1HioOP7H2JnG91zmOuEurWLrULBALOHxEIBJWVsrDVOEhxVIxKTHG8Kk9RCRzlIiH/UxzU9u3b09LS2PXSpzioY8eO3bhxg11npzioc+fO/f333+w6O8VBJSYmcuYObcVWKQ6TyWTtcAkpjopRWSmOtLS07du3s+tIcfARUhyUQ6U4CCEGg+HgwYOc3+LbFAdSHOXDTnFQ6enp586dY9dfrRSHozRoAIBXziszF/OSkOL4z/prluKgBAKBk5MT57eQ4qgYSHG8DEdp0EhxUEhxMPg2xYEUR/kgxfE64FvKAimO/4QUh23rlQUpjpfhKHPQSHFQSHEwkOKoGEhxvAxHadBIcVBIcTD4NsWBFEf5vN4pjlfmUB+Ah/bs2XP37t2aNWv27t27srcFXkemV8qOHTtWrFhRph8xGAz9+/f38/Pr06ePSqUy/9aQIUP8/Px69+6dl5dnXh85cqSfn1+vXr0yMjLM6+PGjfP394+Li3v69Kl5/dNPPw0MDOzRo0dycrJ5/YsvvggKCurWrdutW7fM63PmzAkJCencufPVq1fN6998801YWNi777574cIF8/r3339fr1699u3bnz592ry+YsWKBg0aREdHHz9+3Ly+bt26iIiIVq1aHTp0yLz+66+/RkVFNW/efO/eveb1nTt3NmnSpHHjxtu3bzev79+/v3nz5o0aNfrll1/M67///nvr1q0jIiLWrl3LFPv37x8llVYRibyEwvoSSahYQusffvhhI6nUVyTyFArrSSQ1xGJaHz9+fCOptKpI5CkU1pFI/EQiZqjr16936dIlODh41qxZTHHevHkRUqmfSOQhFNYSi/1Eovz8fJPJtGTJkgiJ1E8kchcKg8XiAJEoNTWV/khKSkpcXJy/v/8nn3xivv2ZmZm9e/f28/P78MMPzev5+fm0PnjwYKZ46NChuhKJv0jkLhRWE4nCxJJTp06ZTKbk5OTY2Fg6QS8Sid5///3bt28zPzVo0CC6a9GNNJlMN27cqCkWVxeJ3YVCf5GogUS6adMmZv0xY8b4+fnFxcWlpKSYb9LEiRMDAgJ69uz58OFD8/r06dNr1KjRvXv3O3fumNdnzZoVHBz83nvvXb9+nSnKveWKGgqpQiL3knuGeUyYMIHWnX2d3YLcpAqp3EvmGeY5cuRIWncNcHUPdpO6SeWeMq86ngMGDKB1t5pu7iHuUjepzFPmWcezZ8+etN6kSROP2h4yd6nMQ+ZZx7Njx47MQ2/btq1x48ZNmjTZuXMnU2zfvr1XHU+Zh0zmLvWo7dGsWTNa79atG61L3aUetdwjIyNpvW/fvl51PGWeMqmb1D3YXVFdwQx1+vTp9u3b16tX7/vvvzd/Hs6fP//uu++GhYUtXLjQvH716tXOnTuHhITMmTOHKc6ePduztofcWy5xlbgGuMq95QUFBaZSGz58+L1790q/fpkITFzTXry1c+fOzMzM0aNHl+mn8vPztVqtVCq1uLu8UqnUaDTsekFBgVqtlkgkFjdHpnWxWGzxkc+FhYUqlYpdV6lUhYWFYrHYw8PDPDvB1N3d3c0voajV6oKCAnZdo9EolUqxWOzm5mZ+yY6pKxQK8+seWq1WqVTSD08yrxcVFeXn5wsEAjc3N/OkUVFRET1ZVigU5uE5nU6nVCqNRqObm5t5Xa/X5+fnGwwGNzc3mUzGPGh+fn5BQYFer1coFAqFgn5WAH1QpVJJ666urq6ursyD5ufn6/V6WlQoFHQoo9GYl5en1+tdXFyYsBp9UKbu6upKb5mt1+uVSmVubq5er3d2dnZ1dTV/NXNycvR6vZOTE31QRm5urk6nY9fz8vKKiorkcjmzMSaTKTc3Nz8/v6ioSCaTKRQK5lXOycmZNGnSuXPnIiMjly9fbv4qc+5aubm5tC6RSNzd3c1fZbvuWkqlsqCggO5abm5uzKtcUFBAv0V3IeZVLiwsVCqVdNeizzN9lZm6SCSiL7FcLqcPSl96oVBI15e/+BhGzl1LrVbTcUwmEx2Hvsp0f6a7HB2H1q3tWoQQg8FAdyFmYyx2IVdXV/OcJeeuRfdz9q5VSiNGjJg+fXpISEjpf6T0HKJBAwDYiV0btKNcJAQAeOWgQQMA8BQaNAAAT6FBAwDwFBo0AABPoUEDAPAUGjQAAE+hQQMA8BQaNAAAT6FBAwDw1Ct2Nzt3d/evv/567969Zf3BCxcucN6lW6VScX40kbW6Wq3m/AilEupyuZz9ISYajUYmk3HWpVIp+x7nWq1WLBaz751vrV5UVCQUCtm/sk6n47zXPr3jMPujgPR6vclk4qwbjUb2p14ZDAa9Xs/coINhNBp1Oh1nnd77wqJuMpm0Wi1nXaPRlPUl4KyX9aW3d70Sdy2JRFL6Xa4Sdy2DwVCmXa6su5ZYLA4PDydl9OTJE2sfq2YDdroJE99ER0fbpN6hQwetVsuuv//++zk5Oex6v379nj17xq5/+OGHSUlJ7Pr48eMtbnFHTZ8+/ezZs+z6V199ZXErO+q77747cOAAu75y5UqLW9ZRGzdu3LBhA7u+c+fO5cuXs+sHDx5ctGgRu37y5EnzW9Axzp8//9lnn7HrCQkJFreao+7fvz9s2DB2PTU1tW/fvux6Xl5et27d2HWdTte+fXt23WS7XcJW9XfeeYf2LAtdu3Zlbolnrk+fPmlpaez60KFDLe6qSH3yyScJCQns+meffXb+/Hl2fdasWSdPnmTXFy5caHGXROrHH3/ctWsXu75+/XqLuyFS27ZtW7VqFbu+f//+xYsXs+vHjh2bO3cuu3727Nnp06ez61evXh0/fjy7npSUZHEXQ+rp06f9+/dn1ysXpjgAAHgKDRoAgKfQoAEAeAoNGgCAp9CgAQB46hWL2ZUbZ8auHHWRSMQOMBFChEIhO6hUAXWRSMQOQpWvzvl72Wr8ynp+BAIB5/YQ2+0SNqy/rruWXev2fh4q1yv2kVflplQqmU+Z43O9oKDAxcWF/R+1sLDQ2dmZXVepVHK5nL1j0c9UZPcCjUYjEonY4dOioiJCCDtkqtPpDAYDOzSq1+vpZ/pZ1I1Go1qtZj4yjmEymVQqFbtOCCkoKLD4YECKby/Nq1639jxb27UKCwudnJw4dy2pVMruldZ2La1WKxAIOHcto9HIzi9b27UMBoNWq2VHyK3tWiaTqbCw0Ca7ViVylAYNAPDK4d0hPQAAUGjQAAA8hQYNAMBTaNAAADyFBg0AwFOO2KDT09NLs5rJZKJ3CyvlsM+ePcvMzCz9ZhiNxqdPn+r1+pJX02q1SUlJV69evXfv3n+uzCkrK6v0Kx88eLBMI+fl5ZV9i8qwSSVvT5l+NXO5ublpaWlqtbp8P86TXYhv21PKXZpU7F5dMbu0vVTSXfQqk0wm46zfuXOnffv21atXHz9+fGZmZoMGDYRCoa+vb3x8POf6vXr1ogu3bt168803aTi0WbNmjx494lw/KSmpbdu2vr6+AwYMuHfvXu3ataVSqY+Pz19//cW5fkpKSmxsrEwm8/X1rVmz5htvvOHs7DxkyJDs7GzO9W/dutW2bduAgIAPPvjA/B6n1n5f+iMWfHx86ALn+pcvXx40aJDJZLp582b9+vWlUqlEInn77bc5b51ajk0q6/YQQtq1a8d5F01OOTk5H330kbe3N3nxhwl169ZdtGgR530+S1BZuxDftqesu7TJ/nu1vXfpCvY6N+gMK6y9tNHR0VOmTPn7778HDx7cqlWrJUuW6HS6jRs3Nm7cmHN9Zpzo6OgvvvhCp9Op1erPP/+8S5cunOu3bdv2+++/T0hI+OqrrwICAujNc48cOWJt/Pbt20+bNi03N5eppKenjxo1qnv37pzrt2jRYsaMGZcvX164cGFISMjdu3cttpONEOLr6/umGbFYTBc412/YsOHPP/9Mf5clS5bo9Xq9Xv/999+3adPGJptU1u2RyWTHjh1r0KBBv379rly5Yu3XZHTt2rVfv36JiYnPnj2bNGnS6tWrz5071759+zFjxnCuz7ddiG/bU9Zd2mT/vdreu3QFe50bNP0zXzZr5w3u7u70SCo7O5sQolarTSaT0Wj09PTkXJ/ZRd544w2NRkOXdTqdj48P5/q1atWiCxZjMnULnp6e7CM7rVbr7e3Nub5CoTAYDHT5999/DwsLS01NNZXYoE+ePBkRETFz5kz6y5pMJl9fX2srm0wmFxcXnU5nMplq1Ph/7d1fSFPvHwfwM5ysyP1xOtwfc9WkRIWkmjc1Sm0miOhFN/2h8qabCgtDCKq7LoIyAi8TFCkwSpQ0CiXC/iJIJSMmITprYZhydAaDffP8Lg4/GV+32Xn6nmefbe/X1bR3O5/n2eNztrPnnONcXV2N2Zy/KUlpPfLzyJNOaWlpaWlpW1tbV1fXs2fPYuZzcnKiXyn5j3Z5edlsNsfMUxtC1OpROqQl9Ue12kOas3Q+Bt3a2nrt2rV/1ll/dqnMbDb7/X5BEHJzcy9fviyf3zw1NZWbm5t4Q2VlZbOzs/LjQCAQ7/43Op0uEAgIgvDhw4dQKCQ/np+fj3cFgIKCgrdv3/7rl6Ojo3a7PWbebre/e/dOflxXV3f9+vXa2tqZmZkElR86dOj9+/cajcbtdo+MjCRIytxu9927dyVJOnz48MuXL+VfdnZ2ulyu/6QkpfXItFrt6dOnfT5fd3e3Tqd7/PjxlStXYiatVuvnz5/lx+Pj4/L5zaIorj+XXUZtCFGrR+mQFtQf1WoPad6SvYdQUSQSaWxsXP/JN96+t6enJy8vL/rN18jIiN1ub29vj5kXBCE/P9/lctlstrNnz0qS5PP5CgsLb968GTPf29trMpnKy8utVmtPT8/27duPHz/udDrj5Z8+fZqXl1dTU3PhwoW2trZz585VV1dbLJbh4eGY+b6+PoPBEH3bob6+vsLCQo1GEzMfbXJysrq6+uTJk/HeK8kCgYDH49m6dWtVVdXmzZsrKiqcTufOnTvjHQVmLukP60nw4SCm3t5eo9FYX19fX19vMBgePXokSVJxcfGdO3di5qkNIWr1KB3SEsdRrdKQ5iwTr8WxsLAgf0203uTkpE6n27Ztm/zjx48f5+bm6urqYobD4bAoiktLS6Io6vX60tLS79+/T0xMxMsLghAMBqempioqKgwGw8TExIsXL8rKyrxeb7z80tLS8+fPv3z5Il8OpqSkxOv1Jriey7dv3zQajcPhWPvN4uLiwMBAc3NzvP8Srbu7u7+/f8N78k5PT3/69EkURaPR6HQ6KyoqErxj+puSNqynq6vrzJkzGz5PtJmZmdHRUY1Gc/DgwaKiIkEQ5ubmrFaroidJ4hCiVo/SIS3wHdVqDGmeMmiCDgaDOp0uPz8/RfMLCwtardZoNKqU57AJal1K7SXItP4U6HUpw1+NupL9Fl5FStcMUcsrXQDEsGBI7U1Q61JqL0Gm9SdDk6nlOUvnCVrpmiFqeaULgBgWDKm9CWpdSu0lyLT+ZGgytTxnGTFB/+GaIWp5pQuAGBYMqb0Jal1K7SXItP6U6HUpltkl3x+uGaKWV7oAiGHBEIdNyIh0qdK82v2Taf0p0OtSLLNLGkHhmiFqeaULgBgWDKm9CWpdSu0lyLT+5NBFHP5qeErnVRxK1wxRy8uULgBiWDCk3iaodSnNlyDT+lNRk2nmuUnnCXqNKIrhcNhoNG74SS0z8wRLQj698wRLYmgCD8l+C68ipZcuy7Q8wZKQT+88wZL+qwscqkTLcV/A26lTp/R6/atXr4xG4+3bt3ft2rV79+6rV68GAoGOjg7kCZaEfHrnCZbE0ASukr2HUJHSS5dlWp5gScind55gSQxN4InEgXCVKL10WablCZaEfHrnCZbE0ASukr2HUJHSS5dlWp5gScind55gSQxN4CnNV3EovXRZpuUJloT8hvn79+8XFRVF52dnZysrK1MiT7Akhibwk+w9BKS/jo6OtZtiSJK0srJy6dIl5Jnz/7p7UygUMplMKZQnWBJDE/hI52PQQMTAwMCBAwd8Pp8gCENDQ+Xl5cvLy8gz5Lu6uuRjppuiGI1Gt9udEnmCJTE0gatk7yEgI/T395eUlHg8nsrKyrGxMeSZ86urq01NTdF3jI2+ASv9PMGSGJrATTqvgwY6Nm3apNVqf//+Lb9DQZ45r9Fo5PuDRCKRnz9/2my2xM9MLU+wJIYm8JPsPQSkv4aGhj179oyPj0uSNDg46HK5WlpakGfO//jxo6mpKTs7Wz5Oev78+Tdv3qRQnmBJDE3gAxM0qK6lpSX6xNmVlRWPx4M8c76qqurWrVuhUMjpdEqSNDY2tm/fvhTKEyyJoQl8YIIG1VH7Cj7V8zt27JAfyLOJJEnFxcUplCdYEkMT+MAqDlARta/gUz0vy8nJmZiYWPvR7/cnPmxNLU+wJIYmcJLsPQSkOWpfwad6XpKkJ0+emM1mr9e7ZcuWxsZGi8UyODiYQnmCJTE0gY80P5MQKAiHw+3t7a2trTqd7uvXrw8ePLh48aJOp0OeLS8IQjAYHBoaEkXRZrPV1tYWFBQkCBPMEyyJoQk8JHsPAenvxIkTDQ0Nv379kiRpcXHx6NGj8o3ukWfL19TUJPhX+nkOm+DQBD4wQYPqHA5H9CqFSCRis9mQZ84fO3bs4cOH0WeHJ0YtT7AkhibwgS8JQXVZWVnBYHDtR7/fn5WVhTxz3u/3Nzc36/V6h8NR+H8plCdYEkMT+MCZhKC6Gzdu7N27d//+/SaTaX5+/vXr1/fu3UOeOd/Z2ZmdnZ0gQDxPsCSGJvCBLwmBh+np6eHhYVEULRbLkSNH7HY78n+ThwyBCRoAgCgcgwYAIAoTNAAAUZigAQCIwgQNAEAUJmgAAKIwQQMAEIUJGgCAKEzQAABEYYIGACAKEzQAAFGYoAEAiMIEDQBAFCZoAACiMEEDABCFCRoAgChM0AAARGGCBgAgChM0AABRmKABAIjCBA0AQBQmaAAAojBBAwAQ9T/Y/kcuEwgPrQAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","source":["%%R\n","\n","## One cortex sample is weird: let's remove it!\n","dds <- dds[, colnames(dds) != \"ctx962\"]"],"metadata":{"id":"0YmnFa2CFTdM"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["%%R\n","\n","## Filter lowly expressed genes\n","## We keep only rows that have a count of at least 10 for a minimal number of samples\n","smallestGroupSize <- 3\n","keep <- rowSums(counts(dds) >= 10) >= smallestGroupSize\n","table(keep)\n","dds <- dds[keep, ]"],"metadata":{"id":"R4o13NYKFaNQ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["%%R\n","\n","## Update vst object\n","vst <- varianceStabilizingTransformation(dds, blind = TRUE)\n","boxplot(assay(vst),\n"," boxwex=0.6, notch=T, outline=FALSE, las=2, col=myPalette[dds$group])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":497},"id":"WNeAhmvFFcb5","executionInfo":{"status":"ok","timestamp":1718911113154,"user_tz":-120,"elapsed":7821,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"353b6e22-ca33-43ce-abfd-007e1138a954"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOzdeWAM5/8H8GeP7G7OzX0TSRAkJEEIEuKIn6NE3dRZRX1bddVZ1dS3qscXbamr1FFaQhDqKOrsFw0iJIggcSVy38du9vr9MbHmu0dMyO5Os+/XX5NnZ2eeZ5N8dmae985yVCoVAQAA9uGaugMAAKAbCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBQKNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsBTf1B2on4KCgrNnz5q6FwAAtbhc7uDBgy0sLAyx8X9YgT5z5kxCQkKPHj1M3REAAEII2blzZ0hIiL+/vyE2/g8r0ISQbt26TZs2zdS9AAAghJDExETDbRzXoAEAWAoFGgCApVCgAQBYCgUaAIClUKABAFgKBRoAgKVQoAEAWAoFGgCApVCgAQBYCgUaAICl/nkf9TZPJSUlmzdvvnfvXrt27WbNmmXq7gCAMRj8CFouly9YsIDL5RYUFKgb4+LiAgMDmzdvHh0dnZGRYeg+1Fd6evq2bds2bNhw48aNN9zUzJkzfXx8oqKibt68SW/fsGFDcHBwx44d9+zZw2Q7lpaW7du3v379evv27d+wSwDwT2HwI+jhw4eHhIRwuS/fCbKysqZPn56UlOTr67t69epp06adPn3a0N2ol+rq6mvXruXn57dt2/YNN7V27dqSkpKVK1d6e3vT22fMmKFUKl1dXUeMGMFkO0KhsE+fPg4ODpGRkW/YpXPnzu3du7e6unrw4MFDhw59w60BgOEY/Ag6NjY2NjaW3vLw4UNvb29fX19CSN++fVNTUw3dh/oKDg7u27dvly5dIiIiTN2XhhcYGNiiRQsnJ6fOnTubui8AUBeDF+iQkBCNluDg4Pz8/KSkJJVKdejQoejoaEP3wbQCAwNtbGy0293c3Jydneu1qZ9++km7ccGCBb179/7ggw9ycnLo7cuXL2/ZsmWXLl00TlBcXFz8/f29vb29vLzqtXcAMDITTBKKxeJVq1Z17tzZ1tbW2tr6/PnzOleLj4/fuHGjRuPDhw8DAwP/9a9/1WuPY8aMuXjxYuvWrbdv386wKoWHhwcGBtZrL/osWrRIZ/vw4cPru6nmzZtrN06ZMuXMmTNTp051cXGhty9btqy6ujomJiY8PFzjKRwOh8PhaDTevn37ww8/zMjIGDBgwIYNG+rbNwBoeCqj4PF4+fn51PKtW7eaNWv26NEjlUq1b9++gIAAhULBcDuzZ88eNWrUa3QgKipKu/HkyZOfffbZ999/n56e/hrbNL4TJ07obNc5OpVKtWjRosuXL2u3V1VVFRcXa7fn5uaOHDlSo1EikQwYMKBp06ZvvfVWZWVlPbsM0MhNmTLlwYMHBtq4CXLQf/75Z9euXX18fAghw4cPz8zMzM7ONn43CCHW1tY3b96sqKgQCAQaDxUVFT158qRB9jJv3jx6gkVt//799f1+xa+++kpnO4/H09nevHlznVdRLC0t7e3tGe5UKBQePXrUz8/vyJEjVlZWDJ8FAG/OBAU6MDDw0qVLhYWFhJBTp07Z2tq6u7sbeqc68xhdu3Zt1apVr169qHcLuosXL8bHxzfIrvPy8iQSiXZ7bm6uduE+d+5cUFCQl5fXJ598wnwX+/fv19k+ZcoUnVdFMjMzr1+/rt1uaWlZrws7ycnJe/fuPX36dEVFBfNnwT/RjRs3Zs2aNWbMmG3btpm6L2bEsNegCwsLqWu+CoWCypk9fvw4Ojp66tSp1IVRe3v7AwcO8PkGvxT+ww8/GHoXDSIqKmrnzp27d+9esWIF82cxPxym3Lp1KyMjo0OHDhrttra2y5Yt0/mUgIAA7cb//ve/GzZs6Nmzp5+fn86J0Ebp8uXLZ8+eFQgE0dHRwcHBpu6Okfj5+XXq1On48eNRUVEG2oVMJqPe6e3s7PSdFNJJpdKhQ4feu3evRYsW8fHxjfL0zrBH0E5OThKJRCKRqFQqasHNzY0QsmTJkvv379+/f//q1avdu3c3aB/qNnnyZOZh5zt37oSGhnp5eb333nvMd2HoFAch5Ndff9XZ/s033zRUilF7wpYQ8sEHH4SGhi5cuNDPz69B9vKPYGlpmZGRkZ2drX1lzNCoj1Bt3LjxzT9CdfDgwSVLlmzYsIHhBUaxWNy6dWs3NzcqIMvEpUuXdu/effr0aalUymT9o0ePxsTE9O7de+vWrUzWpy6+NWnS5Pjx4xrVefHixeHh4SNGjLh9+zbD3rKTudyL4/3339fZ3rJlS2tra+328PDwQYMGaTS2adPmjz/+iIiI2LJlC/NdL1q0SOcR7vDhw3v27Knd7uTkpO86g87rFUR/4S4uLtZ58UFnioMQUlpaOnv2bJ2bMkPr1q0bPXr0ggULND7sGhISEhoa2qVLl9atWxu5S9RHqM6cOVNZWcnwKWVlZfn5+aWlpRrtYrH4r7/+4nA4FhYWDDel88+mtLT022+/nTZt2vr16zUeunbt2meffXb9+vXy8nIm2x8yZMi8efPGjx8/bdo0hl3S55NPPvHx8YmNjTX+76hhmUuBvnfvns721NRUnX89bm5u+qqhNpVKde7cuV27dp09e1apVL5+LwkhhPj4+Lz77rs6H/rjjz/ecOOU6OjoSZMmabdLpdLnz5/rfMrcuXN1tk+YMKG+5wENYvny5YGBgd26dXvDj6FKpdKBAwe6ubn179+/qqqK/lBkZGRBQUH79u2p0z5DGDNmjI+PT//+/bOyspisX9+PUEml0unTpwcHB0+fPl1jdNTUy1tvvaWRznz48OGBAwcOHz789OlTja21a9dOOzMqFAr9/PwuXbqkfWT90UcfNWnSZOHChQb9C9F59GNjYyMQCMRiMf0zzISQ8vLy+/fvP3jwoLq62nBdakDmUqD12b17t86TIH0pDpFI1LRpU41GmUx29erV2NjYq1ev1tTUaDz6T09xUPSdU0dHR4tEonptqkEsW7Zs8ODBq1at6tOnz5tshzpNbtOmjfZpcnBwsIeHR0REhPY5VkxMDPNLsbm5uX379vX09NROvv/2229+fn7Hjx/XiOdfuXJl7dq1u3btesMokVAo/O233wICAvbs2cPwEu3Dhw937twZFxenvWsej6f95yQSiYYNG+bi4tK/f/836SrF19dX+5Lj7du3o6KivLy8ZsyYof2UgwcP6twUj8fTntyKj48fM2bMxIkTT548+ea9NQJzKdD1vauGvhSHnZ3dt99+q9EoEAjmz5/fpEmTBQsWaFereqU4CCFpaWn//ve/69VbU6U4CCHZ2dkqlapeTzGoffv2hYWFtWvXTmNaWKlUZmZm3rt3Lz8/v14b1HktyNvbW+PAkxAil8uLi4vz8vI0jlXd3NxOnjwZEBCg79ekrays7NixY6mpqdp/OTovvr2ehQsXenh4aDT27ds3Ojo6JiamW7duGg8VFhb++eef9drFxx9/XK/127Vrp/2OGxgYGBcXFxERUa/PT23evFk7HjZp0qTJkyfPnj07JiamXh0zFXMp0P+UFAchpKqqqqSkpF5PeY0Ux4ULF7Tb65viIIQsXLiQeYw9OTl59uzZ2lEtpVKZkZFx8+ZN7dPq+fPn6/wgOyHE3t5e+9h2xIgRS5cunTx58kcffURvT09PnzNnTt++fVetWqXdMZ2TAYSQb775xtPTU7s9MzNTuz9XrlwZPXp09+7dv//+e51b00nnC9u3b9+QkJAhQ4a0bNlS46F6XXyjDB48WGd7UFAQk7CE2uPHj48dO6bzoU2bNulsHzhwIPPtv54vv/xSZ7vxp3ANwVwKtD71SnEQQsrLyz///HOdD+k7WGjEKQ6K9hF0XFzcsGHDRo0apXHR3NfXNywsjMfjaVwfKCws/OabbwYOHLh27VqNTc2aNauysnLevHnaR6wLFy5k/rtr1arV5s2bw8PDdV4m0ve25OHhofMI+tixYxcvXtRojIiIWLly5cCBAxcvXqz9FO0P3FPqeGF1Kioq0n4bq9ucOXN0ticmJspkMu32qKiosLCweu1C+42E8ujRo3pt5/jx4z/++KN2u7W1dZcuXXQ+5dSpUzrbd+/erXOGPDQ0tFWrVvXqlQmZS4FukBQHIaS6uvrOnTs6N6XvYMEMUxzdu3dv3rx5+/btO3XqRG/XF9VycXHZuHFjixYtvvnmG41NeXt7W1pa+vn5MT/Wc3R0bKhpvVOnTum8PPUaVq5cWa/1x4wZozOBcPHiReaXSihyuVxn+9q1a3Nzc7XbAwMDmzVrpt2u78+GEKJvNkXfdLc+NTU12rM4hBBra+v6/mWeOHFC55lo165d3/w2wkZjLgXaoCkOSmZm5uv0TEsjSHG4u7s3bdrUz8/PwcFB46E6/sn10Veaf/755wcPHmi3R0ZGjh07Vrvd1tZW35uovhtX7dy5U+c8gT4eHh76jpT10ffCtmvXTiwWM9xIVVXV9evXT548qfPvvL7XWwsLC3X+U+hMcVCWL1+us90I8xP1vb4nl8vfPGplNOZSoPVpkBQHZcqUKTrbzTPFweVyNRJOlLZt2y5cuFDnpvR9/EffZ+7v379fr+ppaWk5YcIEnQ9RNx5gTl+Kw8PDQ983MIwfP15nu74X9sGDBxqTjXXIycnZsWPH7Nmzjx8/rv0o8+1Q9u7dq/NQQGeKo2HpTHEQQoqLi/UdtdQrxUEI2bp1a0JCwpt00pjMpUAbNMVB0XewYJ4pjokTJ7711lva7Xw+X/tqMuWdd97R2c78QJLy3//+V98Xiek8fa4b8xQHRedVXULIs2fP6rXfrVu33rp1S7td58U3Pz+/pUuXtm3btl7XAXSmOMiLO1xqt5sqxUEIkclkzD+bQ9GZ4iCEyOVyfdd8WMhcCjRSHHRGSHFYWVkJhULt9qKiojNnzujclPan3Si7d+/W2a4zxUEIKSgo0HmhprCwUOeFHdJAKQ5CSEpKytKlS3VuSh99L6w+SHFoQIqjMUOKg6F6pTgIIUlJSTqvhz569Ojo0aM6tzNs2DCd7fo+WF+vFAchRKFQKBQKnQ81SIqDECKTyfQdnRk6xWFvb6/vFAQpDjqkONgIKQ46I9yL4/LlyzrP0Ougr3rWl3mmOAQCgb4jZbalOK5evbphw4bdu3drn+ggxaHBXAo0Uhx0JrwXB1IcGhokxUHRedWFsC/FkZWVFRcXd+nSJX0XteqlQVIcd+/eXb58+YcffthQd4FvKOZSoPVBioMhpDjo2JbiIITk5+frO8ZkW4pjyJAh4eHh48eP177UYKoUh5OTk4uLS25ubn0PywzNXAo0Uhx0SHEw949IcRD90Ys6IMWh5urq2rlz56ZNm7LtGxjMpUAjxUGHFIcGpDiYaMAUx6hRoxpqpg4pjsYMKQ6GkOKgQ4pDQ31THCEhITqPKkyY4ggMDNS4wRYbmEuBRoqDDikOhpDioGvAe3E8efJE5y3zTZjiEAqF2l8ebXLmUqCR4qBDikMDUhx0RrgXx4YNG27evFmvXunTUPfiKCsr+/vvvxukSw3IXAq0PkhxMIQUBx1SHAZiwntxPHjwIC4urj6dNQZzKdBIcdAhxcEcUhxqjTjFwVrmUqCR4qBDikMDUhxMIMVhfOZSoPVBioMhpDjokOLQgBSHgZhLgUaKgw4pDoaQ4qBDisP4zKVAI8VBhxSHBqQ46JDiYA9zKdD6IMXBEFIcdEhxGAhSHBrMpUAjxUGHFAdzSHGoIcVhfOZSoJHioEOKQwNSHEwgxWF85lKg9UGKgyGkOOiQ4tCAFIeBmEuBRoqDDikOhpDioEOKw/jMpUAjxUGHFIcGpDjokOJgD3Mp0PogxcEQUhx0SHEYCFIcGsylQCPFQYcUB3NIcaghxWF85lKgkeKgQ4pDA1IcTCDFYXzmUqD1QYqDIaQ46JDi0IAUh4EYvEDL5fIFCxZwuVz66fyTJ0969uxpY2MTHBycnJxs6D4QpDj+F1IcDCHFQYcUh/EZvEAPHz7cyspKY75o3LhxAwcOLC4unjNnznfffWfoPhCkOP4XUhwakOKgQ4qDPQxeoGNjY2NjY+ktmZmZmZmZc+fOtbCwmDRp0vbt2w3dhzogxcEQUhx0SHEYCFIcGgxeoENCQjRabt682aJFi+nTpzdr1qx3795paWmG7gNBiuN/IcXBHFIcakhxGJ8JJglLSkquXLkyZsyYzMzMgQMHjhw5Uudq8fHx0VoOHDiQn5//GjtFioMOKQ4NSHEwgRSH8ZmgQIvF4oCAgF69enE4nFmzZt27d0/nCeawYcNOaRk6dKi+I5fXgxQHQ0hx0CHFoQEpDgMxQYH29fUtLi5W/6hSqXReKmpYSHHQIcXBEFIcdEhxGJ8JCnRISIhYLN62bZtKpVq3bl1wcHB9LzK+BqQ46JDi0IAUBx1SHOxh2AJdWFgoEolEIpFCofD29haJRNQ79oEDB9atW+fo6Lhv375du3YZtA91Q4qDIaQ46JDiMBCkODQY9tqCk5OTzjNEf39/nSkCw3mNFEdGRob2xbuGTXHofEpaWtq+ffs+/fRT5r2tI8Whsz0zM7OoqKhDhw4a7a+X4tB5oXbixIk63zaMk+J4+vTp6NGjtR+qqamp79yRvhSHvvVlMpmFhYV2+2ukOGJiYrSPx8PDw3X+joyT4khOTu7duzfzXbxGikNn++ulOHT+rpHiYCOkOOiQ4tCAFAcTSHEYn7kUaH2Q4mAIKQ46pDg0IMVhIOZSoJHioEOKgyGkOOiQ4jA+cynQSHHQIcWhASkOOqQ42MNcCrQ+SHEwhBQHHVIcBoIUhwZzKdC4Fwcd7sXBHO7FoYZ7cRifuRRopDjokOLQgBQHE0hxGJ+5FGh9kOJgCCkOOqQ4NCDFYSDmUqCR4qBDioMhpDjokOIwPnMp0Ehx0CHFoQEpDjqkONjDXAq0PkhxMIQUBx1SHAaCFIcGcynQSHHQIcXBHFIcakhxGJ+5FGikOOiQ4tCAFAcTSHEYn7kUaH2Q4mAIKQ46pDg0IMVhIOZSoJHioEOKgyGkOOiQ4jA+cynQSHHQIcWhASkOOqQ42MNcCrQ+SHEwhBQHHVIcBoIUhwZzKdBIcdAhxcEcUhxqSHEYn7kUaKQ46JDi0IAUBxNIcRifuRRofZDiYAgpDjqkODQgxWEg5lKgkeKgQ4qDIaQ46JDiMD5zKdBIcdAhxaEBKQ46pDjYw1wKtD5IcTCEFAcdUhwGghSHBnMp0Ehx0CHFwRxSHGpIcRifuRRopDjokOLQgBQHE0hxGJ+5FGh9kOJgCCkOOqQ4NCDFYSDmUqCR4qBDioMhpDjokOIwPnMp0Ehx0CHFoQEpDjqkONjDXAq0PkhxMIQUBx1SHAaCFIcGcynQSHHQIcXBHFIcakhxGJ+5FGikOOiQ4tCAFAcTSHEYn7kUaH2Q4mAIKQ46pDg0IMVhIOZSoJHioEOKgyGkOOiQ4jA+cynQSHHQIcWhASkOOqQ42MNcCrQ+SHEwhBQHHVIcBoIUhwZzKdBIcdAhxcEcUhxqSHEYn8ELtFwuX7BgAZfL1S5G586d43A4aWlphu4DQYrjfyHFoQEpDiaQ4jA+gxfo4cOHW1lZaZ/tSqXSOXPmNNRkzmtDioMhpDjokOLQgBSHgRi8QMfGxsbGxmq3r1y5cvDgwYa+pKWGFAcdUhwMIcVBhxSH8Rm8QIeEhGg3pqenx8fHL1682NB7V0OKgw4pDg1IcdAhxcEeppkknDFjxpo1a3TO/qvFx8dHazlw4EB+fn4D9gQpDoaQ4qBDisNAkOLQoGMAhrZjxw4PDw+dc7V0w4YN074oOWfOHH2HeHV7jRRHRkaG9sW7hk1x6HxKWlravn37Pv30U+a9rSPFobM9MzOzqKioQ4cOGu2vl+LQeaF24sSJOt82jJPiePr06ejRo7Ufqqmpqe/ckb4Uh771ZTKZhYWFdvtrpDhiYmK0j8fDw8N1/o6Mk+JITk7u3bs38128RopDZ/vrpTh0/q6R4niFQ4cO/fHHH+7u7u7u7vfu3YuMjPz9998NvVOkOOiQ4tCAFAcTSHEYnwkK9MGDB/Pz83NycnJycgICAi5evKgzMGscSHEwhBQHHVIcGpDiMBDDFujCwkKRSCQSiRQKhbe3t0gk0jlrbARIcdAhxcEQUhx0SHEYn2ELtJOTk0QikUgkKpWKWtD4z0lNTW2oM526IcVBhxSHBqQ46JDiYA9z+ai3PkhxMIQUBx1SHAaCFIcGcynQuBcHHe7FwRzuxaGGe3EYn7kUaKQ46JDi0IAUBxNIcRifuRRofZDiYAgpDjqkODQgxWEg5lKgkeKgQ4qDIaQ46JDiMD5zKdBIcdAhxaEBKQ46pDjYw1wKtD5IcTCEFAcdUhwGghSHBnMp0Ehx0CHFwRxSHGpIcRifuRRopDjokOLQgBQHE0hxGJ+5FGh9kOJgCCkOOqQ4NCDFYSDmUqCR4qBDioMhpDjokOIwPnMp0Ehx0CHFoQEpDjqkONjDXAq0PkhxMIQUBx1SHAaCFIcGcynQSHHQIcXBHFIcakhxGJ+5FGikOOiQ4tCAFAcTSHEYn7kUaH2Q4mAIKQ46pDg0IMVhIOZSoJHioEOKgyGkOOiQ4jA+cynQSHHQIcWhASkOOqQ42MNcCrQ+SHEwhBQHHVIcBoIUhwZzKdBIcdAhxcEcUhxqSHEYn7kUaKQ46JDi0IAUBxNIcRifuRRofZDiYAgpDjqkODQgxWEg5lKgkeKgQ4qDIaQ46JDiMD5zKdBIcdAhxaEBKQ46pDjYw1wKtD5IcTCEFAcdUhwGghSHBnMp0Ehx0CHFwRxSHGpIcRifuRRopDjokOLQgBQHE0hxGJ+5FGh9kOJgCCkOOqQ4NCDFYSDmUqCR4qBDioMhpDjokOIwPnMp0Ehx0CHFoQEpDjqkONjDXAq0PkhxMIQUBx1SHAaCFIcGcynQSHHQIcXBHFIcakhxGJ+5FGikOOiQ4tCAFAcTSHEYn7kUaH2Q4mAIKQ46pDg0IMVhIOZSoJHioEOKgyGkOOiQ4jA+cynQSHHQIcWhASkOOqQ42MPgBVouly9YsIDL5dL/0A8fPty6dWt7e/uoqKj09HRD96EOSHEwhBQHHVIcBoIUhwaDF+jhw4dbWVnR/1efPXs2YcKELVu2FBUVRURE6Lv40LCQ4qBDioM5pDjUkOIwPoMX6NjY2NjYWI3Gn376qVu3blwud9iwYcY5gkaKgw4pDg1IcTCBFIfxGbxAh4SEaLR4e3urTwNPnToVERGh84kKhaJYi1QqbdjuIcXBEFIcdEhxaECKw0BMOUn4xx9/bNy48T//+Y/ORxMSEkZqOXr0aL0uO6ohxUGHFAdDSHHQIcVhfCYr0L/++uusWbNOnjzp7e2tc4WhQ4ee0jJ06NDXm6ZAioMOKQ4NSHHQIcXBHqYp0AkJCV999dW5c+fqWwQbHFIcDCHFQYcUh4EgxaHBBAW6uLj4ww8/PHz4sM45VgNBioMOKQ7mkOJQQ4rD+AxboAsLC0UikUgkUigU3t7eIpEoNzf30KFDWVlZrVq1Er1Q3+OX14AUBx1SHBqQ4mACKQ7jM2yBdnJykkgkEolEpVJRC25ubpMnT1YqlRIaJycng3ajDkhxMIQUBx1SHBqQ4jAQc/moN1IcdEhxMIQUBx1SHMZnLgUaKQ46pDg0IMVBhxQHe5hLgdYHKQ6GkOKgQ4rDQJDi0GAuBRopDjqkOJhDikMNKQ7jM5cCjRQHHVIcGpDiYAIpDuMzlwKtD1IcDCHFQYcUhwakOAzEXAo0Uhx0SHEwhBQHHVIcxmcuBRopDjqkODQgxUGHFAd7mEuB1gcpDoaQ4qBDisNAkOLQYC4FGikOOqQ4mEOKQw0pDuMzlwKNFAcdUhwakOJgAikO4zOXAq0PUhwMIcVBhxSHBqQ4DMRcCjRSHHRIcTCEFAcdUhzGZy4FGikOOqQ4NCDFQYcUB3uYS4HWBykOhpDioEOKw0CQ4tBgLgUaKQ46pDiYQ4pDDSkO4zOXAo0UBx1SHBqQ4mACKQ7jM5cCrQ9SHAwhxUGHFIcGpDgMxFwKNFIcdEhxMIQUBx1SHMZnLgUaKQ46pDg0IMVBhxQHe5hLgdYHKQ6GkOKgQ4rDQJDi0GAuBRopDjqkOJhDikMNKQ7jM5cCjRQHHVIcGpDiYAIpDuMzlwKtD1IcDCHFQYcUhwakOAzEXAo0Uhx0DZLiKC0tLS4urqmpUS/QH0WKQwNSHHRIcTCk4yJ6Y1JRUbFnzx6lUnn27NnNmzcTQvr06ePn50cImTBhAv1/LyIignr/XLhwYVJSkrrdw8Nj586dhJDTp0+fPn26qqoqJSVl0aJFHA5n6dKl1tbWN2/eXLFiBX2nixYtat++fVlZ2ciRI+lFZ8yYMdTf6+TJk+lXJNu2bbt69WpCyI4dOy5dukQ1/v333xYWFmvXruVwOOvXr1+5+GtboS31UH5l3u9njnTu3PnRo0fTpk1TqVS3b9+Ojo4mhMydO7d///6EkPXr15eXl1+5cqWsrOz8+fMdOnSgLu2tX7/+5s2b1ET29OnTvby8qIPH9PT0mzdvlpaWJiYm7tu3j8vlxsTE8Pn8srKyxMREQsjGjRupN7mOHTva29vn5OT4tfNzaGEvLZVenHpBXi0f13M8NYq6NWyKoywTUWcAACAASURBVHv37tpvWpGRkTrXrzvFobPq7dy5s3Xr1t7e3gy7+nopDp2vW7t27eq1HUJITk4O/aqrSqWiKtSoUaP27t1LCBGLxTpnbtXi4+Pp86Xe3t4DBgygd6lJkyY6n7h8+XKdRxt1pDhiYmLq+1rp9BopDp0z2GVlZXfv3u3cufObd6kBNfICnZqaOv/rTQ6tukrd2n915HZ13uPi4mIqRXDofFLL0bUXKxSSStnZg1SBTkxMrO7+MkuUuHMBtXD8+PGETL6lc0tVB4+jRbZZ53dPmzbN19c3PT094I+TY6xqD8P3VVelDRlCFWjrCxd/cHCk2tNksoQXB0T3fvttn9PLKaZxLw5wjh075pcTaCOovR6yPWmTfI3cwsJCKpUOajU02L0D1X7k3gGpVEoIycnJ4T0SDWk9cngXQghJzbt569YtqkCvWPTlwIChHjXNJFdUdy9nXLlyhSrQcXFxqkEvj6f2bY6jCvSmTZuOPDls6SSqdK/64uzyZ2ez2rdv7+vre/LkyZnffugQYF9RUnlnZ2rJ/dJVH60eM2aMXC53auMYOjuY2k7Z43L5w9rN5ufnl5eXFxUVcTicjIwMBwcHBwcHQkhZWVlBQYGNjc3o0aMzMjIsLS2pGar8/HwqcRUeHn769GlCSEREhEgkkkql1GWEmTNnUu1t27alDo1nz55dXV199erVI0eOuLq6hoeHT548mRCyc+dO+vmNp6cn9Tu9d+8edThvaWlJf/t5/vz5kSNHCCEpKSnU+/fAgQO9vLzq+IuiRhcaGioQCOijo2inOEpKSh4+fEgIWbZsGZVFa9u2rUAgUB86HD16lDrjVh86fP755/Sjyw4dOlDbpHadm5tbWFiYkZEhEomo6+OVlZW5ublFRUWxsbE//PCDQCCg3lESEhLGzfhY6OgpKcpqHhEjLc7Z9v2KESNGSKXSdevWyeXy27dvr1+/XiwWR0ZGdu3alRCyfMzYf9nYqne9MrA1VaBXrVp14sQJdbtQKDx8+HAdtb6yspK6Wp2fn79v3z5CSFhYGHVUnp2dLZFISkpKsrKyMjIyXF1dqQuACQkJaWlpz58/r6ys/Prrr93d3SdOnKjeYHFx8bx5837++Wd1i0KhePz4MdW3jIwMLpfbpEkTHo8nlUrXrl2rUCju3r27ceNGW1vbiIiIbt26qZ+4detWV1fXt99+W91SWlpaWFh4+/bthIQEFxcXKysrnbOLJtHICzQhxMrN37V97VFAyYOr6nYOl8cX1ZZChkd0ls5NrT1qj9f4VnbqdhGHI37xx2pZz8NDDU6WzrbC2i1b8F5/lsNGaNfBsxO1XCWrukCOU8scDsfO/2Uogit4eXDq0cVN7Ff7UHF67bmhSqVyCXFu1r/21O/xySevjAr4BHWydG5ClErC4Xz6457WDsq//vqLEPL++++fSMrk8Cyo1cqf3K4qzuXz+bt3716x7ailS1NCyO6rv5VmJP2+44fIyMjk5ORhU+eJ/TtS60sKn308pveCBQsIIRc2bPjRwXGkSmWZ/bxCqdqQl0cV6K1bt864fVfdk6/KSqkCvXnzZvlPW7xeHInvq6psn5bm6+v7119/7VzxaxvXdkH89td+Sk3LT7WxsRk7dmxeXl5Ln1aetp7FkuLEE31lCtmwKUOo9E6If3sP25fThiJfC2p0EyZMOJZ0lMuv/TMoe1xeWVDJ4/G2b9/+zd6vrT2tKworRn85quhO0aHNCZGRkampqZ+sX+Ie7qZqp/gxeW35kwr1ocOaX9YEzwiitiOvlt/79R5VoIcPH55WYaOUS1UK+U/Hb5Q/Sa3Kf0wIiY2N/enAnzyhVU1ZQdigSZXZ6ek3E5s2bSqTyVxC+7mF1V6py0s6Rl1xzs/PX/7jLs9uo2p8+hx8aitNeZ6VtYcq0NZczluWlurR7XkRU0tMTPxP6h3nF3/kYwsLFAoFl8vdtm3bd9PfF3M5mXJ5d5EoV6Hck/h3aGhoSkrK5x9+EeLR0Uvqm7DiRHbZs4zpGdTogpq3C3JtV1RdmPT7LR6H5xHmQsWlVq9eHVAVTAjhEMuHyVnr72+kCvSSJUv2bIwT8IQlkuI2vwc9L89OfZDi5eWVkJDw7vzJ1u61B0aVuVWbVmwaNWpUfn7+17981XyoP38A90/eqaon1Vl7s6gC7dTakSfkSctquDzO9M+ndfLu/PvvvxNCZsyYcfbhGZVKJSuXHR9/rOhuUXlehc6InvGxohPQmFhY2bUY/snLHy/UZrcVCoXvW7MtrGtPSNN2LaFqvUqlcmzdzSGgdgpIKZOq2228Wnt2G0m1lzy4qn5vEHE4TXm1f7plnJcfOuByuZG06MgP3Jdvlv1Flm0tat8bkmhXOZuIm9HeyWqDXDU1Na2c20xuXztvkVX2tERaGwuxEdpO7ThT/fQ9ZVupBalU2mF+e6G49j31SmyiUqnk8Xgqlcq7p5d7p9pr4vd+u68ehZ2vnU/f2kx9XlK+ept8S774xZuorFJGXuQhuVyu71svZ7Huvji3UyqVTXpPUR86ZBxe/cqr+QIbR7FfaO2o8x4RouOjAEyUlJTMsrX9P1FtTV9VXqb+hEsTsU+kT+1Fj9S8l59JcbF2fSe49sJ0lazqgvK4enTqXwQh5Pyj09SCVCod025SU3Ez6sedyT9RF6kVCkXTPk3ohw7qUYscRC7BtdPvZY/LycPabXL43PDYl7so/772161QKNr9qy39d1ffwKLhmMskIQDAPw4KNAAAS6FAAwCwFAo0AABLoUADALAUCjQAAEuhQAMAsJTBC7RcLl+wYAGXy6XfWvPEiRNt27Z1cnLq16+fvruMAwCYOYMX6OHDh1tZWdE/FVpaWjp+/PjNmzfn5uZ27Nhx5syZdTwdAMBsGfyThLGxsSEhIV988YW65eTJkx06dKBuHjh//nw3NzepVKrz3sEAAObM4AU6JCREoyU9PV1991ixWGxvb//48WPt+8nW1NRof4eCVCplz6cwAQAMygT34qiqqrKk3ZDFyspK53emnThxYteuXRqNycnJLLxnKwCAIZigQFtbW9O/JKmiokLnF44MHjxY+wbkc+bM0fe10wAAjYwJYnatWrVKSUmhlrOysiorK3V+fQMAgJkzQYGOjo6+c+fOmTNn5HL5ihUrhg8fzpJbrwIAsIphC3RhYaFIJBKJRAqFwtvbWyQS5ebm2tra/vrrrzNnznRzc3v69CmT70kCADBDhj10dXJy0vmdm9HR0bdvv+Y9wgEAzAQ+6g0AwFIo0AAALIUCDQDAUijQAAAshQINAMBSKNAAACyFAg0AwFIo0AAALIUCDQDAUijQAAAshQINAMBSKNAAACyFAg0AwFIo0AAALIUCDQDAUijQAAAshQINAMBSKNAAACyFAg0AwFIo0AAALIUCDQDAUijQAAAshQINAMBSKNAAACyFAg0AwFIo0AAALIUCDQDAUijQAAAshQINAMBSKNAAACzFN3UHAMAg7OzsKrLSuHwLSVG20MGj4lmanV103U8RhIf/npJyUSIlhHQTiuzs7Bq8V/5hzeJSf7mVk0wI8XdsMXb+yLrX53A4VbLKp6WPVSqlnci+sqaCw+E0bJesra0f3XtY/qyCEGLfwkFaIuVy2XLkigIN8M+gUqlUKiWHU1s7VEoFtSAUCqszn1TlZaoUMitXX0lRtlAoJIT83//93/BDh7bHxVEFetzQAW+99RYhhMfj1VQUSYuyJSW5HA5HqZDzXHnUpjZt2tSlS5fiqkpCyHGR8PamTVQ7h8MpUyqrVEpCiD2XW6FSUlWSw+FUqlTPFQoZUVlxuOVKpbp6ypXyGkWNXCnjEI7yRVcJIdOmTZs+7v2CqjxCiHNTx6FDh1Lt1tbWd/JSnpY9JoQ0s/eTKWqo9g8++GDsf8fe+OuGVCH1c2gRM+ktHx8fQoiNjU3pw9Ls/z6vyq2ydLEszSiz6WdTu2upQlYhk1XKCCEK6ctdd27a+dGJx4UpRYQQh9YOIV6hVPuaNWs6duz44MEDQoili+X+7ft5PF6D/MreXCMv0FwuV15dLi3Nk1eVcnkWCkkFl+tk6k4BcyqT7JXP5xdLirLKnuZUPOdyuHwu30L9H6v6ny6pVMbr4TvvvDP/q6WlGUmEEPuWnWeOi6HalyxZ8mfv3tdu3FLKJJYuTb/+9GNPT09CSFJS0q8nLtu36Fyd/0jk5L3/bNK0xMROnTp5eHgsmT56+XcrqnIecnkWHTuELlyVQG1q5syZS1TkvKUlISRCqZw1a9bevXsJIfPmzZt28GByTQ0hJEwgePvTT/l8PiFk1KhRI+Pjv7185alC3kEgaDZoUFhYGCEkKCiI4ydfn7g6Lf+2o6WzWGR/LOYItYsPJ370XscPH5dkEkI8bb3nzp0bFxdHCNmyZUtwcHBeXh4hxMXF5fS509T62dnZBelFhMMhhNgIbO7fvy+TyQQCQf/+/fsdGrD7192V2ZXWHlYj+40aPHgwIcTT03Ng4MCEbw4VpBTyLHh2vrbr4tZTm1q9enXXrl2LiooIIdJ7Nd+mfEu1r1+/XtlKLlaJCSHuHV1XrlzZv3//Bj9Ofz2NvEC3b9/+/wKdDsV/Vf7sjsDOpXNwqwkT9pm6U0SuUqkIoX7/CkKUSqX6IdX/lKRX//MraMcm9O3Q2xUqBf0p1XnVFc8rCSE2XtYKibzu7dvb2xelFQtsBVV5VZYulsVpJfZv2df9lP6dW/917peS+4mEELF/hyHt2lDtQqGwOu9RcXE2IcTavYWsspg6kWzTpk3+xtiitP/KygttPAPKHt9q0qQJIaR58+bNVM/SD/2n/Oltga0Th8PpMXMztalKpapcpSquHSPnlf9LYrH4Wo307xppjUoVaGHxQC6zsrIihLi5uaUV3JYrZbkVz12t3R+VPJzsNpYQ4u7uPm3RlO/+/cOz0id8rkX7jqFHFtfWl75j+uxI2HwzJ4kQEujabvD7A9Qv1MOU+6WZZYQQxzaO0tLa02RXV9f8UwVVOVXS0hrbpjbF94odHR0JIQKBoCqnquR+aVV+FV/Er3xeKWgjoDYlK68pf1JOnXFbOorsBA5Ue6tWrWSVJdRyTWl+cHAwtXzixIn7ZXyRg7tCJrVrFvzbb79NnjzZxsbm4cOHjq0j3MIGUavlJR178OBBp06dpFLpn3/+aenStKYkl8OzSMuvSU5O7tevHyGk4sKFMU4uY6ysa7ecl0ctlJeXqw8prTicgoICalkikSgUCuqQ3oLDqaiokMvl1O/a3d39oSKTEKJSKb0C3e3ta/9srAU2TcXNmoqbEUKqZFX3Zbeo9uXLl3dy6PZQlU4IaeUcuHTp0sOHDxNCDhw4MDzonWb2ftRq25I2ZmVl+fr6pqam7r+4z6mVA9+Sb9vE5nBiQnJyckhICKHeNWl/Eeo30alTpzaf4Vd014EQ4hBg/9577x09epQQkpyc3Hx480Bx7et/JTZRLpdbWFjU/UdlHI28QMtksuLiYg7fghDC4XBkMlllZSX1kLy6ojQjufJ5OiFE5OjZztGRahcKhXlP71TnPyKEWLn5K2VSqt3KyqrqYWbtiaRLM0lRlkgkIoQ0a9bsR4mkUKG4r5D78fipctkXvr5192ro559P/PzzMxIJIaS7UDRheSzVPmjQoFXzv3ta9oRDOG1cg1p2bU4dp7i6uh7OP15QmV8mLfWya5JRlO7k5EQICQoKUjaTrr3yze28FCdLF7FI/Pvgw9Sm+o2J3hC/hqojLZ1af/vzV1T7119/HT2yT9njckKIXTPbXT/sptrd3NzykvJz/s5TypX2/nblTypsbW0JIdHR0W8fHrrt122Vzyut3a3GxYwfMGAA9WpUZFfm3ygozSzl8Lg8Ic/BrbaOLFu2rGfPnpV5eYQQW1X5kj3XqPZvv/22V69emXfuUC/47p/WUieSffv27d56w/Ezf9WUF0pL8xd/NNXX15cQ4uzs3KNHj+Ste6TFz1Wymh5d2lP/foSQcSu+GL906bWaGkJIiIVg48KFVHtwcPDKa9cvSqWEkN4ikcfAgVT74sWLe5w4cfPKlSqVyo/P//Snn9zc3Agh3bt3jxoVsfunX/Mr85ytXEdNHtG7d29CiFQqPX78uJdtk6KqQj6XX55Zef369f79+xNCRo4cuefnuCpZJSHkUUkGddRGCFmzZk1wcPCDBw8JIZYXso/sOUKN7p133jl06NDvCUckRVJrL+tPPvgkKCiIENK+ffuJPSb9uH5d2aNykYMosmPkjLUzqE3t/P6Xd/71TmV2JSGkTZs2v/0RR7V/+umnAWP/LasoIoQI7FzenfPpyJEjCSGXL1/2ihxr7dGcWu3B4dX5+fk2Njb6/vzy8/Nv5Ciav137olXlZh47dowq0Pps2rTpRwcnWw6HEGLJ4YzZsFH27bcWFhYJCQkT0tKjXF2VKmLB4Xz330tJSUndu3dPSkp6dDHrvQ4fVEjL+TyLrLKnv/zyy/z58+vYxd27d0cHTFH/uPrSl+plLuflFWEel6de3yvSs1l/H+rHxyef3LlzJyQkJDs7+/idYx3nt6cucUhLa37++ecffviBEHKn+E7Xjp3dOrpSTym/XFVHf1iikRfomzdvXsvnB4xZrlTIOBxOUebN/fv3L1iwgBByMn5nrwFDasoKCCHNmzf//sYN6ilbtmyJiIh4/PgxIURg6/z3hVNU++LFi89ER1+5mqSUSSxdfL5f8YmHhwchJCwsrNNHM+NWr3mskDfl89/+4IMuXboQQhwdHZ+HBK9JvZ1YI7XgcOw53CFhYdSmQkJCdihqj2rzlYrAwEBquW/fvt98801hTj4h5F7B3c3vbqSODd95550jR478kXCsRFLsZuMxb9kc6inW1tZt2rR5cD2DEKJQKZqFNvXy8qI2FRYWdnjX79SyjY9lixYtqOW0tDSBWEhIOSHE0snyxo0bgwYNIoR8/PHHR3ocuXz1skKqsPaw+mnVFmdnZ0JISkrKb2d/dW3vUvHM0trTav9f+6bfmB4aGuro6Ljx3xunzJlS+bySy+d26thp6YWl1C7C+43w7v+x8FkaIcTGK+Ddd9/9448/CCEHDx7M5boKHYoI4Yibh23atOntt9/mcDjbt29PzON7dBkmqyyxdPNd88uRmJiY4ODgpKSkTQl/+Q2eLS3J4wpE6UXZGzdunD17NiGkuLjY8sVRM49DKioqqOVFixa1j4t7XlFOCMl1dDj52WdU+549ezyTb9oIRRKVspNAuGnTpqFDh9rZ2V29evXk7j87eXXNqch2sXY/t+/i5Xcud+nSJT8/v/xe9bvtaytmVtnT48ePUwV6QszkD8M/zip7SgjxtPX+6KOPzp07Rwj57rvvVIEKF2tnQohzO+fPPvusV69eHA7n6NGj/836y6Orh7RIaudr95+d344cOdLf37+wsPD8+fN2zezk1QqRozAp+3pycnJ4eDghZPv27S7tnFQKFVGRYvui48ePT506lRDC4XAEtk4C29prdDyB6DX+I3Rgdi4v4nDEL6bOhC+eolKpBBxiy+FSR6z0dmsLa0dLZ0dLZ0JIUXUh/fTO0HhCnoWNhYWNBSFELlG8cn02M02BjouL+/zzz6VSqa+v76ZNm/z8/Ay3Ly5fyLUQci2EhBAO30J9vrNs2TLXDgPLH98ihFQ4NV23bt2iRYsIIVu2bKlybCUsqyGEOLTotGbNmh07dhBCzpw5cydfXnsi6RO0a9eud955x8rK6vLly0lr106wsc6QyZvx+Vc3bb44bFhkZKSVldXs2bMXvvPOI7lcwOG079x59OjR1K4Xx8TscHTOkMsJIc34/IULF54/f54QMn/+/D62b4V3jCKEuNt4/mv8hwOLBvJ4vLNnz94+m9bKJbBUUuxj77dx5ebRo0c3adLk2rVrVw/dmBz6frGkWMAT5BRl//TTT/PmzSOEfDrrs/c7zc6ryCWEiIXipUuXxsfHE0J+/vnn8GVhHF7tP9L3i79btmwZIWTHjh1PLB+7tHNW1Cicgpw+iP3XgAEDxGJxWlqaZzcP+nHK3bt3Q0NDq6urf/jhB48ubvk3C3l87hP+4/37948ZM4YQwuHx7Xza2fm0o55S8+Q4tXD27Fmf/3vfwrr2VPfvXUuoE8mSkhLbpkEOAV2odknBs9LSUkJITU2NyMHT2jPA2jOAEFLy4KpUWns2c2LVqngnl2qVihAiUan+vW4ddeQ7ZcqUNTXyW3ZiQkioXDkpLCxJKiWEJCcnv2dj2/bFSeuzWymFhYV2dnaPHj1q594+yrcP1X7x8dnMzEzq/ZVDdJctAU/gbuPhbuNB/cgpq13t5s2b/m/7C7VOk9PT072jvNw7uVHtSpkyKyvL39///v37ee65oeNrL1PkJeWfP3+eKtAX71/o+kU41S6rlB3bf4wq0GCGTFCgs7Kypk+fnpSU5Ovru3r16mnTpp0+fdr43biWUdB6wgISOYYQopBU/P33Lqr9/PnzfoMWqVc7tHMBtXD27FnvqAnqE8m7h1fn5ub6+vo+e/asp1A0ybr2jNKuqvLp06eEkKKioi/Hjf+32P6uTMYjRHA3bcWKFbGxsYQQSw7Hi8fzejHvpM70SCQST1tvW2FttslOKFYqlTweLzk5ObJZz2D3DlT7kXsHMjMzmzRpolAo7EUO7rae7raehJBqeRV1BZAQYmlh5WTp7GTpTAipklWpj184HI66OhNCOPzaXaempjbr11TsJ6Z+rMypLCoqEovF+l69wsLCJxaPQ8cHtx5PCCFlj8svX75MFWgjEHE4Ag5HQAUJaIdmVVVVEUJhhFBYu1oFK+Z56o0d01PABiaI+z18+NDb25u6zti3b9/U1FTj98EIqqqq/Pn8nkLRv2xsp9vYdhEIqeljAACGTHAEHRwcnJ+fn5SUFBoaeujQoeho3eH5ioqKvBeTyGqlpaUKxT/7ohIAAEMmKNBisXjVqlWdO3e2tbW1tramLr9q++uvvw4ePKjReO3aNXd3d8P3EQDA9ExQoFNSUpYuXfrgwQMfH5/9+/cPGDDgzp072p+t7Nevn3b0Z86cOc+fPzdWTwEATMkE16D//PPPrl27Up/XHD58eGZmZnZ2tvG7AQDAciYo0IGBgZcuXSosLCSEnDp1ytbWFlctAAC0meASR3R09NSpU6nIp729/YEDB6jPywEAAJ1pKuOSJUuWLFlikl0DAPxTsOW2pwAAoAEFGgCApVCgAQBYCgUaAIClUKABAFgKBRoAgKVQoAEAWAoFGgCApVCgAQBYCgUaAIClUKABAFgKBRoAgKVQoAEAWAoFGgCApVCgAQBYCgUaAIClUKABAFgKBRoAgKVQoAEAWAoFGgCApVCgAQBYCgUaAIClUKABAFgKBRoAgKVQoAEAWAoFGgCApVCgAQBYCgUaAIClUKABAFgKBRoAgKVQoAEAWAoFGgCApVCgAQBYCgUaAIClUKABAFgKBRoAgKVMU6CfPHnSs2dPGxub4ODg5ORkk/QBAIDlTFOgx40bN3DgwOLi4jlz5nz33Xcm6QMAAMvxjb/LzMzMzMzMuXPncrncSZMmTZo0yfh9AABgPxMU6Js3b7Zo0WL69OmnTp3y9/f/8ccfW7Vqpb1aYWHho0ePNBpzc3NlMpkxegkAYGomKNAlJSVXrlxZunTp5s2b16xZM3LkyFu3bmmvlpKScuLECY3G+/fvOzk5GaWbAAAmZoICLRaLAwICevXqRQiZNWvW4sWLCwsLtctuVFRUVFSURuOcOXOeP39unH4CAJiWCQq0r69vcXGx+keVSsXnm6AbAI2evLpMWvxcIZPyLITyqrJXrl+iVC4sKS5QKi04RMzh4nKiyZmgMoaEhIjF4m3btk2aNGndunXBwcFisdj43QBo3Nq0aTOg5WkivXz06NGBAweS5oKgoKC6n3L26dPKyspffvnFyclpwIABjo6ODd4rmaKmoCpPKpcKeAKJXEKEr35KWv7t/IrcYkmRg6VTQVV+g3eJEJKbmMsVcmVlMqGjUFoqNcQuXo9pDl0PHDgwcuTIuXPnBgYG7tq1yyR9AGg0Cm6eKn14TVL8XOToVZX3iMPhEEICAwM3bdpECOnZsye1oKaoqZYWP1fKa7h8QU1ZPnlxfdHNzY0Q4uzs7Orq6ufn9yZdqpJVFlTl1cilAr6wTFJKiDPVPmTS4CeV9xITE5s1a+bq6jq8+/C6tzNu3LirAVfLy8v37LkSPXVqGKetp6fnK3adX5196bm0WCoUC6sLJcS2tl1WXnNrQ6q0VMrlcS1sLLxlTaj2mTNn3rlz58mTJ3+n/D2i0whhrNDCwuJNxt6ATFOg/f39r1+/bpJdgwnVlOYpa6qpZaX85XGKpPh55fP71LKsvNAEPfsn4HK5absWK2okKoWcb2kjqyih2ufMmdO/f1p5efmPP/64aNEYoXBS06ZN6U+0srKi/+jg4DCqZ7BSevnChQudOnUS2Yh69uxHX8HCwkK7Qm2rrLDmcKjlpwo5tWBtbb2qvGx7ZcUzhcKbx8tSKMZaWRFCmjZt2qpv8yfk3smTJ/v27Svy43Tu3Jl6yurVqwkhy5Yti4mJ6dChA30XP11bq14uk5ZSC6GhoaGhoUVFRcnJydOmTXvlq+Tq6rr0vaU1NTX7z+7v16+fTSsb9VRW2uV71dXVe/bscXJyio6OtrWtrdwREREREREpKSlyuZzJLowJF3/hFRRShaxCpl5+5foqhUJa/HIiV6hUUguDBg2yv3iRvCjL3Yf0puYeIiMjc3NzCXlW+0Df4BYtWlCL0pKc0owb1HJVTgZpF/CKrioU6yvK1T8Wv9g1IeS4pPqWrIZafih/eWn1aemj69mJ1PKTkkxqwcbGxqIZZ3/VjtrNchRDWw6lliuk5btv/vxyj1416uWyR2UCm9q6Jq+W09t5Ql7tKHKr1O0VWRXZl2pfqLLMMtKxtl2lUKpf7h6MmQAAFyxJREFUcFmVXPRi/T///JMQolKplEolj8dTb8fb29vb25sQMmjQIJ3TOQkJCfQfra2tN2zYQAiRy+U6158yZQqX+z8fYVuxYsWjqVPVP/YT1h5jTps2japoGpvy9PSkjtn17WLZsmUa7ceOHZNIJOofNd4hHB0dt23bRm/x9PS0v+tYnVH7+oulDl6jvAghAoFgzpw5hJB58+Zp7MLDw4MQsnDhQi6Xy3nxZqPWtm3bL774QrurptX4C7RSXiOXVNQu10gIYcvJyz+Cv79/YFVbcrj2xzbEXl099Zk3ZUR29mX1j62GDKEWxo0bN27cOO31O3bs2LFjR+32li1bzh/f/+XPQQH9+tUe6BUqlL9X1x6JV6leVuH169fn5OSof4yxs6MWpk+ffjM8XN2+iMtt0qQJIaRr166ZH2SqVKrawRKvyMhIQoi9vf3Fixd1ju7CjXMlJSXqH11dXamFUaNGJSYmktpOkajRtW8/0dHRNTUvizjpT1q3bk0IadOmzefvLn/Z3pz06NGDWhzY8S3J4ZelKqJnBL0DHA6HXp3p9E2217dde/vNmzdv3ry5zpUbateWlpaWlpbMd9GtW7cLFy68Rpf0vXp1PMWEWNehhuXt7d3dx0KVuff+/fstWrQgHBIW9j71kLy6ojTjhry6jC+0Vspr6t4OJTcxgW8llpbmiRzcK7PT1W/C2QrFLVlNhVJlw+VkKRTeb9DhankVj1v7B6RQvfpwNac8+3p2YkFVnrOV67PSx94vrvRVSMuuZyeWSUusLGyUKgXxqV1fqVTm3yxQ1iiVciXfiq+QvDzQK04vrSmXycpqLOwEkqLaA9327dvHxcURQr777rvZs2czGcJnn31GCDl37pxYLA4NDdV4NDs7++LFi6NGjdJ+osYuHB0dFy5cqHPXS3/eWl1dnZSU1KxZM0dHxzkvPugUFBQUFBSUkpKSm5vbp08f9fotW7Zs2bJlVVXVL7/8Mn36dHW7l5fXggUL6hjdli1bRo0apT4XJoT4+/vrHN3QoUOHDh2qPTqqS9q7sLOzo449tXe9c+dOQkh8fHxYWJjGxQpCiPboKNqjU2M+Osqb/+5e2f7PGp0JNfK72Xl7e+/duzcuLs7e3j4uLi4uLo7KXxNCvlz80aQgjnfh5d4Oz99tb/Xee+9R7U2bNrW99B/FsaWVBz62vfSfTs1rD5HmzZv3638W/DB3VFsXzo7Yqcf37aD+vNq1aycfO+bQ20PmiASH3h4iHTuG+t1zOJxUmezLstL3iwr/XVa6pbJC3asmMTGT2rT6PwfxIDeXSW1aBQTUnrl36dLlAuePuOLtP9z96phsf+tuLet4tyeEBAYG/mv59I5Tg27Lb3ScGjTk44Fvv/029dDKdV92nBpU6pXvGm3X9f0O1EkfIeTDDz8cIhra6lkb9zueQ0RDv1nwLdU+ePDgAfYDwwo7Vx6T9Kju+f5b71PzRWoap8mEEEmxJP9mQdaF7PybBcXpJRqP3r59+8GDB9p9zsnJSUxM1Dkc7V3oax8/fvy0adMcHByioqKmTZvWvXt3+qMZGRkpKSna26moqDhz5ky9dn3+/PnS0lLtdoOOjnLt2rXs7GztdoyO4S4acHQm1MiPoOswa9YsQkhJSUlMTEw47fx3x44dhJCEhISMjAx1XSOEeHp6enp65uXl7du3j/4OHxAQoHOu3NPTc0/i30qlctmyZTEffujq6kpdKCSE7N27lxDy448/urq6jhgxQv2U2bNnz549Oykpaffu3atWrVK3czicG8+v5VQ8zynPdrf1fFhYe/Bua2s7depUQshvv/2mMbkxYcIEQkhmZqbG6KjdaY+uR48ePXr0yMvLy83N/eqrr1756rm4uCwYt1CpVO5N2Nurfx+7pnZdu3Z95bMAoF7MpUBrTGSr6ZywrqOdz+cLBAImu+BwONShtJubW2hoqLu7+2vvety4cdRp8ieffPKvFe/x+fxOnTrVsevX2AWF+eiEQuH8+fMJIffu3Zs5c+abjE7fLl7ZbrjR0Tel87okRsdwF41jdCbEUc+Q/CNQH/Xes2dPfZ+obzZZX7v2XPlrb0pfu0Kh0Dmb3IC7wOgMtAuMzkDt7Bxd3d57773FixdTkxMNzlyOoOs7y2ySufIG3wVGZ6BdYHQGamfn6EyokU8Squn7WoD4+PgnT55ot6ekpJw+fVq7vaqqSuNDWa/cxZYtW8rLy7Xbz507d+PGDe327Oxs6iI1811gdHQYHcNdYHR0dYzOhMylQDeO2eTGPVeO0dFhdHRmm+IwlwINAPCPYy4FunHMJjfuuXKM7k12gdFpbwopDmNDiqMRz5VjdEzaMbo3bEeKg40ax2xy454rx+iYtGN0b9iOFAcbNY7Z5MY9V47R0WF0dEhxNHKNYza5cc+VY3R0GB0dUhwAAMAu5lKgG8dscuOeK8fo3mQXGJ32ppDiMDakOBrxXDlGx6Qdo3vDdqQ42KhxzCY37rlyjI5JO0b3hu1IcbBR45hNbtxz5RgdHUZHhxRHI9c4ZpMb91w5RkeH0dEhxQEAAOxiLgW6ccwmN+65cozuTXaB0WlvCikOY0OKoxHPlWN0TNoxujdsR4qDjRrHbHLjnivH6Ji0Y3Rv2I4UBxs1jtnkxj1XjtHRYXR0SHE0co1jNrlxz5VjdHQYHR1SHAAAwC7mUqAbx2xy454rx+jeZBcYnfamkOIwNqQ4GvFcOUbHpB2je8N2pDjYqHHMJjfuuXKMjkk7RveG7UhxsFHjmE1u3HPlGB0dRkeHFEcj1zhmkxv3XDlGR4fR0SHFAQAALKP6R5k9e/aoUaPq+6z33nvPw8NjxIgRz549o7d//fXXbdq06dOnz9mzZ+ntBw8ejIiICA0N3bRpE7399u3bMTExPj4+8+bNo7dLJJLRo0d7eHiMGjWqsrKS/tDChQubNWs2aNCgW7du0du3bt3aoUOHrl277t+/n95+8eLFvn37tmrV6ssvv6S35+TkjBgxwsPDY9KkSRgdRofRGWd0TEyZMuXBgwf1fRZDpkxxnDt3rmfPnnfv3m3VqhXDp7xeiqO8vFwikfD5fAcHB3p7dXV1RUUFn8+3tbWlzw/IZLLy8nKlUmlraysUCtXtKpWqpKRELpdbWVlZW1vTN1VWViaVSgUCgVgsprdXVlZWVVXx+XyxWMzlvjxfkUql5eXlXC7X1taWHu5RKBRlZWVyudzGxsbS0pK+qZKSEplMJhKJbG1tMTqMDqMzzuheyaApDpMVaKlUGh4e/vz583Pnzhm6QAMAGIhBC7TJrkGvXLly8ODBzs7OpuoAAADLmSb3l56eHh8ff/Xq1fj4eH3r5OTkpKamajTqjOYAADRKpinQM2bMWLNmjUgkqmOd+/fvayciy8vL/fz8DNk1AAC2MEGB3rFjh4eHR58+fepeLTIyMjIyUqMxLi6uoKDAYF0DAGARE1yDPnTo0B9//OHu7u7u7n7v3r3IyMjff//d+N0AAGA5ExxBHzx4UL0cFBS0f/9+5ikOAADzgU8SAgCwlInv3qSd0wAAAAqOoAEAWAoFGgCApVh3g+q6icXiL7/8kj7NyNC1a9foH8lXk0qlfD5f+x7ecrlcqVRqf8uOSqWSSCQ6P61fVVWl89t3JBKJUCjU/gYHmUzG4XC07xGuVCplMhn9XgSv3IW+doyODqPTgNHRKZVKKyurNm3aaG+qbk+fPq3v7TvqwUA3YWKbqKgone2LFi26fPmydvuhQ4dWr16t3Z6bmzty5Mh67WLcuHFPnz7Vbl+3bl1cXJx2+/Xr1+fOnVuvXWB0dBgdw11gdHR1jM6EcIkDAIClUKABAFgKBRoAgKVQoAEAWAoFGgCApcylQGunaihcLldn/I7H42lngOpY37S7wOgMtGuM7g130ThGZ0Km/E5CYyovL9f4wjRKZWWllZWVdlhSLpfLZDKd8UZ9m6pvu0Qi4fF49C9Go6hUqsrKShsbmzffBUb3hrvA6OjMdnQmZC4FGgDgH4d1h/QAAEBBgQYAYCkUaAAAlkKBBgBgKRRoAACWMscCnZuby3BNlUqVk5PDPOiSlZVVry8dVyqVz549k8vlr1xTKpWmp6cnJyc/ePCAyfraCgsLma9cr6/xLSwsLC0trX+Pap/LcM1XdqleA6QrKSnJycmprq5+vacz/3MieGHrieFra+j/U1My0V30TEkoFOp76N69e3369GnatOmsWbMKCgratm3L5XLd3Nz++usvneuPGDGCWrh7925gYKBAIODxeF26dHn8+LHO9dPT03v27Onm5jZu3LgHDx60aNFCIBA4OztfuHBBX5eys7OHDRsmFArd3Nx8fX1dXFysrKwmTZpUVFSkc/27d+/27NnT29t7zJgxWVlZTEZ9V4uzszO1oHP9pKSkCRMmqFSq27dvBwUFCQQCCwuLsLCw9PT0OnZRr17Vt0sqlYoQ0qtXr5SUFH0raCguLp4+fbqTkxN58SGF1q1bf/PNN3K5nOEW6h7Ca4wCL6wGfaMw9P8pezTmAp2vRx3/UVFRUfPnz798+fLEiRMjIyNXr14tk8m2b9/eqVMnneurNxUVFfXJJ5/IZLLq6uolS5YMHDhQ5/o9e/Zcs2ZNSkrK8uXLvb299+3bp1KpTpw4oW/7KpWqT58+ixYtKikpUbfk5ubOmDEjJiZG5/rdunX79NNPk5KSvv76a39///v372t0VRshxM3NLZCGz+dTCzrXb9eu3bZt26jhrF69Wi6Xy+XyNWvW9OjRQ98u6tur+naJ2tSpU6fatm07duzYGzdu6FtNbdCgQWPHjr1z505WVtbcuXM3bdp05cqVPn36fPDBBzrXf40/J7ywTF5YVf1fW0P/n7JHYy7QHA6Hp0sd5w1isZh6ny8qKiKEVFdXq1QqpVLp4OCgc331L97FxUUikVDLMpnM2dlZ5/rNmzenFjS2qW7X5uDgoH3oIZVKnZycdK5va2urUCio5ePHjwcEBDx//lxVZ4E+e/ZsSEjIsmXLqPGqVCo3Nzd9K6tUKmtra5lMplKpfHx8lEqlzhG9Ya/q2yX1pqh/1DZt2rRp02bBggXbt28/ceKEzvVtbGzovzKqQpWVlTk6Oupc/zX+nPDCMnlhVfV/bQ39f8oejfka9Lx58z799FO5Fp3f2UNxdHRMS0sjhDg4OHz88ccikYgQ8vDhQwcHh7r3FRgY+OTJE2r58ePH+r4CRygUPn78mBBy48aN8vJyajk/P7+OmwC4ubldunRJo/HChQuenp461/f09Lx8+TK13K9fv2XLlvXt2/fRo0d1dD4qKurKlSscDicsLOz06dN1rEkJCwv7/vvvVSpVnz59zp07RzVu3brV399f31Pq26v6dkmNz+dPnDgxNTV1x44dQqEwPj5+8eLFOtd0d3e/c+cOtXz9+nXqY8clJSXUL13ba/w54YVl8sKS+r+2hv4/ZRFTv0MYkEwmi4mJ0T4pq+NY8pdffnFycqIfGpw+fdrT01Pn1/CoVCpCiLOzs7+/v4eHx7Rp01QqVWpqqre399dff61z/b1799rb2wcFBbm7u//yyy++vr5jx4718fHRt75KpTp27JiTk1Pv3r1nzpy5YMGCDz74oFevXv/f3v2FNPWGcQA/Y5MZazsSjVwzJzlyZNBI8yZHmKwCkbzwJgpp94JFt95215+bXRbMCwUjQlEvQuii9EYQanShRJh/FkZNjqkxkHq7OPzG+GHL83re9308+36uUp7j9+H19JxxfHcWDAanp6f3rH/58mUgEDBvnhS/U1dX53K5/hZRtLi4eOXKldu3b5d/ZbG8vJxIJE6dOtXR0XHkyJF4PB6JRM6cOVPmNiV3V/tsiZX9te5pdHRU1/Wurq6urq5AIPDixQvGWDQaffLkyZ71HKdTERa2zMIy62sr+v8pHZX4LI58Pm/+BWNPi4uLXq+3oaHB/PLdu3fr6+vXr1/fs7hQKBiGsbm5aRiG3+8/e/bsly9fstns3+o1Tcvlcp8+fYrH44FAIJvNvn79urm5OZlMlml4c3Pz1atXHz9+/Pnzp8/ni8ViyWRyzwfBmNbW1lwuVzgcLn5nY2NjfHw8lUqVSSkaGhoaGxv75yfzLi0tvX//3jAMXdcjkUg8Hi//MLCDdLWfljKZzJ07d/75o0p9/vz5zZs3Lpfr8uXL9fX1mqatr6/X1tZa+iHlT6dSWFhLP0Qru7ai/58SUUEDOpfLeb3e48ePiztEdL2mafl83uPx6LouqF5OhISFEh2BhRUXIXqhOBZWGdUv4QXi2Ftj9RDR9cz61iuOrVoSIiQslOgILOzhPck5FpYIJw9ojr01Vg8RXc+sb73i2KolIULCQomOwMIe3pOcY2GJqIgBvf+9NVYPEV3PrG+94tiqJSFCwkKJjsDCHt6TnGNhiXDyNrsijr01Vg8RV2916xXHVi0JEUWiF1ZcBBb28J7kB1lYxVRdGSTQrO+tsXqI6HpmfesVx1YtCRESFkp0BBb28J7kHAtLhJN3cXDsrbF6iOj6Iqtbr6zWi46QsFByfhdY2MN7knP87pRz8oAuMgyjUCjour7/Nw5ZPUR0PSLoRBBsCRHiWlJM9Ut4gTieqmX1ENH1iKATQbAlRIhriQiPzIuBZH19fX6//+3bt7quP3r0qKmp6fz584ODg8vLy+l02pZDRNcjgk4EwZYQIa4lKlRfIQTieKqW1UNE1yOCTgTBlhAhriUiqN8jPwiOp2pZPUR0PSLoRBBsCRHiWqJC9RVCII6nalk9RHQ9IuhEEGwJEeJaIsLhuzg4nqpl9RDR9YigE0GwJfOQ4eHh+vr60kNWVlba2tpsqXdGBEdLJKi+QkAFSafTxY//YIxtb2/fu3fPxnoJEQRbYoz97wOrtra2ampqbKx3RgRHS8o5+R40UDM+Pt7e3v7hwwdN06amps6dO/fjxw8b6yVEUGspk8mYN1irS+i6fvHiRVvqnRHB0RIVqq8QUFnGxsZisVgikWhra5ubm7O9XkIEtZZ+//7d09NT+lmrpR8xfPB6Z0RwtESBk/dBA0HV1dUej+fXr1/mqxjb6yVEUGvJ5XKZH4myu7v7/fv3UChkb70zIjhaIkH1FQIqSHd394ULF+bn5xljk5OTjY2NAwMDNtZLiCDYEmPs69evPT09VVVV5k3V/v7+2dlZG+udEcHRknIY0CDPwMBA6Ztrt7e3E4mEjfUSIgi2xBjr6Oh4+PDh1tZWJBJhjM3NzbW2ttpY74wIjpaUw4AGeSpzJ4CEiNOnT5v/MEcPYywajdpY74wIjpaUwy4OkKEydwJI22xw9OjRbDZb/HJhYaH8nWur9c6I4GhJPdVXCKgUlbkTQM5mg4mJiWPHjiWTSZ/Pd+PGjWAwODk5aWO9MyI4WlLO4e8kBFIKhcLjx4/v37/v9XpXV1dHRkbu3r3r9XrtqpcQQbAlUy6Xm5qaMgwjFApdvXr1xIkT9tY7I4KjJcVUXyGggty6dau7u3tnZ4cxtrGx0dvb29fXZ2O9hAiCLTHGOjs7yxccsN4ZERwtKYcBDfKEw+HS/Qm7u7uhUMjGegkRBFtijN28efP58+elbxC3t94ZERwtKYc/EoI8brc7l8sVv1xYWHC73TbWS4gg2JJZk0ql/H5/OByu+4+N9c6I4GhJObyTEOR58OBBS0vLpUuXampqvn37NjMz8/TpUxvrJUQQbEnTtGfPnlVVVZWvOUi9MyI4WlIOfyQEqZaWlqanpw3DCAaD165dO3nypL31EiIItgROhQENAEAU7kEDABCFAQ0AQBQGNAAAURjQAABEYUADABCFAQ0AQBQGNAAAURjQAABEYUADABCFAQ0AQBQGNAAAURjQAABEYUADABCFAQ0AQBQGNAAAURjQAABEYUADABCFAQ0AQBQGNAAAURjQAABEYUADABCFAQ0AQNQfkUtWjBfHRl4AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"markdown","source":["# **Step 3: Quality check**\n","\n","Here we perform some standard QC procedures."],"metadata":{"id":"q09cxw0pGT94"}},{"cell_type":"markdown","source":["## Expression of *Xist* gene\n","\n","Xist is a lncRNA regulating the X-chromosome inactivation process in mammals, used to equalize the dosage of X-linked genes between female (XX) and male (XY). It should thus be expressed only in female samples"],"metadata":{"id":"Ohz9GBMxGpdp"}},{"cell_type":"code","source":["%%R\n","\n","df <- assay(vst)[grep(\"Xist\", rowData(dds)$gene_name), , drop=FALSE] |>\n"," as_tibble(rownames = NA) |>\n"," rownames_to_column() |>\n"," dplyr::rename(Gene = rowname) |>\n"," pivot_longer(cols= colnames(assay(vst)),\n"," names_to = \"Sample\",\n"," values_to = \"Normalized expression\") |>\n"," left_join(y=as_tibble(colData(dds)), by = join_by(\"Sample\" == \"sra.sample_title\")) |>\n"," left_join(y=as_tibble(rowData(dds)), by=join_by(\"Gene\" == \"gene_id\"))\n","ggplot(df, aes(x=group, y=`Normalized expression`, colour=tissue, group=tissue)) +\n"," facet_wrap( ~ gene_name, scales = \"free_y\", ncol = 1) +\n"," geom_point(position = position_dodge(0.2), alpha = .8, size=2) +\n"," scale_colour_manual(values=myPalette[1:3]) +\n"," theme(axis.text.x = element_text(size=10, angle = 90, hjust = 1, vjust = 0.5))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":497},"id":"Qi6_pG-iGRwa","executionInfo":{"status":"ok","timestamp":1718911625207,"user_tz":-120,"elapsed":1058,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"4ce3431c-53cd-4c92-ba5a-5921021c82de"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nO3dd2AUVeIH8PembMsm2RSSECCkQEKVZtCEkoic4AknHqAoKsoFEREP705EFE+K5SfwAws/sYBAwE5T6lESOlKEo4m0gPQUNnV3s7sz8/tjvZALG4GQzMzOfD//3O4eSb5Pki+Tt++9oZIkEQAAUB9G6QAAAOAfChoAQKVQ0AAAKoWCBgBQKU6Gr2G32wVBkOELAYA6sSwbFhamdIrAI0dBl5SUuN1uGb4QAKiTwWBAQdcBpjgAAFQKBQ0AoFIoaAAAlUJBQ4PbunXrnj17lE4BEHhQ0FDP9u3b98477xBCJEkaP358Xl5ejx49UlNTq/+ZkydPfvfddwoFBAgYcqziAF3p0qXLgQMHNmzYUFxcnJaWlpCQ8P3335vN5qioqG+++cZqtUZERBQUFFy6dKlLly4JCQlK5wVQLxQ01L+nnnrqlVdesVgsb7zxRtWL+/bty8jIuO+++/Ly8s6dO5efn492Bvh9mOKA+ud0OimlpaWlLper6sXBgwefOHHir3/9608//aRgNoAAgoKG+jdjxowRI0YMHTr0ww8/rHrx/PnzI0eOnDVrVk5Ojtvtxjm3ADeEKQ6oZ0uXLk1JSWnRogUhZOfOnVu2bPG9XlBQsGDBApvNlpKSkpSUNGXKlNatW7dr107RsACqRmW4kDlz5gy2egPomcFgiI+PVzpF4MEUBwCASqGgAQBUCgUNAKBSKGgAAJWSYxVHZGSkqg7sZ1nWYDA4nU6lg8iK53mGYSorK5UOIiuj0SiKosfjUTqIrMxms9vtVtsPndIRApIcBe3xeFT1vUIpZRhGbz+0HMcRQvQ2aqPRKEmS3kYdFBSktn+WRFFUOkJAwhQHAIBKoaABAFQKBQ0AoFIoaAAAlUJBAwCoFAoaAEClUNAAACqFggYAUCkUNACASqGgAQBUCgUNAKBSuOUV+bXi17PlZ4L54Ha29hyD/yAAoBZ676PtV7YtOfudhTN7RW/bsPZDEh7lGV7pUAAAhOh8ikOUxG/OfB1qCOUZg5mzHLEfPmw/pHQoAIDf6LqgHV4HQ6/9F2AZtsxbpmAeAIDqdF3QVt4qSIIk/XZSrUtwxQXFKRtJNm7RXeDKd4u42zqAeul9Dnp8+wkbLq0/cHW/IHoHJTwcb01QOpEcDtsPfXr8E47hvKLniaSn7oy8U+lEAOCH3gs61hL7RNKTD8U9ZGYtOlnCUeGt+PT4J+HGcN/TRacXtghpYTPYlE0FANfT9RSHDyU0mA/RSTsTQvKdV4ysseqpkTVdcl5UMA8A1AYFrTs2Y5hXvHa3Oq/gsfFhCuYBgNqgoHUnzBB2X5O+pZ5Sl1BZ5inLiMlobGmsdCgA8EMvv9dDdX2b3N86tPVl5+VGpqjE4ESl4wCAfyhonWpujW9ujVc6BQD8HkxxAACoFAoaAEClUNAAACqFggYAUCkUNACASqGgAQBUCgUNAKBSKGgAAJVCQQMAqFQddxKKorh8+fJly5ZlZ2cTQiRJ+uSTT+x2u9vtfumll8xmc72GBADQozoWdElJSUpKSmxsrO/p/v37g4ODR44cefbsWa/XW3/xAAD0q44FHRYWFhZ27YzKEydOOByO2bNnMwzzl7/8xffisWPHzp8/Twjp0KGDyWS6/az1heM4SqnRaLzxH9UQjuMYhtHbqFmW1eHfNaWU53lKqdJBrlFVmABSP4cleb3e6Ojo/v37r1ixIicnp0+fPoSQAwcObNmyhRDSunVrm01FN+yglDIMo6p/M2TAMAylVG+jZlmWYRiG0dd7LQzD8DzPcSo6Ck2SJKUjBKT6+Sts3rz51atXCSFBQUGVlZW+F4cMGTJkyBBCiN1uLykpqZcvVC8MBoPFYlFVJBmYzWaWZcvLy5UOIiur1SoIgtPpVDqIrGw2m8PhcLtVdEdglmUNBoPSKQJPHa8sjh079uabb54/f/7NN9/cuXNnWlra6dOnp02btmvXrnvuuad+Iza0k2UnNl5a/2PBLtziGgBUhcrwq4fdbhcEoaG/ys3zXUEXFxcTQnIubVp1bqWZM3klobWtzSMJQ4yMNucrcQWtH+q8gq7+rhXcJH3NzdUgSMLyX5cFG4I5hjexpp/tRw5fPaR0KJkUuYqOlRwrrCxQOggA1EpFbyPIzyW4GHrtnyiWsg7BoWAe2WzP3/bdmW8NjMEjefo17d+r8b1KJwIAP3R9BR3EBXWO6CIS0ffUITjjrQnKRpJBmaf02zPf2Aw2C2cJ5UN/OPd9Aa6jAVRJ1wVNCOnb9P7E4MSCysICV8GQxEebBTVTOlGDK3QV8gxf9dTAGAqc+QrmAYDa6L2gC52F+4t+srBmI2O8UHFelESlEzW4SFMjj3Dt7SO36I42RyuYBwBqo+uCloj00S+zwwzhQVxQiCFkZ/7OYyU/Kx2qwQXzwUMSH7O77RXeiuJK+4C4hyKMkUqHAgA/dP0mYYWngqNs1VMDy+e78tuQtgpGksfdjdLa2Nrmu/IjjRE2AxY/AaiUrgs6iA/yStcWaLsFj35+2S90FRa6CgghoQYbJTgnAUCNdF3QlNBRKaPn/PJ/JtboFYXu0d1TQlopHUoOq8+v3HhpI0s5UfJ2j+oxoPmflU4EAH7ouqAJIa1trd/q8vZFx8VgPiTGHKN0HDlcrSxac2Gt01tBJUai4sbLG1Mb3dXE0kTpXABQk94LmhASxFlbhiQrnUI+V5xXHN4KnnKEEkIYp7figvMCChpAhXS9ikPPpGsPcFIvgEqhoHWnsSXWwlkEyStIglfyWlhLM4v2t+cABCIUtO7YDLb+zf4UYggNM4bbeFvfpn1jzI2VDgUAfmAOWo/ui+3TJrTNZdflKGNUnLW50nEAwD8UtE41DWrWVAcHjwAENExxAACoFAoaAEClUNAAACqFggYAUCkUNACASqGgAQBUCgUNAKBSKGgAAJVCQQMAqBQKGgBApVDQAAAqhYIGAFApFDQAgEqhoAEAVAoFDQCgUihoAACVQkEDAKgU7qiiTdK//y2dOEkaNaLp6ZTH3zJAQMKPrgYJ2YuERYupxUI8btq9B/ePvxEOf9EAgQdTHFojlZcL8+bTsDBiNBJrsLRls3Tg30qHAoC6QEFrTnHJf81pcLxktyuXBgDqTvu/+Yo//igd+DcNCaG976WNGikdp8HRxjFSZSWVJEIpIUSqcNBWKUqHAoC60HhBi8uWC3M+JsHBRBDInI+5776hjRqdLXJ6izxhBsFqZJUO2ABYlv9kjmfESEIoJSL7+uukabMNPxfN33GBUDKwU3S/O6J4liqdEgBuTOMF7Z31Pm0cQwghHCeFhYu5m7ObpG0+fpXn2AqXZ2K/pFYxVqUz1j8pv4CyrGQwSl4PuXhxV17xl7svRYUYCSFrjxRwLNP/Du3/JgGgAZqegxZFwly7VKQs8+u5ou0n7TYLH2ziIoP5yStPKZiuoXg83okTpagoxhZKGzUSF39xZfe/OZbml1bml1aKErlY7FQ6IgDcFE1fQTMM99AAIXczMRgIIVJp6bnmKYbK3yqbEspQ6vaKBk5b/0pdyScMSy5fEctKJYkwkZHMuXMXzb/9olDqJL9eRUEDBAZtddN1mGFPMpkZ0uUr0uVL3D/+buzU0S1Ivv9LIpIoSVprZ0JIRDi5WiQ5HITjKc9LBflF7t/GSAkRJVJY5lE2IADcJE1fQRNCQkPZF8awL4zxPUuVpJ8vV/jmoB0uz8QHkpRN1yDsdhISSsvLCcMQSaKhoaLXy7GUSESSCMuSggq30hEB4KZovaD/G0PpU+lN+rSP9hI+3OgNMmhwFYcUHEw4jiYmkspKwvPEVRkSHSYKkoFlJSIJotQmNljpjABwUzT3C/5NaB5had8sVJPtTAihwcHcY49KFQ5iMEgeD+2efu+Q3gaOYRnCswzP0WFpsUpnBICbIscVNMMo+c+AdO68eOgQtVqZu+/yvVvoy8Oy2ixoQgiT9RfKsuKBg7RpLD/6uUbB1oV/6fTzFadXlFIaGcODDEoHlA/DMJIkafjvujYMw6hq1MqWQOCSo6A5jpMkSYYvdD3vlq2uVybQ4GDiFUh5WdDG9TQoiGVZSinP84pEkoF7/gLvt99RS5CUd1qQJOMr48OspoywYIZhKisrlU4nK0opwzAa/rv2i1KqqnYmhFCKvVF1IUdBu91uQRBk+EJ+vvS4cTQ6RvJ9c7DUuWo186f+BoOB53mXy6VIpAZXVu7+fD6NipIIIZzFnbtZzMxkuqb6fmg1O+pacBwnCILeRm0ymTwej9utoneDWZYNCgpSOkXg0fTvHaJIKEOq/unmDVJRkaKB5CCVlv7X4aIcR0tLlYsDAHWn6YJmGKZvX1J18e6ooC1bEkKKHZ7zV50eQVQyW4OhMdGkspKIIiFEkiRaUUFatRJE6fjl8qMXSyu92hw1gCZpfJkdO/QxsbxM2LyVSBL79DCanv7N3ssrD+bzHOtye996KLl5hFnpjPWNZfm5nwlffy1t3EQEgZs6xREVs2DLuZ9+LSWEOt3eGQ+3igkxKp0SAG5M01fQhEhFhd6t22mQmZhNUn7Bgbyr644URlgNNgsfEWyYsPy40gEbBG2RxL06gV+90rA5h/bovuFo0aEL5SFmPsTMhVsNaw4VKB0QAG6Kxgva+9exTHQUCbXR8HBpx3bv+o0m/rcpaYYQSqhbw7/ym0y+/y0odxv+85sSS8mGY9qfiAfQBk0X9H+/SSjxxojyIo/32oI/SZNncVwnKthQNWpBlP7QOlLZPABwkzRdTwxDRMn3dhkhhLiczTokd4kPLXN5HW6hsNzz9/sSFM0nk96tI9o1CS5xekpdnqsVnj+2x2HQAIFB428S8p9+7H3mGclkJl6B+1M/plfmELdoNvLllWLHJubOcSFKB5SDxcA+m9HsUpkoUSbaQnA7FYBAofGCpskt+XVrpTNnSJCVNm1S5vKOWnw01MwZOG7P6aIKt/iH1hFKZ5QDQ2mLaCvLsuXl5UpnAYCbpekpDh+jkaak0KZNCCF7zpSEmFgTz3IsDTVzC3acFxXagw4AcEM6KOhqKioFttqhLZRQje5WAQAt0FdBp8QEVVR6fY8FUcpIDsOELAColr4KOjk66OluTQvK3PmllR2aBv+5c7TSiQAAaqXxNwmvl5Ec/od2MbzRVFGGI4QAQNX0dQVdhWd1OnAACCDoKQAAlUJBAwCoFAoaAEClUNAAACqFggYAUCkUNACASqGgAQBUCgUNAKBSKGgAAJVCQQMAqBQKGgBApVDQAAAqhYIGAFApFDQAgEqhoAEAVAoFDQCgUv7vqFJeXr5mzZqrV69K/7np9bPPPitjKgAAqKWg+/fv37hx46ioKJnTAABAFf8FHRsbu3jxYpmjAABAdf7noG02m9PplDkKAABU5/8K+sSJE/Hx8W3atGFZ1vfKhg0bZEwFAAC1FPQrr7zC87zMUQAAoDr/BZ2enp6dnb13715KaVpa2tChQ2WOBQAA/gv6ueeeczqdPXr0IISsWLFi796977//vrzBAAD0zn9B5+Xlbdq0yfd41KhRvXr1kjESAAAQUtsqjsrKSkEQfI8FQah6DAAAsvF/Bd27d+9u3bplZmYSQnJycvr16ydrKAAAIIRWbeauIScnZ9euXQzDpKWl9ezZ83a+ht1uV9U1uMFgsFgsxcXFSgeRldlsZlm2vLxc6SCyslqtgiDobVG/zWZzOBxut1vpINewLBsWFqZ0isBTs6CHDBny1VdfXX/JvHLlyjp/DRS0GqCg9QMFrRk1pzhGjRpFCBk7dqwSYQAA4JqaBZ2RkUEI6d27t++pKIoOh8NqtcqdCwBA9/yv4pgzZ87777/vcrm6dOmSlJQ0c+bMGn9AFMWlS5c+8cQTvqclJSWTJ09+5513Jk+e7HK5GjYyAIA++C/ozz///Nlnn12xYsXdd9998eLFpUuX1vgDJSUlKSkpsbGxvqdnzpz585//PH78+KSkpIMHDzZsZAAAffC/zM5isRgMhjVr1jz++OMsy1YdmVQlLCys+pR/hw4dCCFer/fUqVN//OMffS/m5uYeOnSIEDJo0CCbzdYg8euEZVmGYYKCgpQOIiuO43Q4ap7nfX/dSgeRFcMwJpMJx+logP9vXJZlX3zxxe3bt/fs2fPHH3/0eDw3/EQlJSUzZsx47LHH8F4tAEC98H8FvXjx4iVLlqxatcpgMJw/f37u3Lm//1nKyso++OCD5557Ljw8vOrFzMxM31YXu91eUVFRf5lvl2+ZnaoiycC3zE5vo6aU6nCZHc/zLpdLbcvszGaz0ikCT60bVXxqW8Vx7NixJUuWHD16tE2bNr169crLy9u9e3ejRo0IIb17977rrruq/2Gsg1YDrIPWD6yD1gz/BT1nzhy32/3MM8+kpaVdvHhx/PjxL774Yp2/BgpaDVDQ+oGC1ow6ruIAAICG5r+gq1ZxDBw40O8qDgCAhvbFF18QQjZv3jxkyBClsyij3lZxAADUI4fDMWPGDEJIRkbGV199pXQcZfgv6MWLF7ds2fLmV3EAANSvkSNHnjhxYtiwYRs2bOjXr19+fv599913zz33pKamzpkzhxBy/Str164dMGCA78OzsrIWLVpECHn33XczMzPvu+++kSNHVlZWKjiiOvBf0Dabjef57OxsQkh8fHxCQoK8qQBA71599dXExMQFCxb4ni5ZsqRt27Y5OTnbtm3z9ez1r1xvy5Ytubm5ubm5//rXvxiGWbhwoXwDqA/+10GPHj2a5/k9e/ZMmTJl48aN77//ftV/JgAA+d17770zZ84sKSnp27ev79DN61+5Xm5u7tGjR30bMsrLyyMjI+XMfPv8X0Hn5eV99NFHvuXP48aNO3v2rLypAAD+S3Jy8uHDhx999NH169enpaWJonj9K5TSqj/v9XoJIUajcdCgQb6L6L17906ZMkW5EdSF/4L2jc3H6XTqbfsZACiOYZjqExdLlizZv3//H/7whzlz5pw/f97hcFz/SkhISH5+PiFEEIQ9e/YQQrp377569WrfEZvTp0/ft2+fUsOpG/9THH369HnggQfOnDnzj3/8Y9WqVcOGDZM5FgDoXFxcHKW0Z8+er7/+OiGkdevWI0aM4Hne4/G89NJLVqv1+le6du1qs9kGDhwYHh7epk0bSZK6dev25JNPZmRkmEymuLi4MWPGKD2sW1PrVu/c3NzNmzebTKbu3bt369btdr4GdhKqAXYS6gd2EmqG/yvoefPmDR8+3DezDgAAivA/B52dna23C0wAALXxfwVtMpkSExPbtm1rNBp9r2zYsEHGVAAAUEtBjxs3DrdjAABQlv+C7tKly7x58w4fPkwp7dix41NPPSVvKgAAqGUOesiQISdPnkxPT+/atevOnTuHDh0qcywAAPB/BR0SEvLhhx/6Ho8YMeLee++VMRIAACksLKzDRwXcZu7f5/8K2mw2OxwO3+Pi4uJmzZrJGAkAAAip7Qr69OnTzZo169y5s9frPXDgQPv27fv160cIWblypbzxAAD0y39Bv/rqqwzj/+IaAADk4b+g09LSgoODq55evHgxNjZWrkgAAEBIbXPQd9555+bNm32PFy9e3LNnTxkjAQDUorJSOnRY+uUXoqbjfRqO/yvo5cuXP/fccx06dPj1118NBsOOHTtkjgUAUIN04aLnsaHUYiGSRHv24F54gViDbvhR2dnZ8+fPN5lMTqdzypQptR39duDAgdzc3LFjx9Z36tviv6Bbt249derUhx9+2Gq1/vDDD1FRUTLHAgCoQfj6GxoVRViWECLt3iuuWMEMfez3P2Tfvn0LFixYvXq10WgsKCj48MMPU1JSnn32WZvNVlpa+vnnny9atGjTpk0tW7Y8c+ZMXl5ely5d3nvvvfDwcEmSZs+ePXXq1A4dOtx3331/+tOf1q5dW3X0hWzYN9544/pXR4wY8c033yxfvrxv377Dhg0rLCy8nVkOl8tV26GmimBZlud53xne+sHzPMMwqjqCUgYGg0GSpOo3oNADk8nk8XhUdcYvwzBms/mWPqRqpW8V7yuv0pDf3huTWJZYrcx1l8MWi6X60wULFtxzzz2dOnUihAQFBd1zzz3vvfdez549X3nllQsXLuTl5UmSxHHc1KlTRVFs1qxZXl5eWlrahAkTjh8/XlhYmJWV9fLLL+/fv/+FF15Q5Nas/uegW7dunZOTk5SU5NtJWFJSInMsAIAamD/1p1X/6lS6mSZNbvghkiTVuDo8e/Zs8+bNCSEJCQnnzp0jhMTFxVX9v2fOnPniiy+eeuqp7du3FxcXGwyGfv367d69+zbPxK8z/wU9evTouXPnTpw4kRBy5MiRqVOnypsKAKAm9uHBYn4+KSklxcVMahfmwQdv+CF9+/b95JNPfBfjV65cycrKSkhIOH36NCHk9OnT8fHxhBDfnQwppaIoxsfHZ2VlzZ8/f/bs2YMGDSorK/vhhx/uv//+pUuXNuzYauH/jipZWVm+u3rv3bv33XffPXLkyO3c1Rt3VFED3FFFP7RxRxX/W71dLvGX49TA0+Rk32R0Dddv9V60aNGnn37qm/p466234uLiRo0a5ftPNHfu3OzsbEJIVlbWoUOHhg4d+uabby5atMhsNtvt9k8//XTy5MkPP/zw3Xff3adPn6VLl8p/Uxj/BX3vvfdu3LgxMzMzNzeXEFL1oG5Q0GqAgtYPLRf0jejiLA7c1RsAQHH+C7r6Xb07d+48cOBAmWMBAID/ddATJkyouqv3Z599ptQ7mAAAeua/oAkhmZmZuKs3AICCcGQdAIBKoaABAFSq5hTH/Pnzr/9DkiQ9/fTTcsQBAID/qFnQu3btIoRcvHjx8OHD6enpgiBs27YtPT0dBQ0AILOaBT1nzhxCyGOPPfbzzz/7jm4qLy8fPny4AtEAAPTN/xz02bNnqw7Ws1qtZ8+elTESAECtxJrHH92aZcuWrVu3rv7iNCz/y+ySkpLuvffetLQ0SumOHTsSExNljgUAUIPLK3637/LawwVEIoPujPlThyiG0t//kLVr127YsGH69OmEkAMHDkyfPn3RokWyhK0f/gv6888/X7169cGDByVJev755/v37y9zLACAGlYdzN9+0h5pNRBCVh7Mjwgy9Gh5y6cXzZkzx2q1lpaWbtmyJT4+/vjx43Pnzv3yyy+rPxUEofqh/k6nc8SIEZTS+Pj48ePHZ2Vl2Wy2ysrKL774Yu7cudu3b2/atOnp06fbtWt38uTJ7t27V1ZWVv9sixcvjoyMHDJkyNSpU++8806LxTJjxozQ0NDY2Nh33nnn99P6L2iv13v58mWXyzVlypR9+/YJgsBxtW5pAQCQwdL9VxpZDb7HQQb2RH7FzRT0kiVLDh8+TAgpKyurOnSfYZhWrVq98cYbn3766ZIlS2o8LSgoeOSRRwYPHjxr1qzvvvvu3LlzTz755EMPPbRgwYKLFy+++uqrd9111+OPP37s2DGGYVq3bj1+/PjevXsPHDiwadOmAwcOfOihh6p/thp51q9fP2jQoCeeeOLQoUM3DF/redA//fTTmjVrCCEbN2585plnbviJAAAaVEbL8KrHokRMvJ/jRq83cODAtWvXrl27dvbs2dVf9x3bHxMTc+nSpRpPaxzqf+7cOd+h/sOGDbPZbHPnzh07duzhw4d9pyTGxMQQQkwmU0xMjMlkqqysvP6TV/fiiy/u37+/Z8+eOTk5Nwzvv6Dz8vI++ugjq9VKCBk3bhzeJAQAxXVNCL1a4fYKktsr2is8PW99fqO6vLw8QsjZs2ebNGlS42mNQ/0TEhJOnjxJCPnggw98N2udNWtWs2bNRFG8mU9uNBp9rX3+/HlCyIkTJ955553Nmzd//fXXN7zxXq1THFWPcdwoAKhBx2Yhkx9MPnCulGPoXQm2RsGG2/lseXl5zz///KlTp7788suvvvqq+lNBEEaNGrVp0ybfof5lZWVZWVlff/11XFzc/fff//bbby9btqxt27azZs3q1avXDT95YWHh6NGjT506lZ+fL0nShQsXJk2aFBUV1aVLF5PJ9Psh/R/Y/9Zbb23fvv3IkSODBg1atWrVsGHDxo8fX+f/EDiwXw1wYL9+4MD+G/K9Vfj444/7fXqb6vGzyXHcKM/zqnqPkeM4Sqn8d1BXFsdxDMPobdQsy+rw75pSyvM8vdESNDmpKkwA8X8FXUNBQUGjRo3q/DVKS0t/Z7JGfjzPm0ymsrIypYPIymg0six7/a3stc1isQiC4JsB1I/g4GCXy+XxeJQOcg3DMCEhIbf0IbjlFantCrp58+bvvffegAEDfE8HDx58O/ckFARBVVMcDMNIklR9nl0PfJdUehu1KIqiKOpt1JIkCYKgqlGz/m7wCjfkfxVHcHDwe++999prr6nqyhcAQFf8F7TNZlu/fr3D4XjggQfsdrvMmQAAgPzOLa84jvvf//3fr776KiMjQ28TlwAAauD/CnrYsGG+B0OGDFm8eHGrVq1kjAQAAIRcfwU9ZMiQr776asWKFStWrFAkEAAA+NQs6FGjRhFCxo4dq0QYAAC4pmZBT5s2bdq0adf/ud69e8uSBwBAbsuWLbNYLH369FE6SE01C9rvtXNRUZEsYQAAaiUR6eDVf/9c8jNH2U7hnZNCWtzwQ9auXTtmzJi2bdsSQkpLSydMmFDjWvPAgQO5ubmqnTOoWdBV6Q8cOODbyVNZWTlp0qRHHnlE7mgAANXsLvjx2zPfWDmrRKXt+dueb/XCzXT0gw8+6LujyrZt2z7++OM777wzKysrPDxckqTZs2dPnz49Ly/vxIkTaWlpDodj69atCQkJe/bs+fLLL91ud/Wz+RXZa+N/md0LL7ywdevWixcvtmrV6uDBg6+++qrMsQAAajhZejKYDyaEUEJDeNsB+4GbKegVK1acPHnyypUr4eHh77333pw5cwYOHPjoo49Onz591apVAwYMOH/+vClcP04AAB7/SURBVO9UOYZhkpOTJ06cOHny5O3btycmJlY/m993GS4z/8vs9uzZs3///rS0tM2bN2/ZsuXixYsyxwIAqKH6iUuUEEm6qX3ODz744PLly99+++1GjRq1aNHizJkzX3zxxVNPPbV9+/brj7Rs3LgxIcRisTidTrPZXONsfvn5L2ie5wkhLpdLFMX27dv7bhgDAKCgWEusw+sghEhEKveWtQptffMfm5mZee7cuZ9//jk+Pj4rK2v+/PmzZ88eNGgQpbS2Ay1mzZp1M2fzNyj/UxwtW7Z8//33U1NTBwwYEB8fjzcJAUBxPaJ7UkLPV5wjhKSEtm4X1v6WPnzixIkTJ0785JNPRo0atWzZMrvd/umnnyYnJ0+aNKlDhw7XL+Ho0aNH9bP5v/jii3obyU3zf9yo1+stLCxs1KhRdnb2xYsXhw4d6rvFVt3gwH41wIH9+oED+zXD/xRHcXHxunXrPvzww+LiYovFsmzZMpljAQCA/ymO/v3733HHHbdzSD8AANwm/wWdkpLy8ccfyxwFAACq81/QrVq1Wr9+/R133FG1NltjMzsAAOrnv6B/+eWXt956Kzw8vOqVM2fOyJQIAAAIIbUV9KVLl+x2O24jBgBKwW/tpLZVHC1atLiZu30DAEDDqXWKo3nz5m3atKm6iF67dq2MqQAAoJaCnjBhgm+3NwAAKMV/Qefl5Q0fPlzmKAAAUJ3/Oejs7Gy97YQGAFAb/1fQJpMpMTGxbdu2RqPR98qGDRtkTAUAALUU9Lhx4zAHDQCgLP8FnZ6enp2dvXfvXkppWlra0KFDZY4FAAD+C/q5555zOp09evQghKxYsWLv3r3vv/++vMEAAPSu1lUcmzZt8j0eNWpUr169ZIwEAACE1LaKo7KysuqIfUEQVHXcPgCATvi/gu7du3e3bt0yMzMJITk5Of369ZM1FAAA1HbLK0JITk7Orl27GIZJS0vr2bPn7XwN3PJKDXDLK/3Qxi2vgFx/BV31A5yampqamlr1otVqlTUXAIDu1Szodu3aVX9KKfV6vefPn8fhdgAAMqtZ0NUP5pckaeHChZMmTZo8ebKsoQAAoLY3CQkh+/fvHz16dOPGjXNzc+Pi4uTMBAAAxG9B2+321157bfPmzbNmzerdu7f8mQAAgFy/Dvqzzz7r0qVLfHz8/v370c4AAAqqucyOUpqYmGiz2WosjDtw4ECdvwaW2akBltnpB5bZaUbNKY5Lly4pkgMAAGqoWdAxMTGK5AAAgBr8n8UBAACKQ0EDAKgUChoAQKVQ0AAAKlXrTsJbcuHChQULFoSEhJSUlIwZMyYkJKRePi0AgJ7VzxX0wYMHU1NTn3/++fj4+BMnTtTL5wQA0Llaz4O+JQ6H47XXXouOji4uLp46dSrLsoSQ5cuX79q1ixAyZsyYyMjI2/8q9YVhGJZlPR6P0kFkxbKs72xCpYPIiuM4SZJUtU9KBgaDwev1iqKodJD/YjQalY4QeOpniuOHH37485//3L179+XLl2/evNl3D8P4+HjftwjHcapqQ5ZlGYZRVSR56HDUDMOIoqi3UXMc5/V6VfXPEqUUBV0H9VPQFRUVvhP9rVZraWmp78WOHTt27NiREGK3210uV718oXphMBh4nldVJBlQSlmW1duoOY4TBEFvozaZTB6PR21bvYOCgpROEXjqp6AfeOCBzz77bOvWreXl5c8//3y9fE4AqBeXnZdcgivW0sTAGJTOAremfgo6Ojr61VdfrZdPBQD1xSt6l/665MeCnSzlXIJrXLuXmwY1UzoU3AKsgwbQrP1Xf/qpaF8IHxrEBYUbwzdfzlU6EdwaFDSAZl1xXqma1qCE7i7cLUrqWtoBv69+pjgAQIUijZEe0UMZKhGJoUxqo64MxTVZIMHfFoBmdY7sYuWs5x3nLzouXHJcbGdrq3QiuDUoaADNOlp8pNhTEm2OaWSKijJHHys5pnQiuDUoaADNOl9x3syYjIzBxJo4yu3M34k56MCCggbQLJvBJpBrm/t9M9EK5oFbhb8tAM3qEnFnmafc6XVUCi672z4y+VmlE8GtwSoOAM0yc+YZqTOPlhytFFxJwUkRRhWdWQY3AwUNoGU8w3cI66B0CqgjTHEAAKgUChoAQKVQ0AAAKoWCBgBQKRQ0AIBKoaABAFQKBQ0AoFIoaAAAlUJBAwCoFAoaAEClUNAAACqFggYAUCkclgTaJElk/7nSo5evsAzt2tya1MiidCKAW4aCBm3adtI+b/t5m8UgErL64OV/9mvRIgodDQEGUxygTUcvlYWaOEoJS4nNwu86bVc6EcAtQ0GDNm09bif0t8cMkby4FR8EIBQ0aNMjXRs73CIhhEik1CW0b2JVOhHALcMcNGhT37aRhNBv9lzKaBWZEmXu0jxU6UQAtwwFDdrEs0z/Oxo9mp4gCILT6VQ6DkBdYIoDdESQhDJPmdIpAG4WrqBBL/YU7s4+tZCjbIfwTr0a39ssqJnSiQBuAFfQoAuXHJe+OL04whgRarDllZ2edvgdiUhKhwK4ARQ06MJ5xzkTa/Y9ppTy1FDkKlI2EsANoaBBF6xcsCh5q54KxBtsCFYwD8DNQEGDLrQMaXlHWAeH4HSLnjJ3Wb+mfzIyRqVDAdwA3iQEXeAY7pGER9sVt7e77XFBzRODE5VOBHBjKGjQC47hOoR3VDoFwC3AFAcAgErhChq0wuMRN26ULl4izZuzGT0Jh+9tCHj4JgZNEATvjJnS9u2SwUgrneTQYfavYwilN/5AABXDFAdogXT8uJSbS4KCKM8Ra7CwajW5dEnpUAC3CwUNWiCVlhGOrXpKWUYqw5kbEPBQ0KAFTEqyVF4h+TZvi6LkctLmzRXOBHDbUNCgCTYb/95MeuWSdOUK06mT4dNPiMmkdCaA24U3CUEjaIcOfG4O8XqxfgM0A1fQoC1oZ9AQOb6bjUajJKnoaEeWZRmGMZvNSgeRFc/zOhw1x3EMo6+rkGKHZ//ZYjNP48PN6llnSNUTJaDIUdBut1sQBBm+0E3ieZ7jOJfLpXQQWVFKWZbV26g5jhMEQT+jPnyx/O01p4KMnMcrdG8R9lR6U5ZRRTOyLGuxWJROEXjkKGhJklR1Be2jwkgNSvoPpYPISm+jfmvVyUbBBpZlRZ7Zeaq4bWPrXYk2pUMRor8ft/qir9/+ADSs0isy1a6XDRyTX+5RMA/cPryjAqARRo4RxWtXqpVesXGI4ceCXYtPL6KE9ozu2afJ/VbeqmREuEW4ggYdcYvuq5VFgqSid0Tq1z/7tygsc5e6PFcrPJkp4cFhV74583WEMSLcGL7/6v51F9YoHRBuDa6gQSskSTp4ULp4icQ3Z1q3vv7/335l2zdnvmYZ1it6X2zztwQtntmfHB00d1h7u4czUCHCTFefXxXEBfn+L57ht+Zveaj5QIbisixgoKBBEyRJ+GiO+P0PxGiUXC5u6GPMk08cPF925HI+x9Cuza28+erSX78LM4YJksgy7Myj/zur6/uarCpKCc8yHBEJISbWJEoiS387pUSSiCaHrGEoaNAC8eQpcfn3JDyMEELNZu+C7H+3SZt9yGGzGCRCvt9/8ZF7ygRJOFf+K6GESNRqsNrdVyOMkUoHr2enChyvf3/CzHMeQezbLvK+Ozot/3VZCB/CUMbhdQyOf0TpgHBrUNCgCUWFEs9VrWCgPH/2l3PBxminR6SU2Mz80fyiUm8pIZRKRCJSmbs0iNPg22UTV5ww80ylV2Qo+deRwpTo5pM6TdlXtNfhdbQMTm5t8zPzA2qGggYtoAkJxOkkwcHEt+TW5VpdbCkiLoYhRCKiRGyeq4Rh/rMcVyKEFlUWNrE0VTh3var0ih5Bcro9LEMliXhE6fgVR+e4mN6N/6B0NKgjTEiBFtDoaG7CK9Lly9LVq+TKFe6dN6Mb2xhKWUpZSimVvCLDEMoxHMuwHMNTSljNXZ3wLK30CL8thaaEoaTEiXXQgU1r36OgW0zvew3du5HCIhIdRXj+7NyDoRbWXuElhEQGG5owd9jpNoGIjEREIrUMSY4yRykduZ4JIrEYWKdHZCkRCbEY2KY2o9Kh4LbgChq0Q9yxU1i1UvppPyGkb5uIYCObFBWUFBXEM0yL8GajW40xUJ5l+S4Rdw5v+RftrWfgWdq3faNgE2vkWbOBJYR0aBaidCi4LbiCBo3wjB4jbd9JGSqIAvPHP/Z79fXySmHP2RJJIt1b2HqlhBu4yNlpc0RJ1F41V6GEiBJxuAWrkRMk0cCq4qQkqDMUNGiBtG2HuGMHNRgkQgjhhFVrwv4yfFRG4qMehqVSCH/tpB4Nt7NXENcfLYwKNrA2VhTFSo/w7wvlfwjBLEcA0+w3K+iKeOKX6icOU4ZKx45RSpqFW6JDtHzvK3HbdnfmPe7MXsKs96WiqzWOXRZFnCEX2HAFDVpAO3YkonjtuSQyHTsoF0cm0slT3n9OotExhBBx61bqruyTMXT7SbuFZUVJKqsU7mgarHRGuC0oaNACplMnZsCD0vIVImWoJDLDniRNmigdqsFJhw5RSqXjJwglJCSErF4zcOSzViNrdxEqid2SQhqHYn4jsKGgQSO4N/4pPfkk+eU47dCexMaKkrTrdPHxgisMle6Ms7ZprMF9g5L9qlRUSHgDIYQ4HCIhJot5QMdgm83mcDjcbrfSAeF2oaBBO2hiAklM8D3OOVa0ePclm8UgSWTD0fxX7k9qHROkbLz6ZzBKhFBRogwRBZExGGhlJeHxQ60deJMQtOlkgSPExBFCKCU2E7cnr1jpRPWPRkeTxo1JRBgJDqYxMaLRQMxafkdUh1DQoE2U0OpPiBbvKk3T02hFBTEapVAb8bj50c8RllU6FNQn/DYE2hQXYd59pjjEbCCElLq8HbS4noEGBfGrV0q5m0lxMW3bhnbsqHQiqGcoaNCm+9pEsAw9V+yRJPGO2BhNFjQhhAYF0Qf+qHQKaCgoaNAmhtI/tI6wWq2CIDidTqXjANQF5qABAFQKBQ0Q2KRffxX/fZCUlSsdBOofpjgAApUkisJHc8Tl31Oe9Tqc/MwZtFMnpUNBfcIVNECgkn78UVq1mkaEk5BQGh3tGfs3IuF0JE1BQQMErPMXJON/TtuglHKcVFamaCCoZyhogIDVpAlxVf72WJIkr5cGa3M1oW6hoAECFXP3Xdz9fchVu1RaRvLzuWnvanLDpJ7hTUKAgMUwzAtjyP3305IS2rIFCQ1VOhDUMxQ0QGBjWrZQOgI0FExxAACoFAoaAEClUNAAACqFggYAUCkUNACASqGgAQBUCgUNAKBSKGgAAJVCQQNon1f0Kh0B6gI7CQG0bGv+lm/zvmEITYtK/2PTfsE8TlMKJChoAM36ufjn78+uiDBGEEIOFx9mKTso/mGlQ8EtwBQHgGbllZ82cybfY45y2/K3ipKobCS4JShoAM0K4oJE8Voji5LEUPzIBxL8bQFoVqeIzqXeMrfo9kreUk/p0MTHlU4Et6Y+56BzcnJWr149bdq0evycAFBnIXzIm53f/qlon0twtQxJTgxOVDoR3Jp6K+ji4uIDBw6YTKb6+oQAcPuC+eCMmEylU0Ad1VtBL1iw4IknnnjvvfeqXpk/f/7GjRsJIW+99Vbjxo3r6wvdPkopwzA2m03pILJiGIYQos9RG6vurKoPLMsGBQVZLBalg1xTfSocbl79FPS2bduSk5MjIyOrv5iZmdmmTRtCiNlsrqioqJcvVC84jjOZTKqKJAOj0cgwjNPpVDqIrMxmsyiKlZWVN/6jGmK1Wl0ul9eros0pDMMYDAalUwSe+inovXv3EkJ++eWXX3/9dd26dX369CGExMfHx8fHE0LsdrvH46mXL1QvKKWSJKkqkgw4jiOE6G3URqNREAS9jVqSJLWNmmVZpSMEpPop6LFjx/oeTJw40dfOAABwm+p5md2UKVPq9xMCAOgW1kEDAKgUChoAQKVQ0AAAKoWCBgBQKRQ0AIBKoaABAFSKSpLU0F+jpKREVRs9BUFwu91ms1npILLyer2CIOht03NlZSXLsr5NOvrhdDoNBoOq9oYwDBMaGqp0isAjR0GrzY4dOz755JP58+crHURW2dnZeXl5r7/+utJBZDV58uTExMTHH9fXMZvDhg0bOXJkenq60kHgdmGKAwBApfT1q59PdHR0Zmam0inklpycHB4ernQKuXXu3LlRo0ZKp5BbZmZmTEyM0imgHuhxigMAICBgigMAQKX0WNCSJJWVlSmdQm4YtX7oc9SapLuC3rt37/PPPz9u3DhCyPz583fu3Kl0Ijlg1Bg1BCLdFfSyZctmzJgRFhZGCBk8ePCyZcuUTiQHjBqjhkCku4L23e/K9zgoKEjZMLLBqDFqCES6W2YXExMzb9684uLidevW7d69OykpSelEcsCoMWoIRLpbZidJ0q5du44dO8ZxXEpKSmpqKqVU6VANDqPGqCEQ6aig582b5/f14cOHy5xEThh1dRg1BBYdTXGkpKQoHUEBGLV+6HPU2qajgu7Wrdv1L65bt07+JHLCqKtg1BBwdFTQPkeOHPnuu+98y/i9Xq/X6+3Tp4/SoRocRo1RQyDS3TK7+fPnP/HEE1ar9W9/+1v37t0fffRRpRPJAaPGqCEQ6a6gTSZTYmIipTQ2NnbQoEEbNmxQOpEcMGqMGgKR7qY4zGbzli1bIiMj582bFxUVVVRUpHQiOWDUGDUEIh0ts/Nxu93FxcU2m23dunV2uz0zMzMuLk7pUA0Oo8aoIRDprqAPHTqUm5vrcDiqBj5+/HhlI8kAo/a9glFDYNHdFMeCBQuGDh0aHBysdBBZYdT6oc9Ra5XuCjo+Pr5Tp05Kp5AbRq0f+hy1VuluimPNmjXr169v2rQpw/y2gmXs2LHKRpIBRu17BaOGwKK7K+jc3NzBgwdbrValg8gKo9YPfY5aq3RX0HFxcWlpaUqnkBtGrR/6HLVW6W6K4+23366oqGjWrFnVL4AjRoxQNpIMMGrfKxg1BBbdXUFnZmbq8HhcjFo/9DlqrdLdFTQhRJKk8vJyva1D0ueoAQKa7s7i0Oc9j/U56urOnTv3zDPPKJ1CbvoctZborqD1ec9jfY66utjY2P/5n/9ROoXc9DlqLdFdQevznsf6HDUhRJIk38nILMv6/n3SFX2OWkt09yahPu95rM9R79279/PPPxdF8aOPPpo/f35KSooe1p+tWrVq5cqVHo+n6pXPPvtMwTxwO3RX0M8+++yuXbsopfn5+X369ElNTVU6kRz0OWrfxM7kyZMJIYMHD540aZIeCnrnzp0zZsywWCxKB4F6oKOC/uCDD8aMGTN37tysrCw9/KD66HPUPvqc2ImKikI7a4aOCvrMmTMvvfTShQsXTpw4Uf11bb+Los9R++hzYsfpdI4bNy4hIaFqo8rIkSOVjQR1pqN10IIglJSUzJ8//8knn6z+emRkpFKRZKDPUftIkrRr165jx45xHJeSkpKamqqHHRw7d+6sMcy7775bqTBwm3RU0KAf8+bN8/v68OHDZU6iCGxK0gwdTXFc79y5c1OmTPnkk0+UDiIrPYw6JSVF6QiK0efaFa3S3Tro6vS5jF8Po+7WrVu3bt2SkpIKCgp8j0+dOtWyZUulc8kBm5K0RI8Fjc0LOhn1zJkzY2JifI/vuOOOmTNnKptHHvpcu6JVupvi0OcvgPrcvCAIQtX7Yx07dly0aJGyeeShz7UrWqW7gsbmBf1o0qTJ//3f/7Vq1UoUxYMHD+qkqvS5KUmrdFfQ+vwFUJ+bF/76179u27bt1KlTLMump6d37dpV6UQNS8+bkrRKdwWtz18A9bZ5YfHixUOHDp0/f77vqdfrPXr06NGjR7W9zE7Pm5K0SnfroLF5wUfbmxd2797dtWvX7du313i9W7duiuSRh543JWmVjgoamxeweUHbfL83XP99rpPvcE3S0RQHNi9g7Yq21674Fnrr+ftcgySduXTp0rJly3yPFyxYcOXKFWXzyGPChAlOp/OVV16RJKm8vPyll15SOpEcnnvuudLSUqVTyO3bb7/1er2+xxUVFXPmzFE2D9wO3W1UweYF/axdiYmJ0eHaFUEQXn755SNHjmzZsmXChAk6eRtcq3Q0xeGDzQt6WLvy8ccfE0J4nv/73/+enJzMsqzvdW2vXfF55JFH7r777pdfftlqtU6fPt1msymdCOpOR28S+sycOdNoNFZtXjCbzaNGjVI6VIOTdLZ2ZdeuXX5f1/baFZ9ly5Zt3779iSeesNvt33///YABA3r27Kl0KKgj3RW0KIpVmxeSk5O7du1atTRYk3ybFz777LOsrCylsyhA0t/ala+//nrgwIEcxxFCKioqFi5cqIdLEK3SUUHrcxHS3//+d4ZhLly40KxZs+qv62Hzgj7XrhBCJEkqLS0lhISGhiqdBW6Ljuag9bkI6d133/W7eUEP9Hnuyr59+z7++GOj0SiKoiAIo0ePbt++vdKhoI50VNC+oxi0vZfsel999dXQoUNtNtv3339f/XVt/97go8+1K99888306dNDQkIIIXa7/d1333377beVDgV1pKOC9sHmBf3Q29oVH4PB4GtnQkhYWJhvMhoClO7+8lavXv3uu+/q510j3+8Nly5deuihh3yrzRwOR3Z2trZ/k1i+fHnPnj31efBmTEzMrFmz2rVrJ4ri4cOHY2NjlU4Edae7gtbz5oWnn366qKho6dKl/fr1UzpRwyotLZ0wYUJERERGRsbgwYOtVqvSieQzatSoXbt2nTx5klKanp5+1113KZ0I6k5Hqzh8mxfsdvvly5f1tnmBEHL27Fm9bV44efLktm3bdu/e3aRJk4yMjK5duxoMBqVDNbhDhw7l5uY6HI6qH+3x48crGwnqTEcFjc0Lut28cPLkyW+//fbAgQNff/210lka3D/+8Y+hQ4dWn8Rr0aKFgnngduhoiqOqiHW4ecHtdr/zzju+94tSU1MXLlyok4I+fvz4tm3b9uzZ07x587FjxyodRw7x8fGdOnVSOgXUDx1dQftg84IeNi/4Jjd27NgRExOTkZGRlpamnzce1qxZs379+qZNm1ZtkdXJv0yapKMraB9sXtDD5oWPP/64Z8+e7777rk5m26vLzc3V2/uiGqa7gsbmBT1sXpg2bZrSERQTFxenh2sOndBdQWPzAjYvaFtpaelrr73WrFmzqimOESNGKBsJ6kxHP6jYvIDNC3qQmZmp7bNkdUVHbxIuXLhwx44dvs0L6enpupqkE0WxavNCy5Yt77rrLvwM68S6dev69OmjdAqoIx0VtA82L/heweYFrTpy5Mh3331XVlZGCPF6vV6v98MPP1Q6FNSR7gq6CjYvKJgHGs5LL700atSohQsXPvPMMzt27GjcuLG2z13RNh3NQVfB5gXQMJPJlJiYSCmNjY0dNGjQpEmTUNCBS0cFXWPzwpAhQ/SzeSEpKelvf/sbNi/ogdls3rJlS2Rk5Lx586KiooqKipROBHWnoymOl156qWfPnj169NDh5oWXX355wIAB1d8X1fZGFX2aMGHCW2+95Xa7i4uLbTbbunXr7HZ7ZmZmXFyc0tGgjnR0BY3NC0qngIZVWFhICDEYDFFRUYSQ/v37K50IbpeOClrPsHlBD8rLyxctWnT9648//rj8YaBeoKB1AZsX9IBl2YiICKVTQH1CQetCjfmNdevWKZUEGo7ZbL7//vuVTgH1CQWtC9dvXsDuMu3RycEyuqKjVRx6hs0LAIGIUToAyKHG5oUNGzYonQgAbgxTHLqAzQsAgQhTHBqHzQsAgQtX0BqHzQsAgQsFrXHYvAAQuFDQGofNCwCBCwWtcdi8ABC4sMxO47B5ASBwYRUHAIBK4QoaAEClUNAAACqFggYAUCkUNACASmGZHdSdIAgjRow4evRo48aNQ0NDMzIy4uPjp02b5nK5Hn/88eHDh//zn//cuHEjz/PJyckffPDBpk2b5syZs3z5ckJIVlZWZmZmVFTUm2++mZSUVFFR4XA4Fi9eHBISovSwANQCBQ11t2rVqjNnzuzcudNut7du3TozM5Pn+V27dp06dSosLCwnJ2ft2rU7duxgWXbIkCHZ2dlNmjSp8RkYhjl8+PDq1auDgoJGjx49b9483G4coAqmOKDuDh482KNHD0ppeHh4r169fC+2bds2LCyMEPLjjz/ec889LMsSQjIyMvbs2eP3k3Tu3DkoKMj34PDhw3JlBwgAKGioO1EUq2516CtiQojRaPT7hyml1e+L6PV6fQ8EQbj+swEAQUHD7WjVqtXu3bsJIcXFxTk5OTX+37S0tNzcXFEUCSGbNm26++67Q0JC8vPzCSGCIFRdUO/fv7+kpIQQsnnz5g4dOsg6AAB1wxw01N2DDz745Zdfpqenx8XF9ejRg+P+69spIyPj/vvv981ytG7d2nd+ns1mGzhwYHh4eJs2bXy7WNu3b//CCy9cuHAhKCjo6aefVmYkAKqErd5Qd4WFhf/6178ee+wxSZK6d+8+a9as1NTUW/oMGzZsmDVr1sqVKxsoIUBAwxQH1F1oaOjq1avvvPPO9PT0zMzMW21nAPh9uIIGAFApXEEDAKgUChoAQKVQ0AAAKoWCBgBQqf8H1OBRd3kAOIkAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## Expression of Y-chromosome genes"],"metadata":{"id":"sec8OSKyHkqI"}},{"cell_type":"code","source":["%%R\n","\n","## Chromosome information\n","levels(as.data.frame(rowRanges(dds))$seqnames)\n","## How many genes are left in our dataset after filtering?\n","table(as.data.frame(rowRanges(dds))$seqnames == \"chrY\")\n","\n","df <- assay(vst)[as.data.frame(rowRanges(dds))$seqnames == \"chrY\", , drop=FALSE] |>\n"," as_tibble(rownames = NA) |>\n"," rownames_to_column() |>\n"," dplyr::rename(Gene = rowname) |>\n"," pivot_longer(cols= colnames(assay(vst)),\n"," names_to = \"Sample\",\n"," values_to = \"Normalized expression\") |>\n"," left_join(y=as_tibble(colData(dds)), by = join_by(\"Sample\" == \"sra.sample_title\")) |>\n"," left_join(y=as_tibble(rowData(dds)), by=join_by(\"Gene\" == \"gene_id\"))\n","ggplot(df, aes(x=group, y=`Normalized expression`, colour=tissue, group=tissue)) +\n"," facet_wrap( ~ gene_name, scales = \"free_y\", ncol = 4) +\n"," geom_point(position = position_dodge(0.2), alpha = .8, size=2) +\n"," scale_colour_manual(values=myPalette[1:3]) +\n"," theme(axis.text.x = element_text(size=10, angle = 90, hjust = 1, vjust = 0.5))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":497},"id":"9n3Bp--_HfeW","executionInfo":{"status":"ok","timestamp":1718911683211,"user_tz":-120,"elapsed":2285,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"046de127-bb8a-42f6-b5ad-b5f5972daa54"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOydd3wVVfr/n3Om3H7TG2kkkEKvAglSJCBNig0pllVWXV1B18Kiq9/lZ1kXWFFgbWtZKyoiIEjvEnoJRSQhlCQkkJ57c/u9M3N+fwzGbHLL3OSmMu8/fJl7z8x55jDz3DPnPM/nQYQQkJGRkZFpf+C2NkBGRkZGxj2yg5aRkZFpp8gOWkZGRqadIjtoGRkZmXYK3Wo91dTU8Dzfat21KDRNBwcHN/Mk8oA0wGAwcBwXEHvaHIqiQkJCmnkSeUBkWs9BG41Gp9PZat21KCqVqvn+qLa21uFwBMSeNkepVAZkQOx2e0DsaXMUCkXz/ZHJZLLZbAGxp81hWVZ20E1AXuKQkZGRaafIDlpGRkamnSI7aBkZGZl2Sidx0KtWrTp06FBbW9GW7N+//9ixY2az+Yknnjhy5EhbmyMjIxMAWm+TsPkcPXp0xYoVXbt2dTqdCQkJjz76qEKh8NS4uLh4xYoVKpXKarX+7W9/a/4WVrvi6NGjy5cvT0hIEP984IEHRowYAQC5ubl9+vRJTU198cUXFQqF3W7/+9//rlKp6g7sTMOydevWHTt2sCxrs9lmzJiRmZnptllNTc2SJUvqRkMQhMWLF1MURdP0woULd+zYkZ2dDQClpaVTpkxRKBT1/4yIiPj444+7dOkCAPPmzYuKimrNC2wyARmZmpqaZcuWKRQKtVr9/PPPl5SUfPjhh0FBQQaD4YUXXggKCmrli7o5oRYtWtQ6PRkMhmZGlZWUlNA0/de//nXcuHGlpaV79+5NTExctGhRbm5uQUFBamrqjh07amtrIyMjX3jhhX79+o0dO3by5MkXLlzQarX/+Mc/Ro0axbLsW2+9FR4eHhYW1hxLGIZp/g1qNBqbPCAlJSUMwyxcuHDs2LFjx46NiIjYsGFDUVHR/v37z549azQax48fP3PmzKKiIo7jqqurV65cefTo0fPnz3ft2vW2224L+LDQNB2QAZEeVZabm7t27dp//vOft99++6hRo/bu3TtgwICNGzeuXbv2woULmzZtunr16pYtW2pra10uV58+fepG48SJE+np6Y888khxcbHRaMzKyhozZsyoUaNOnDjx8MMPp6en1/8zPz+/R48ejz/++JgxY7RarfRrCUjcYW1tbRPC7AI1MgcPHrz11lvvv//+vLw8AMjLy0tMTHzooYcKCgowxnFxcX5ZRVFUh54NtBUddYnjjjvuyMnJ2bJly/Tp0+fPny8+PA8++OCWLVs+/vjjP/7xj2lpaQ6H4+mnny4vLx8wYMDo0aP37dsnCMLVq1dTU1Pb2vwAcODAgZd/oy46bdKkSYMGDXrsscf69+/PcdyFCxfS09NPnDgxatSoF198cdy4cUlJSZ1jWI4dOzZhwgSapgFApVI98sgjAIAxTkxMnDt3rsFgGDly5Pz58/fu3Tto0KD6o3Hp0iXxSlNSUvLz88Wzbdq0acyYMUqlssGfZrN53759r7/++ooVKzpKSHKgRkahUJhMJvGcBQUFWVlZP/7446JFi06fPj148OA2vMCbio7qoAkhGOOqqqqIiAgAiImJAQCapjMyMs6fP9+7d28AiIuLW758eVJS0s6dO7Oysnbv3n3mzJlBgwa1sekBYvjw4a//Rp1nqaOmpub1119/+OGHQ0ND77333vz8/KeffvrkyZPQiYZFEAQAOH78+IIFCx5//PHCwkIACA0NBQCWZUNDQ1mWdblc8L+jUf8M4hIZIWTPnj2jR48WP6z/58iRI59//vmXX345MjJyy5YtrXl1zSEgI3PnnXeePn16yZIllZWVLMuuXbt21qxZixYtGj58+M6dO9vism5GOqqDXr9+/S233BISElJdXQ0AxcXFAGC1Wg8ePDh06NCff/75q6++OnXqFACEhYVZLJbg4GClUrl+/fqsrKw2Nr3lMZlM//rXv+bNm5eWlgYAxcXFjz/++DvvvLNnz55PP/20cwzL0KFDf/rpJ7vdPnjw4CVLliQlJYkepzENRiM1NVV8Z8/Nze3WrRsA5OXlJSUlIYTE9vX/LCwsFLOrNBpNR5lBB2pkjEbjjBkzFixYgBBKS0szmUzie6pOp6utrW3NK7qZ6UibhABw4MCBkpISl8vVpUuXJ554orKycsmSJQcPHrRYLISQjz76aPbs2b169Xr++eefeuqpjz76aP369Q6H4+WXXwaAcePGrV69Wtzw6QRkZ2cXFRWJ/3/77bfX/2rNmjXl5eVvv/02AEycOJHn+c8//zw4ODgtLW3y5MnLli3rBMOSmpo6bdq0F198UaVSCYLQq1evpKQk0b80oMFoTJ48efHixQcOHFCr1XPmzAGAgoKC2NjYuvb1/wwODn777bfVajUhZOHCha1yZc0lUCNTVVW1dOlSnU4XFxeXkpKi1WrffffdPXv2mM3m5557rtUv6yYFtZpgf0FBQdumeu/cudNms02ZMqX5p1KpVPHx8c08SWFhYXtI9Q7IsCiVyrqQkiZTVFTUmVK9ExMTm3mSq1evdqZU765du7a1FR2PjrrE4S/ffPPN3r17J06c2NaGtC/kYZGRac90sCWOJjNr1qy2NqE9Ig+LjEx7plkOWhCE9evXr1u37ssvvwQAo9G4fPlylmWdTueCBQsahxbIyMjIyEinWUscRqMxLS2tbn+poKDgrrvuWrhwYbdu3c6cORMI82RkZGRuXpo1gw4JCamv8dqvXz8A4Dju0qVLkyZNEj/cu3fv2bNnAWDGjBlitHJjKIoihIjBm1JACFEUJT3syWB1lRgcoRomJshjanhjkwCgRQX1w8LCPJ2fZVkAkL6nijFWKBR+bSip1Wq73S59zGmGLjQX2h32BG0Cg5kG34rD1UxCQ0MDOCBKpdJqtUrvXaVSORwOvwakyFRoc9ritQksZht8G6gB8XSTt86AOJ1OKY8AcThI3gVaqaDT050eBjAgA3ITEuA1aKPR+MEHH8yePbuxOLcgCJ7ufvEfT/qzgTFGCElsfzC/6q2tF5Qs7XTxdw2OnTVMUvSFvyY1AY7jvDx+hBBP4auNoWmaoijp7QGAoiie5yX+yNk46/qL63IqTxICDt7x9/6LwhTh9RsEJBbI+4AAgF8DgjH2a0C0Wq30AbHz9nUX1+ZUngQCdt7+Sr//i1BG1m8QqAHxdAkMwyCEpF8gRVES7xBiMvFrfoDyChQRzk+ezEdF+mhfWuq6bxZSqxEAe9to/vHHkLuk/xZ9lDoxgXTQJpNp5cqVTz75ZP2spNGjR4tJWTU1NRaLxe2BWq1WEATpP+8Mw1AU5els9XHxZMnmvHAt5vRnMHV9XQETHTp5SGySzwM1Gg0hxJNJDMPUVyDqcNS6an86v3FHwTYCMDf10X4h/by331+2/9fqX3WMXhAENaXefX33vV1ntI6p7ZMD5dmnK3M4gROIoKJUe0p3z+g6s62NCgSE8O++T44cBQVrJ4T74ktmw3qk13s5Qlj9PYqIAJpGGLuOHCUREfTDf2gtczs/zXLQubm5P/zwQ3Fx8RtvvDFmzJgrV65UVla+//77ADB27NihQ4cGyMimU2VxMRQy6LZh3XkADjTo44IzqRFLglmPui28QH48Vb7mXA6lv9S7i25qyi09gnu0ps2twLrCH05Wn7BwFkDwUd6HC/u+GKf29mJR5ahkKIYjvCDwFKayy/b7dNAlJSWff/65Xq83Go3z5s3T6/XQaFe543LFdLnCXkljGghYiHnv9b2dxEFXVgq7dqGwMJtLcAnAKNTk1BnFyFu9HMGvXY+ifxP5UyigrLw17LxpaJaDTk9P/9vf/lb3Z0ZGxuzZs5ttUiAJqymfvO/rLX+8TsiNRF6X4NhavHlmskc7fzhZ+uOJ/YoeOxBy5TrIxV+yn+j5p4GhA1vL5BbHJbgOlGW7CAcAQMAqWA+WH5zR9T4vhwSzIRX2SjtnAwJKSjksYpjPXs6cOXPLLbeMGzfu66+/zs/PF7U+Guwqtyuuma/9UnZWgRU9g3vRyMdzYebMFKIQIACCERWl8rEO0FEgggAEjDauxuqiMFLY+b1nK27PFJS0x2gC+q7p3M/7EU0DAHE6wNeSiIxfdOo4aJdLeOCBNL1yC0SK7pkAQQiumAs8HUGqq8OXv5U2rugKViJAhACP7OsL1nUmB02AuAiH6v2Za8z1fghGCIgAhACAjbcAQt7bA8CoUaNefvnlkydPGgyGmTNvzC4b7CqLOBwOMaOSEIK8ntn7tw1aikhsn1N18otLn6koNUe43sG970uepcDe9pNj1F0umS7bOSshhCCodFQ16Et61+0KFBmJssaYtu+nWJYSeJXTskfRJbzQmNnNY71XdO898MNaUKsJADt6FH/Xna1pcKenUzvoggLicHYtNwFE/jaBBgIkQhXu6Qhuxb8zzu5ZNycdAAkAgIAgVO2sbAnrFAqFp4IDDMOAPw85xhhjrNFopDS+VmkBAIIAftvHQkC8H2sUjBhTAhAAUNPqIxWHH+vzuPdeNm7ceNddd916663r16/ft2/fmDFjPLX88MMPv/jiCwD47LPPRBlCT0hf9ze7TJsKfqqwlsfrE0bGjlJQPqJ3Pjv6abgqAgECgAvmvHz7hVHxo72072FN31aylUYUAsSDMDpudAMp7RaN/2lBEHLOffRwERflNHMKxdF+ox0qrdnh7VpQTAy7YxvJzVNqtUzPHubOkqzfTujMDlooK0NWq4JCFEd4Bv22r46SNMmeDiGbNwMggut5RgI8aZENaIfD4SlmwPsWZWNomqZpWsquKSGw7kgloQEAMAGCAAEk6bp7P7aotsjkqAVAAGBxWWLUXRq0p2m6gfe0WCyi+JlWq/UufjZ//vz58+cDgMFgqKx0/1so/n5IuUAAcAmu7wq+yau9QAF1uORQbmnuzORZovN1CydwQBAQ4AWeEAICKqkuqVR5+1UurioOVYQaHAYACGKDrXZbA8sDItjfJmgiQw0zHzh0zcwwtCAIVqszJdLXDz/Lor59KLUa8M0iHdFqdGYHTS4XIETsCqy2cgTAxWCBorW6MBp7vGrC85jwUaWOK8nqujgpATrmbMgdtWd/7fvev4N7Vu/KCgVAQCCYibw78W4vh5CiImvlNYIJRggABIAKW4XPjiZPnvzxxx/v37/fbDY/9dRTFy9e3LBhw6RJk+rvKmdkZATswupRYL5ytuasjtXxPK+glMeqjt4eOz5M4bFYDI3pfiH9TtXkWFxmAkhDa+I0PsqFmDmLntUHsUE3lJcrjz3Q7cEAXwYAy7JifGFjxHcsie9M8FtkqsT2szOTPs8uOHixGgg8O7F770SPb5z1oWlaehcyEmk9B+0l85umaUJ8vGXXR+IbvSsxwQxIYRcGnKq9nKTGBAw6rUvFp4aneTrWiTABGHzCUB7BWrQ0ACgpzeSuEzvJbed0Kh/742C7c9BF1DPXdKqP/lj6hPsG3auiPC4dkBMnXc8voB6PZmIwEAEYmsYYEd9rL1FRUfU3kHU63bPPPgsA9T9sIZy8E6Hfp3IYkJP3kdBR46wxu0yEAACx8bbGiScNSNAknKo+qaLVAMAJrttiPC7gNAen0+kpclmtViOEJL5SAABFUQzDSGx/trDm+JWaEDXL8XzOlaoBXVQM5XtqrFarMcaeuqAoqkNHprYVreeg7Xa7p4W5loqDHjqEsAxyusbsriRZ4af7Bpk0MCZoYgwd4/FYlQrx3PBDhqow9vjgYJ5VDUvKGBV+W4P2HTQOmpz9BdkdgClESNoFS49cU+IMRf9p3uoQ8jt2QmTkLZfgciyiCBCBCMCP7TKu1WxuAonarnaXVc2oAIAnfL/Q/hHKCC/tOYE7Z/iFwQoxu0QAYV/p3u76FC+HDAkfWsPXbC/aCoCGRgwdG9OuB8QvCIH39hZFalmKpgQBHS+oHZhguqWrXCK2bejMSxygVLJffVH42rLw3NN3ra0uVd6fMmDoPaneVHrphQu45StUKtXMkzDheCX11tLgbn28LF92LIjDDkAwLy58EwCU0YVVeI6gAgBh6zYUHDTiZ4sZ6XYNUSMaDY8dOy2+Xe/Uaxntgn4vHq4+tO/q3lujRoyJGeNlUQsACBBxvxQhAAIIkEvwkXGHEb47+Z4pXaeaLCYv7x8dEbODo6nfb3mawtUWPxIyZQJLp3bQACg9Pf7LDw9frC61oUEsDO8W5N0f4UkTmZAQ4egxRqeLmzjB3sW9eEgHBcV0IURABAHciGhTxPkIScaZGcKWbZjGk9caxv/AO+c/FTK6fYW6uyVBm9ArptddXbytrdfBYCY1KP2SKR8BAgIc4QeFSarQqKAUHNUx6mBJR6ekef73THW7i08I9S1LaeeEX6/UAEKJwZSGlWU3AkYnd9AAQGE0PDUsNDTUaDT6Dn5CCGVmUJkZKo2GEAL+iMtAo0w5q9W6fPlyUQbhL3/5C27zPW6bDSEshoNjAgICh5PzMf3DmDAU2B0AILCKzfsLR091xIZI1ZwKFGaX+UzVabPVnB7cw8t2X5O5v9sDb555XYwjHB89cXDEkIB30YF4bXrqK+svKBiK44V7B0f3iNF6b19tcf3pq18QIIRBEMiyGT3iQmSp4cDQ+R10a9IgU2779u2ZmZmjRo1as2bNoUOHhg8f3rbmEUIIQjzNCDwhCBieW3vi+t23e8sTE3bs5HmBpxkAhHk+uezK54eKX5rUrSXM8xQYXmWv/Gv2Ai2rwwS+L1z914ELuwd5WyAGPwPDASBVk/rVpG+uGUtUlFrL+PBHIv7GURw9evTLL7+Mjo4GgMcee0ysRt8+c9+Tw1Wfz0lzKoNocLHId4zpJ9nFTp5QGBAPPE8+3n910VQf/0AyEgmkYH+7mzC2Og0y5QoKCgYPHgwAycnJv/76q+igP/nkkw0bNgDAsmXLPFVpE4fOUxpLYxBCGOPGSXoN4JO6VgWFCIYaDAgRYlTqTjo1UZet9w71KMRRgcT8QQRwIxGz0sq7lSqUaKoXPAWG77y6M1gRTCNaEIRgNnhP0Z6YZB8rM9IDw+sIYUP0KIhzchanpKO8x1G4DQyfNm3a2LFj63/YDnPfyaXL/HffCTt2MURQLFksDLnF5yHFNTYK38iqwhQ6e83U0kbePDTLQbfzCWO7oi6g9Y477sjMzASAoKAgk8n9raxSqQgh0iuo0jStVqs9ne13dDrD2InWrdtdNEPx/Jm4HpciEg9fLJ/Q02NKBZoyxbpxm9ZuAgK1Kt35iOQas71xR2IUl0Rr/cXCmSm4sayJAB2pODw7eU4L9dVyWCyWEydOnDp1SqfTzZ07l6Zp8JD7npOTI9a7GD16dHi4+xhkcbSlhxKJcdC+23Nc7dy5ODqGiolGCDlefEn7/Xe4Xslzt+hUDKmx1yW+JkdoG3fUQXPf25xACva7nTCWlpbW1NQAQEREhHhTNkacAHr6tjEURSGEpLcXuxAD6SW2xxgTQjx1IfHloFu3bhcvXoyLi8vPz09OvpG+GBUVFRUVBQAGg8FTJqEgCIQQ6RUJAEBie/6JJ76u0sQZSsv14YeTBnGYClPTXg5EE8ajjduu6yIRAq3dvD9lGIORX4Y1nzhN/GnDaTFYghNcY2KyWrP3QJGRkZGRkREWFrZ27dpdu3aNHz/eU0uTyVRSUgIAHMd50rkXlUakq+CLd77P9kLJNaRQigmBCCGs1UHeBcpXvfZZwxL/vv4cxxGEgKbQ9MGxsjx/oGipNei6CeO3334rvtF/+umnngrRI4QIIdLf6MVDgtzpgntpL2YeS2/vxSRPm40N9FfHjRu3YsWKw4cPq9XqGTPahYBydJi6PGPU4QorIUAAWApPHxDlpT0eNPC9h/4e8usZJ0XnxPexqLWJytbetxgaPswoGLcXbUcAQ8KHZMWM9XnIpdqLyw6+BQSGRQy7LSYrWhXdCnZ6p7i4WPxhVqvV3n/hRo4cOXLkSAAwGo1ms9ltm6Ylqng6Wx2EwoTjiCCA+Ai4nHaGcfg6qmcE/dqw4CNXrVZ9yNBEzaBETeOOKIqSi5Q2gUA+bG4njM8888wzzzwDADU1NVVVVW4PbEKiikajMRgM0m2TGsXxGz4F+93+PDTQXwWABQsWSDeydXh5Urf/Hig5VmjsFaObPiDSZxmwpAFpawQ9jTFCwPPEi7BZC0Fj+t5uM6Z0nWoym9S02md7k6v27V/eCleFC7yQW5t7qOLQslve8R4K3Qro9fr33ntPo9EIgvDMM8+0Zu67dFBQEDV9Gv/daoIxT4AaNQL69fV+CDEahfc+6L57d3dCFNOmCkMfbR1TbxICKdjfDieMMo0J17IvjE8KDQ2tra2VslgxZ2gMheBUiRkBGpyou2egpNnorl27Dh8+DADl5eXjx48Xa1S6VfGXgtFp3F603eo0Z0bc2kXtY0ut0FyopNRirgUGzGK2zF4Wq/axkNrSJCUlvfrqq3V/du/evdVy3/2AEMFkJlod8BzFMHz2AcZqBa+vqsI33wnHjkNYGMbYuWsPioigZnrTFpfxi0AK9kO7nDDKNBOM0OyhXR71U2AvKysrKyuL5/nFixfXaY26VfH3SbGl+NXTiwQQANCWq5sfT3tyiNc4ZSWtIvUECAkInSzZr+Ug5eXCnr0oLBQAgKIQRQtnzuIRXiuqfPtdXUUVpFaRwqJWsPPmQY6DlmlBtm/fPmLEiLrFR7cq/gcPHjxx4gQATJs2TYwObsC63LUEAQ00ABAKb72+5baut3nptJeqV8/KXjmVJ8W0yZFdRsaFxvnM18cYq1Qq/6p61xbaOFu8NoGlfIgrdRQQxgh+L3dLgCBf++HU1Dv4w4cRpgAAOM5txViZJiM7aJmWghCSnZ39+uuv130iXcW/PgZnDQU33AQCVFB7xXt7nvAUxhSiCQgIIRfhvddqsTj59ScLz1sO2qEqMUwzOfm2ZL2PTBw7Z/s279tjZUcRIDtvf2Pom1Fqb3utHYbwcDR2LBw+TBQKM+aKwl3a7kEJRMDIo5vGU6fyGzYSnV5ACGoN9PSprWlvp0d20G0Gy7KeYofF8L7AR7nWAyGkUCikBy97N8mt+8vPz09ISKj/lVsV/8zMTDEw3GAwuA1LiFbEFJmKKEwBIQSE7nof5QXyjHm/VJ4NUQSLe8JHS4+MjRobpvAoavxJdvERw2ZBex4IW1gonKo6+FK/v3kP/Nh9bdfpilM6RicIgpJSbr6yqUFRx8aJKh0DhOg/P8nHRF+pvfRun2KlKoYr+mSQZdC9Xe/ztMuKundj1q4hJ3MUGjU7LMMihzsHFNlBtxkul8vTHh1FUf4mqrAsK709AKhUKqfTKT2iWQz99tSF24Dxq1ev1iUxiUELc+bMqa/iL7HrOd3uL3eWXa69DAS6aLo81P0h7+15wkG9BQ2EkEvweJkWJ7/vQiXd/RTF6wgAhRENmvOGX7076ApHeZ1mNAZ8oCzbe9XdptE2gv0aDTzxp3/veSRCnQAECCFnDWd7WnplRnvOO9NoID7+hmC/BwFrmabReg5azC5x+1VnTVTxDiHkd9Ewd195+tZt+7r/BsQAf9u7/Twr6/eMkuYELahp9RvD3rxSe6XWYkzSJvsMmEvQJNp4m5qoAYAnXL/Qfl70oG8ojJL/XXj1dZ+EKcJdwi/i0rNAhMzITD+uRzJtJdh/Q3+V3EiYohBdbCi26HwcKwv2twSt56DF33BPXwmCID37SDyVv9lKfnlV75laN6HMSNuCACXrky2UJP+iZbQv9X/5cNXB3UW7R0aPGhOTRSGPt4qapbLSww/UDCKacyCwvEB4ZOsV3Mt7F8Ojbq1wledU5CAAG28fFe1t07LDgQARIOS33UKX4IxW+4itrLY49182EQLpkYpIXSfZMm0PtJ6DdrlcnvJEGIYRBMHhcEg8FcMwLMtKbw8AGo3G6XRKT1QRq3B56qLldCdkAkKsOvYPUY9Mi5FUWGDmkJiQc5N+tUbaSGlSqG5s/K0Rykjvh6go1R/SH7kttsBss8Rr4hW4tfVXW5rney9Ydm6pAis4gR8WmdE/dICXxsU19r+uzQtSsQjAaHctuqN790jf+UQyUpDXoGVudpQ0ntavyx9CHjKZTNIX5SlEdQvqbqH9EMzrKJCysrgr15YnL8hhKrW0rruuu/f2u89XdHcZMDC1ulBaTe/Nq5IddKCQHbRMp4IYjWT3HpfJ7Bw2FFIlqRKTy5eFKwVcWhp09VYO7SaBbNvuWrykLE6z9H49y6p4teq26NvuiJ/qMdKupqb/qg8m5BxGCM72GLp11Azez70QGS/IDroFaXJm882JJ8F+kBy0QIxG47TpSKUBBMavvlI9PZ+dca/3QxzfrbavWIlUKoPLxd51p2b+PJC2k+xvHIXInj17Nm/evHTpUvHPdneH2O2uNxdDVNSOwUhrApo3k9jgAxUH4jUJA8IGuj2C/+bb+Cu/Vmn0FEIpl06X68KZnh2gKFpHQXbQLUjTMptvWjwJ9sNvftBnEALZtJlwglBeTmicn6ys2v7vhBGpyXqPb+ikttb11tsoKpIAUFqtY80P3PBM1KOHFGv9FewHAIPBcOrUqfqibu3tDiHl5aBgq+2uk6lKvYnwgGoMlpDooOu2awPAg4NevUYTFeW0uow2jsNsL6E2pa+PFXwZ6QTSQbe76UBb4zazeceOHceOHQOABx54wG1mM/wWViw9VkSs8OSvnqparfYjs9lPk9oE/tQpsNkITa27I+JkXw3jIs6898Z2GTchdqLb9qSiArG/7/cSliVlZRIddBP4/PPPH3jggeXLl9d94vYOuXz58uXLlwGgV69env5NxX8O6Qq9YuCTz/YkIYFzOky8EjAQBJQgCDRrcboiNVEej71rOpd9MEzLhusUxOWi+yQoNG7C6WTB/qYRSAfd3qYDbY7bzOagoKDY2FgAoCjKU1SJGN4nPeZEDNmW3l6E53npDtq7Se3l8dNogZCrscoT/bVaCw8ACu6SB5wAACAASURBVEqzrWRLZuRwPeNmuoBjY3mH4/dEcKsN/SaTG3Cys7NTU1MbVEhxe4ecO3duy5YtABAfH++poor4zyF92MWwUd+KzEql680loc88N3sV9+3MIAF0ToXQTdXj1vgRCsrD6tOc2YZ165FeDwIBU63u/jnYXS8BKYp2ExJIB+12OvDZZ5/t2rULAP7xj3/ExMS4PVCcl3lKmmqMmNgSHOyxUJPbLvR6vfS8DO8mSbzb3GY2DxkyZMiQIQBgMBhsNpun3gkhnr5tjJhJKL09AKhUKi9LCv6aJNbckt57C4EzM8hPP5nUAsURwBgIAMY0pmudtW4dNCiV1OI3+b++6KQY4nJdfeCxpJi4FlKVP378OADk5eUVFRVt27ZNrKji9g6ZMmXKlClTAMBoNBqNRrdna0KiSlBQkKez/Q/DBm969f2CkxdxkdISanXVMHMGjrGb7XbwkKcaFkatX0tOnVZqtcwtg02CAO56oSjKr4ocMiKBdNBupwOjR4/u2bMnAKhUKk/3k6giJj2umaZppVLpV0lQvV5vtVql/4x7rwpIUZSUn5PJkyc3IbO5c+BWD9ptZesAgoYNxbNnddm21qGiVS4OdU0EAAfvjFR5XBXFXWIvDhoRkb3rl/SMbKM66EDx3FvjFJ7LnAMACAK5dl3Q6ygPEw63iGUrAOCVV14ZP358c3LfWxpFSMi50AQ7x6sMkUSAYKWPWx0FBaFRI2m1GmEMvsqvyPhFIB202+lA165dxdrVNTU1nvJWFQqFIAievnULIcTf9hzHSV8EYFnW3y4aExUV1b7k2FsRt3rQbitbBxCEMX744bCExHGlOZu6X6GIDTnM83s+U6eb0RCOc97/AKb1NcGRcaUXH79w9A3dm6cT9UOSPL+cVVVzH3xA9v1sBmAmT4I/PQ5+Tgxfe+01aLeC/QAuXth4tiImSEFRlCAIVgd/6qops5sfb6syASSQDvpmnjDKuKWBHrTbytYOh0N8efIuCgpSllydTtfSt2p37O1L8GDO+vmk+3vcMSVF7zFNmVy/ThQKIojzZWRXqLuWXTE70rx0xH3zDcnJgdBQhDG3Zx+KiaHuc1M8qL0syvuPkyf1Xx8wBotD0jqYiyfg5y6IjE8C6aBv5gmjTGMa60G7rWz94YcffvHFFwDw2Wef9e7d28sJfart2H7aZDlw0MCoMUIuherRDV/Mjxk6e0S6gnGvxcFzXAWAVsXYnBwAwoJQi5VD0mLDwjzGw5SuXUf/JtFHNGplebk+LMzNmTusq9Kw1PBuwb9cs1AUECAWB58W7SM6yMUL3x8v3XKuEgEa2zPsvsHRPtaIZCQjx0HLtBSN9aDdVraeP3/+/PnzAcBgMFRWVro9lcQ4aP7yZSdQAIQAIAABU0qXo/BaeajGg3YKRaGJE4N27EKYcdjspxN6j5sxQovslZWehVsnTXQdPYowhTEGp8um0Tjd2UzTtF+b2O2KuwZGU7js54sGnheeHts1IdTHvumu81X78qsjdAoAOHypRsPiu6UVrpTxieygZVqKxnrQd955Z/3K1gHvESUnKVwOgSgoBEAEJPBWzISovSlbUU89SZK7lR/99YhVpbxjUvcQH7NFavp04adNoNMRIMRkYqZ1wgIiETr2jyPin5/S12IxS9mGuVpjV9E33lFYGleanS1s4E2E7KDbDC9yqd7VqBsjSl37JZDt3QB/TXJ7Krd60PUrWwccPHQoO2tGxCefWwXM8s5357zyl7FdfawGM8w3Yf1P9kpWsTRX6dy2IX/ZjPRIncd9P9S9G/vjOuHUaYVOxwweZG3J8N62Eez//RCkVCqlRCvp1EqCLOKrEkJYybL+ZsDLeEJ20G2GF71p72rUjRGjtttQILvl9sRIXp5w5KhDq2WyxoDPgqQIFU+9b7EtNYbiaoMjnATe3lnw1dx+XqwzO/ifL1SLayAYIa2CPn/d4sVBAwAEBeFRIxm1GiEE/sR6+ktbCfaLiDV6pMygb03Wbcy5FqxhAcBodWYmxzXuSBbsbxqt56C9ZDGJ4st+TQcwxn79Sosl+6QnqogzlBbdi+c4zlOeiHc1arftFQqFvwLZXmpu+WuSv5N3ifAHDwmv/B8EBzsAbCv+TX/+KUr0ITh3pdJGgoKqGQpjjHieoVCN1Rmq8TgNZKqrpx1aO/qXvSf7jjzWf3ShNpKm5A0u/4gLUa6Y2fOXUhsglB6hiNLLgv0Bo/UctN1u97S1rdVqBUGwWq0ST8UwDEVRfk0HFAqFzWaTvreu0WgIIZ5MYhhGng60AuTn/RAeDggBxjgyQtiyjfrTY94P0atoTvj9Z5gTiE7peQ1aEKhPPxpRfMqgDUm9cmbQmX1/nfNm7y5+SJrIiIRpmYl9gzDGZjlRJaDISxwy7Rdh6zYUHXXjD4oCm++f8L5xuh7RmmOFtRghQSAzh8QwlOfXoGvXyb6fg0NCKQfn4gEJmiXpXJBKfihk2gvyvSjTXmisB0398RHH6tWE410CAhDU/QeofK1rmezciSKThqEBgUCIjfO2MybotC4AisLBahZjLIBTFRHMSFs6a5oetIyMX8gOWqa90Fi8iaSnC2XlgsMJBFw0/alRd2el0fsM98hlg5al1AoKY8zz/KbT16f2CVWz7vc2iU6HsrKEQ4dAqUQul2CqdaZ0d0pbOmuCHjQ0EuxvaXESmY6O7KBbEELIf/7zn5qaGqfT+cILL8jL1v7C795dExFrcfIIIYrngnZv2xwbM+sWbxJFHE/q7+wigPpL0g1AGFN/foLExwmFRcr4OH7yJF6aJp/Byh0qrAACaRGsxyyYxkc1EuxvaXESmY5OIB207I8akJOTo9PpHn/88cLCQunxEjJ1CJu38toQsQaVgCmdzVxu8xH11SNGY3ZwCgZjAI4Xbu0eold6u8mRVotmz8IAmpAQk8kEEv6ZxCLWeiWDEDJanW/eleYz106ksWC/W3GS4uLia9euAUBiYqKn2Ccx3lF6dXmKohBC/laj9ys4R4yt8tRFOy/10G4JpIOW/VED8vPzrVbru+++izGeO3eu+OGFCxeKiooAoE+fPp40lMXHT7p+rvj4+au3KwbDSO/Ci0ktFI9I3Xcvs2GrjWCEQOGyl4TH6RQ+7thwLbtoSsreCzX7LlRP7B1+R9/ALxrszqsO1bAMhQGA1jC7zlc+PDzO51FuBfvdipMcOXJk/fr1APDiiy+mpqa6PZu/ke9iGLufiSpYqVT6K6HuqQtZsL9pBNJBu/VHhw8fzsvLA4AJEyZ4qt9DURTGWPqM29/2ACCWk/C3wpOnLiT6I47joqKipkyZ8uOPP+7Zs0d8/M6cObN7924ASElJCQ0NdXtgS9XL+N9DFAqF9MfPu0kt9PhRs2epqwxk0zYMJLvfbbu6Dl3ex7fD7R6pTu+if2FK75qampawyubkMCIungAAxuDkJV27W8F+t+Ikd99999133w0ARqPRYDC4PVvTBPs9nc0tISEhZrOkVO86k7yE2UmUUJdpQCAdtFt/ZDAYSkpKAEAQBE8/+GIasV+Jc34l2tU/Snpjv0xyS2JiYnV1NQBoNJq6FI977rnnnnvuAQCDweCpwoX3KOzG0DSt0+kk1cv4jdDQULPZLP1Fx7tJYqZM/U/cCvYbjcbly5ezLOt0OhcsWOD7FyUoSPPyQsWf/3TdQQ1SayZrkLeYudYiXKcoy6t2uAQCoGJwZrKkdQO3gv0tLU4i09FB0udQPsnOzq6urp46derOnTsdDsfkyZPrf1tTUxPARBWNRuPXdCA0NNRoNAYwUSXIZ9oxAM/zK1eudLlcDofj2WefbbCgYTAYvBSxboKD9mvCGBoaWltbG0AH7Va8TRTsf/bZZ0VffPr0aYqievfu/fXXX6ekpIilv+rwNCA7zlfty68hBG5LDR3bw/07R2N7pA5IZRX33XfC9z+oZ9wrTJksxMf7PGLbuuyyHdk2go8n9reGR03uGzl7SMN9y4Co2RmNxgCmegcFBYnTBYkEfAYdEhIivXcZkUDOoDMyMlauXLl06VLRHwXwzB0UiqJu8mlRA8H+fv36AQDHcZcuXRLn1ABw8ODBEydOAMC0adMax5mtOVb8/p4CGmMAOFtsdBF0zy3eFnz5C/nOHzcINpu9dy/1HZOR99dqQbB88gk6foLqEuPcv1/4/nv9jm3I60+vKzt72Nt/N7IaAHJvzqb/PPh/dj5SjoaWaSEC6aCb7I9MLtOZitN2hz0tKD2Y7agqujINaCzYDwBGo/GDDz6YPXu2xPnUznPl7G/iGCyFd5wr9+KgheJi0/0P4MgoRFPc/v30tWuqp/7s5eR8cQm3ew8KCwMARFFIp3OdOcuOuNXLIa49+xxBoS4HTwAM2uBe5w6Zh/aVciEyMk2g7eOgK+wVrx99VUNrgQgWzvpC7wVxGt+vmZ0bJ++8aMy32q1J2mQl1UJlplucxoL9JpNp5cqVTz75ZP3d0czMzMzMTAAwGAyN39ldvECIGGgHhADHC17e64W9+yAo2Oziy6psABD1yWdl0++NCPE4vSVOBxEEIggAgBASBMHJuVxe1w2cGzYqw8KrLC5AgAhyGE09It3UL/aUqCIj4xdt76Czy34OUYRQiBIEgaHYA+XZ9yXN8tSY5OQIO3cRAjg9DSZOAD/jOjsEJpfpb0deUtMqIMTK217u90qkMsr3Ye2PxoL90dHRlZWV77//PgCMHTt26NChPk+SGqUurLKKMW2cIKRGeU0k4XlOgDKzk6YQAuB4+OFk2Z+ykj22j4pCWVnk8GFQKsHpBLMZea25BQDUQw/aV61BQAGAxmm9FJl0Pb+6f7zO54XIyDSBNnbQhMDlamO1lQPgVAxWsxQneNzHIxfyXc+9gCIiCMbWAwdJeTn9x7mtaW3rsL/s52BFEIMZQRAUtHLv9b0zku5ra6OaglvB/tmzZ/t1ksdHxlsdwpErBgAY3j308ZHe3q7QLYP55e/SSj0AYp2OIwPHHCoyz7RywWr39znCmH7qz0JCvPRMQmrWfcdPXL3l2A5EyPrBU46lDImrkLqX6y8Mw3hKFRHzQaRP0sUQJn8jUxUKhb9VI5oZmSrTgDZ20PsuVJ8rZHCwDQhrsnOhWhQU5nGLRjhyBIXcyCtDWg3/1dcw9xHodP/wBqeBwTfeDDDgA+XZPh201cmbDTZGIBTubKPBUHjBhCSJNQlRYmLhK/+4+u2PCkRqQqIO979NcICK9ZrDptVgvzIJlcp9Y+75tOdEwBgABEJaLvKP4zhPQRSiw7XbPddO/F8oilIoFNLbA4BSqfRSMaAxCCGMsacuKIrylJYl44U2Fuy/Ul0a5BrosFscqrOYQlrSf0r3qWra/T+kQ6WyI2zjiMnuMtu5aBdBiA32rMVen3Yo2N9YvE0kVh+bW3uepViMMU+4sQnjvAcJ/Hjy2hcHixiMHJywdGbf7pGSIgrEAZGeYNIKA+IWUlsr/HKO0+upAf2ltO9225B/FKmCVAzLUGa7c2q/cJ8Vpq1OfvPZCitfQQRudEpwYpiPaeaQriFFVXabSwAAFYMHJ/oOuGwahBBPd6z4ufT72d/2Pg3w3pH0z2W808aC/S6Xy+kCe9mtiLpFSaOuCVHEQSwO9xMlMnCAa+V7pbSGB6x22L7rdbtpx4VnxyVJ6b0dCvY3Fm8TGRoyrMxaeqzsKADqE9p3RNgILzPHC2WWrw8VhWkYjDHH8c9/c9p7hac6xAEJYBx0S+yJCZcucXP/iLRaCwH61uHw5BM+q14pGfyfB3sfumy0criLDg9M8L06/M3R6ycKjSoFw/HC9nPlK2f29K5/dEffCKPNtSevGgGMSg2d1r9D7hDIdAjaeIlDq6Sv1jhohABhFy9M7eNNTQIlJ+944hXn5m2swBWEJ2Z3H2bLq35ydKKS6VQ6LEpK+VD6w+MTJlislihVNIW8ZTMWVdvrLh8hoClUa+88kvPCuvUQEQkUhTDmj59AP27ADz7g8ygNS03oHSkxUcXi5PddqBJrYmEEWgV97pp5RIq3EEAFjR8ZHvfQiGSEEOb9KDMmI+MvbfwkW5xchI5xuAhCoKCZcpOPgu2FUUm7ht1LYYQACADiBDsndDIHDQAY4Rh1Fyv43n0K1TAugdQtHnE80SqalZ7ehjRe8zFs2kLFRIO4tKJQUNXVamkpIX5UraQ5QFhc0sUYY0QUCoWUA8U1H5erk/wWyrRP2vj2EgTS3XTdog6u1dNE4BycjyyV3jHaQzkFUZaawpgoSlnKmrvqlR3VH3nk4pVihc4WqVERe4jSRzZH31jtbWHC1ROnL3bt4VIUzh01tOPuEzZe88HTpwn7s4GmMMbEaiMxMRKTm2mapmlaYuMxaaFHrhjUCsbF8ya7MzWc9X2g2aLSabFa3UzBfr/FSQAAgL98+bpSZ9AqWKo2RuNbSI+rrrWdP3+2Z38B56cHpdOSn/oya5kGaxSUVJXEckt5ee21rvruEtvL+KQtHTR/8uTshX8Bp3n5/KTrkRoBofN0vMH5nMdkQp7PfOlPmRfz//nXFEOiWpxDf1Nw+5ykOa1reEtBzp1zPDGPsxrff6rrxWQNwThBnfBM77+EsB7dNJk46d7SsqXPdeeT1BjIl2VrilHWg90fbE2zWw48cwaYavmfswUAduJ4Mm1qS/Qyc0hMmJapsgEN/G1poZ5i8kSIySR88CG/ZasLIcWsWeShBxEj9SFqLNhfUFBw1113ieIkZ86caSBO4obLhfa5D7tMxn+8nFoRzhBAGlr3XK/nknQed2Jck6eSq1dXzks+T7TiIzMsKvPxlMd99GO6+PnpL66aixCBgWGD/txjnvf2HHCP7n241mkCQCxm5/V6uneQj4hyGSkEfnFgz549L7zwgpSW/IKFrMX05Zy4wgQV7RJoFzFw1/6b/7HH9v/3/9Cli5snRBd0FcM8EADsLNlu5/wIHmp9pA8I9+zzyGhYNTPuSpKW4QjtIlctxZ/mf+SpvfD00+R66e7bQi92+31A9pTuMrlMgTG9rUFRUfivf6Xf/7d+1Vfqv70E/uipSkdJ4yl9I/8yIe0Pw+Njg33MFoWvvxEOHUaRkTgqyrlxA9m8WXpHomB//U/69evXu3dvUZwkJSVF/LCiouL8+fPnz593OBz0/8LPewpVV3/waEJ5BAsEEAELV/tu7r9pD/CvvEKKrx4dpD+friUgiHfI4bKDZfZrng4R+eryl9et11jMMhSTU3Nya8kW7+3fOP1ardOMACEAp+B873xDk5opDHnTEuAZdOM5gjfKKwCh0hglFgAAMBACqMbhUTNTOHOGEHSmvw7+N2Ln57Kfb4+9vTlmtxx+DQi5XkoQuhanwIIAAJgQjqBzNb96ai+c+QUQOjYgGMQl+RtngX1lu++ImxYA69sBiKFRt2643agR8d9+V1doHKk1woULEuc4bgX7wZ04yY4dO7777jsAeOONN3r06FG/sfVqMUH4WqwK3ajjRQBwlb1Sp3MfrGI/kQOEHB0aAghQvdnYz5U/PxbzhCdTBRAKTIUsJQawIhrR+ZZ8T12IlNnK6lbWEIDNZWvQXhbsbxoBdtCNi/rUCSwolcoGv6IoOJgYjUo7D4AAbsRJUhTl6ceWDw0RigpDql0FCf/zeVpQmpTfZ79+w73rQUuv39N4QOx2u9PpBABCSMOw4pAQqDEobQIhgAAIAgDoqkv0KJOv10NVdVgNd7n+LxaC1OBUKQHLosy/xAvx3v7myRPDkyaQEydvpEfxvHfpu/q4Fex3K04ye/ZsMd/SaDQ2CERBoSGoxqC08cYg8clFAETHaD3Fqwh6PUIospSDeusNCCCaifUZ4kLEG5AAD4IGNN7bs4i1gQ3dOBBYimnQXpYbbRqBdNBu5wifffbZhg0bAODTTz9NTEys/5Vp2h2Wz7+8Y3Pp8nnJmAeeogC4e1Pu8SSk63zzjaoJkx74uuSXnjrXb+lhocrQgYkDfdqGEPI+BWjcnhDiqcKTxHhqtwPy3nvvrVq1CgBWrVrVoKCR4e67LB99MmlT6TvPdKM4wmMKU/ydqXeHhYW5PT+3YmX5lDvu/+bamf56x2+hLCGKkMyuI6SYJ0XSugGegp2lB5h3dKgJE1xbtqKgIAIABgN1x2Sfh4i4Fez3V5wEz5xJ3nvvvjWlK+Z1BULENeWMqExP7dnFbzrvvmfqhpLsESEOxY07REWrR0T5uEMmx92x+domimCCQBC4aYnTvbef1W3OB7nvERAtgr4hssJfYAikYP8777wj/k9OTs7s2bPFOUIdBoOh8WPMb9hgX732Sjiz466emkjd2NgxyTrP0jYAfGGh859Li4w1n8wJtYbggRG9H0l5VIptwcHBJpNJuh9Rq9WEEJvN5vZbhmH0er3Pk3gfEKPR6CZPZPPW6s+/PqelNkzvHh0fOS1pTPcgr3vily/bFv6t3GR474/xtVGqfpE9/pT6J5+GQaAHhKbpJrj7BrgfEAAAUKlUCCHpFQwoitJqtX6VmAkKCrJYLFIyd0hJiXDsOKvVsiNH2DzoTQdkQGpraxtnWvO7d9d+/MUpHdkwLUoVppnabfyw8GHezlJcbH1hYXV1zbsPx1R1UfcJS3mi1xNSAjnyHXn7r2ZrKPXE+Ml62vfdXuAo+OzXT+wu+5jYrNtjJzT4lqKo5lcwuAkJpIOu45VXXnnttdcCftqOizwgMjIyTaBFHLSMjIyMTPPpbDl4MjIyMp0G2UHLyMjItFNkBy0jIyPTTmm9VO+amppOE4xF03Tzt6TlAWmAwWCQLn/azglI2K88IDKt56CNRqOYoNEJUKlUzfdHtbW1DkcnEatUKpUBGRC/Sn60ZxQKRfP9kclk8hTX2OFgWVZ20E1AXuKQkZGRaafIDlpGRkamnSI7aBkZGZl2iuygZWRkZNop7bdgz9atW3fs2MGyrM1mmzFjRmame0WYmpqaJUuWiCXl//73v7Ms+/3333/33Xfr1q0TT5KdnQ0ApaWlU6ZMmTZtGgBs3779xx9/fPfddxsc2xJlTwNIKwxIcXHxhx9+GBQUZDAYXnjhhearSbQoARmQBpes1+tXrFhRU1PjcDheeeUVQsjixYspiqJpeuHChe1c1LhpA2KxWJYtW6ZQKNRq9fPPPw8A9Ufg1KlTH3/8cZcuXQBg3rx5Wq22Aw1IJ6CdOujc3Nzdu3cvXryYpmmbzfbNN99kZmZu3Ljxl19+iYyMvHbtWlJSUklJSZ8+faKiou67777+/ft/+umnOTk56enpPXv2jIu7UQdowoQJEyZM4Hl+0aJFolZRdXX1iRMnRIHmy5cv1z/W0w3dHmidATl58mRGRsakSZM+/fTT3Nxcn+JqbUigBqTBJSOE9Hr9008/feXKFY7jtm7dOnLkyLFjx65aterAgQMjR45s26v2QpMH5Pz581OmTMnIyBD/5Diu/giYzeZ777134sSJYi+rV6/uKAPSOWinSxzHjh2bMGECTdMAoFKpHnnkEQDAGCcmJs6dO9dgMIwcOXL+/Pl79+4dNGhQ//79OY67cOFCenp6aGho374NpQ43bdo0ZswY0Qd99NFHc+fOFT9vcGzrXqJ/tM6AZGVl/fjjj4sWLTp9+vTgwYNb9xL9I1AD0uCS8/LyrFbrW2+9tX79eqVSeenSJVESNiUlJT8/v60uVgpNHhCFQmEy3SjBU1BQ0GAEzGbzvn37Xn/99RUrVoiVXzrKgHQO2ukMGn4rwXD8+PHVq1cbjcaXXnoJAERdc5ZlQ0NDWZYVxRhramqWL1/+8MMP11c9r4MQsmfPnmXLlgHA3r17e/ToERkZWfet92PbFa0wIGvXrp01a9bo0aNXr169c+fOBvqo7Y2ADEiDS3a5XNHR0XffffeaNWu2bdtWv6UncfD2Q9MG5M4773zvvfdOnToFAJGRkQaDof4IjBw5cuTIkeHh4d9+++2WLVvqd9f+B6QT0E5n0EOHDv3pp5/sdvvgwYOXLFmSlJTUWBhXxGQy/etf/5o3b15aWprbBnl5eUlJSWLJj0OHDp07d+6f//xnQUHBxo0bfR7bfmi1AdFqtQCg0+lqa2tb7nKaT6AGpMElJycni/qOGo2G5/nU1NS8vDwAyM3N7datW0teUHNp8oAYjcYZM2YsWLAAIZSWltZgBAoLC8X8Mo1Gw3FcBxqQzkE7nUGnpqZOmzbtxRdfVKlUgiD06tUrKSlJvDMasGbNmvLy8rfffhsAJk6cGBwc/M033xQWFr788su33377yJEjCwoKYmNjxcYvvvii+D/PPffclClT/vvf/9Y/dvjw4a11fX7TOgNy/fr1d999d8+ePWaz+bnnnmu1q2sCgRqQO++8s/4lazSapUuXvvbaa3a7/aWXXqIoavHixQcOHFCr1XPmtOvi8U0ekNTU1KVLl+p0uri4uJSUlOTk5PojUFpa+vbbb4vlGhYuXIgx7igD0jloPT3ogoKCzpTqHR8f38yTFBYWdqZU74SEBN/tvFJUVNSZUr0bFHhrAlevXu1Mqd5du3Ztays6Hu10iUNGRkZGRnbQMjIyMu0U2UHLyMjItFNkBy0jIyPTTmm9KI7Q0FAxTrMxmMGXjJecLmeSLonF7uvY14eiKKVSabFYpPeu1WqtVqsnAxqjUCgIIZ52NcV0gGYSERHhyR6GYQDAU5hUfYggCOfPI4tV1bePQ6mU3rtSqXQ6ndIHxLtJGAfglz4kJMRTBQMx5FbSniohQm4uMlvU/fraWN/3Uh0ajcZut0svoeDdpIDkQIeEhOh0OrdfsSyLEJK+yYwxVqvVZrNZeu/+DgjFUAWmAovdnKjtqqIbqibISeFNo/UcNM/zbv+xDU7Dh/kfXDDkARAGs68OeD1SGdm4WX0QQgghv4pNYIw9GeAW8fHz1IUYRNxMBEHwZI/oDX1b63I5/vUWv3MXYhirxcKuXE717y+xd4yxFwP8NSkgsUA8z3sacO//HL+baQ6f+gAAIABJREFU4eKEFSuE7TuAYexWK7V0CR40UGLv4h0i/aYSXWSLVjzxYg/LsiBhQOqgKApj7O8jIwiCxEPsvH3dpR9yKnOAIDtvW9jnxS7q2PoNWi1arJPRRAe9a9euw4cPA0B5efn48eMnTZoEAEePHv3yyy+jo6MB4LHHHouIiJByqm+vrLpoyGcwA4QIAv/lpS+e6/W890OsnDW7cP81Q0mcJmFg2EAKdcgfZ47jvDx+hBCfM2hh+w5+388QHAwIYZ3O/uen2L17AmKAvyYF5JWi+ZDsbH73HhQSghDCej3/7HN4nx8DItNkDpYfOFd9TsfoBEFQUap9pXtnJctR0gGgic9VVlZWVlYWz/OLFy8eM2aM+KHFYpk2bdrYsWP9OtV163WKooAAAGCELxjdhNbXxyk4vyv49oLpAhbQ4cojVy1FdyXe3aSL6PCQa9eh7i0eIYQwcXGIaRe+sm24fh0pflvnQYhQFNjt4M/Kj0zTqHZU1S1OYoQOVxyWHXRAaNbDvH379hEjRih/ewAsFsuJEydOnTql0+nmzp0rzqrsdru4kksIcbsyoKHVxHbjKwIQr4n3voBwsTb/XPVZrULHE15NqfaX/TwhboKG1vq0VlwYkXhpYktP7QOyxNF8UEI8OOzAMAAARCCE3NTeGQDFx4PdDqw4IAQJfIf2zizLsh6W0cUVJ41GI/FUGGOEkPT2AIAQUiqVngxoQHxwwinDKSVWYowFIoyKHeVXXzKeaPrzTAjJzs5+/fXX6z7JyMjIyMgICwtbu3btrl27RKmdd955Z82aNQCwevXq5OTkxueZ0/vB1w7/P45wiCAaU3en3xsWFualX8bB0DSDEBJ/AGieVunVYSpvh4g0oaqpJ4XodlJrGY8aCb/8wm3cBDTF2+3Mh++3tUVtDBqeiSdN4H/cADQt2O30u++2tUXNwul0elpTUqvVCCHp++QURTEM49e+Osuydrtdyk41AAzUDyoKKzpadhgAOXjHiPCRDfqiKKqd6623T5ruoPPz8xMSEurPJYuLi6OiogBArVbXubCFCxcuXLgQAGpqaiorKxufJxbFvj7sjT3Fux0ux9DwjBRFittmdYSRcLPTrKAUAi8IROgb3JeYSaXF2yEAEBoaajQape+JaTQaQojVanX7LcMw7ULMnqLw/HnMndMpq03fr6+hs+RJNx2Mqaf+TE2fji0Wfd8+hs6SSd/+YTDzYNpDI7qMqKytTAtOZxDT1hZ1EpruoK9evSrWWQCAixcvbtiwQdQt1Gg0giA888wz0k/VVZf0UNrDnrxhA0IVoU/3fmb5L28TQoZH3ZoVMxajmzqaG8XHY5pGKhXIDlokLhbTNFKrQXbQrQVP+O8vrt5dsgsIDAgbOCV+ajDr9wurTGOa7qCzsrLq/r979+7PPvssALz66qsBMMoXqUFpn93+pcFgaIW+ZGRuQiyceVPuTzsKtglAHuj24C3hQ7y3P1p55GBpdogiRBCE/NoLu67vvDvxntYxtXPTXvaUqh3VVoclmA1pJ9NhAqTKXmmxW0MVoVJMchti2LS4QxmZNmdLyZYTVcdoikEEf3N5VYgitLuuu5f2JdYS5W/JKRSifi7dJzvogND2DtohOH7I/f7g9YMAMDBs0LT46VrGd0hGS5u0Jnf1obJDIMCA8IHT4+/0aZLbEMOmxR3etNA07SnfTPxcUgkPs8W1cycxm12DByvS/ajDgBBiWVZ6wpu4R+3JpHYS59M0CJDd13a5BBeFESHAE/6c4RfvDjqICXIJHIsZACAAQ3zNuGUk0vYOen/Zz6cqcoIVwYIg5BrP62jt1ITpbW9S5algNlgQhDxj7i565zRfJrkNMXT74caNGw8cOAAATz75pLin2hixpXRngTHGGHtKC3YLQkhUYZfY3rtJAckTI4R42sUVBAEh5HOPl5hM1gmTsEoFgJ3/+Zh6eh49fZp0A/zKNfVuksR/O7cJX20OAmTn7SzFAhAEgABX2Cq8HzIsIuOnqxvUjBYI2HjL0IhhrWNqp6f1HLSnMOQKewVL3ZiG0IjedX3XtMQ7pZxK+iRFIMKBawd+LT+npbXDIjJ8bl9U2CsU9UzafX3X9P81qXHXbkMM3X6YmJgohi7VFYhrDMZYSiZhHRRFURQlvb3YO8dx0rU4vJsUkAmjm8xml4v/ahX/+ec2QKqFC7gJPmokCjt3IZ4n5RWAMS/w/Jv/hMmTQJpt4s+D9ABK0UE3M+DSbcJXm0OAKCmli7gwYAKEgBCm8FGxU8foVo5495zhV7PV1F2fEsKGtI6pnZ7Wc9BirnDjz/UKvWDiKURjjAUQRsWOVvpKLqAoSoyil9j1j1fW77m2W0WpOMJtLt70r4xlelbvpX2QMoiv5WlMY4wJcWNSY3/kNsTQ7Yd9+/YVq0obDAZPBUQoiiKESC8vQtO0GLUqsb1oktPp9EvMwYtJLZTqzX/7Hb9uHYqOxhjbl6/ASgUePdpb+5MnwWYHmgYEiMLEYgGnE9p9bdMGCV+XL1++fPkyAPTq1Uusl9gY7wssjRETVaS3z4rLOl55zMk5EcJASN+I/j6PZVl2aPRQT/pNHXrNpw1pPQftcDjcvg9mhGVsL96qobUCIVbOkhGa6bPMzyXLpZXn3iGEZEQOH9tlbLjC2+YbJ3CbC3+K0ETyPE8BpaY0J0tPeH8Fywwbvu3qFjWtIYRYOWtmWEOTxDyu+uj1+vohhs2MO5QR4T/5L4q+sQqEgoNJzmnw6qBR/UUbAsAqod1r9DRO+Dp37pxYPzs+Pj48PNztUeISil+ZsX7Nae7sfjeP+P0l+wmQh9L/MDDGt+aU+BvgySTp72oy9Wn7NehQRdjKEe/9Wn3O5rCn6FJ8bsdVO6pWnluupjUu3nW6+rRTcN6f/ICXQAuecAgQAAiEB0AUQk7iozRiMBv8j6H/3Fa01cE5R0SNjFbF+LyKpKSk+iGGzYo7dLmA40CWZwTAE8YLOTk3nnlBAIWPtGMqM1P4aTOYagEABQURnmuJVG9SXEKOH3eq1eyokc2fnjdO+JoyZcqUKVMAwGg0Go1Gt0c1IZMwKCjI09kac9l0+eC1gxpazRH+QuWFAfqBNPLhK6zIeqLymNlmSQ9KT9I1zBmmKEr6/F2mjrZ30ACgZtQDIwZJTFS5bLrMEa7SXgGACBGOVhgnx90RpvCY6q2glL2C+5wxnrZxVkEAJcWm6FK8d1FuL3vjzGs6Rk8IOVx+6NnezydqmlsAVArEZBI+/oTf8JMLQPnoH8nMGSgQOssdFzzkFmHXLggJIYIAlZX0OF/xMBnDqJn38T/8gGiaOBzMfz4MuEnC6dP8M89CUJAdwP6PN+lVX8Fv6VpNo37CV/th+a/LKExXOqqAwLGqo9313b2/dFY4Kl4//WoQEwQA269te7DbQwPCpAq9ynihXThov6hyVNt5O41oIAQQZeNsPt/zThtyaIohBLSMBoBYOR+/BAfKskPYUApTgiCEsCEHyw4kJreGgxa+WiXsz0ZRkRhj+6pVVHgYun1cK/TbbsFjbmOCgoQjR1iNhhk37v+zd96BUVTbHz/3TtnZls1uekgldKRIaKEkaKQKilIERVEBO3Z4Kvhs+HuoqIDwLAhPpSkCUgRCTei9dwIpJCE92STbp9zfH6N5ecm2wBJA9/MXu9w2s5Mzt5zzPbZID0sZhDH1/LN4+AOUxRLQvv3NiH2XNm9BoaEEIYQxYVlx/e/Us8/cSIN1A75uEwgQXuR5iacRBQBmwXzeeM69gT5ceohFimq+2sTXBLC6s8YzfgPtE3ypB22xWObMmSN7FLz22ms+ybLREJ0iQIEVgsQDACFEQSlE4m57yypYaEQHc8F6Rk8I4SU+z5zXXJvgpopNtNUOHiEkuW3fh4i/rKjdcsVaLTl7DjwaaItF2rNXsFiEXr0g9C8YCIMSu1CJXThZGs27FT2KiLh5se/SxrT/botTFKmu9nkXtwMOiZfd7P74SDw4COWb84x8BYUoGtEm3rS3ZO+4hCdu/jD/+vhSD3rLli29evVKSUlZuXLl/v37e/fu7btx/pc4dZwCs2pGxYsCg1mbaDWw7nyAOFpZ14ILRNAyHvyFI1SRp41nlDQHAA6JbzJVATxwADlxQnYLs1CiaFB66LjG5Bg6DAICEE1Xzv83+sdU6r7bbjpWl4KCgh9//DEgIKCqqmry5MkBAe58aW5PqEfHSGlpwCoAgFjMqFWrWz2im4DZokQKu/SHCwfHqNoEtHFfQyQiAgSAZJvuz5/iK3ypB52Tk9O1a1cAaN68+blz52QDvWbNGnmuPXnyZFdH0jRNE0K89O3XarVPtnv6P+cXUpi2S7ZpXacHBniwY0+1e3rpxSVKWikQoXNI56ToXizl7rhpsHqIDds256QhhJIjUx5sMbxhjrWbAb63n7B1q2jQ/Z6k2NuORvpT3bKWPhgzXE07l9aV0tNBF4hUSoQQVqmEGTNucwN96tSpbt269e/ff+nSpZmZmYmJibd6RI2GGjuWVFdLGzcRAPaxx6T7b4vQEh8iHTggvPXOuLt1vw5QM8oAolHbREtisIdfKloTfaXmstFRBUC0TEBnvbep1/y4x5d60HWp1fmOi4uTPWxomvZVXEZSWK/eUX2Kq4r1Cj0C5LFiUkivFvoWF8ouaBhtB30HJCFe8lDlkZZjHowfbnfYOYoDUj9Z6k3avcE9ejDff7f37OrjupwgjV7C+JzxnIZWuwytNBrrKvTf/hlVUlJSpk+ffuzYMaPROGbMGPnLM2fOXLp0CQB69OjhXMS1qgphjDUab7zEhIOHhC1brRs3UROf5h55BDTeysbLbsKeHbo5DqZPI6+9yiqVWKn8q7n98rzw1tsQFt61EIWnoUxNoWbME3e3HaikVe7rddbfve3a9ihNFACYHKYWAR7O4f14iS/1oBMSEi5fvhwVFZWZmVmrzd+5c+fOnTsDQGVlpZswB0mSvI+zYBhGzahVRGW3easnGaYLr6quUlFqwSEI4Dk6g6IoilDAg413MqqGftDXgUKhcOJ41KFDOXNEaTQjQJgQBWa3F+0Y29Z59iC+UyfL8l+QXoEQQqLIPjBMFeitSjVCSKlUNjar9w3anfXr1z/88MN9+vRZs2bNzp075c2xq1evHjp0CAA6depUb41FjEbLnK8cGzcBIcrHxipeeMH960fMvGx7400cGkpFRlhXr2FqalRTPOS3BABSUiJm50jR0XRUM29fvYGBsin3yZNw+0DknGEIAUBsGURlA3VPAO7gwToDQJQ6elri9IMlByw2S+vANh31HW/+YP8W+FIP+oUXXpg7d+6BAwdUKtXo0aN9NEIfkFVzZe7hOQxiRCKmRqQOiRoqe0bfWux2u9NAPhYUoiRSiJIkiQDpGdzTpbtrp47oiXHitwsQhbkhg4Uxj3jlGCuKpKKyNIw7W3pOSanaBLShsefHwH0GA5qmvcmXYTab5dA4jUZT/efx2pAhQ+RDZqPRWFNT8z8j/fY7ac9eCA7CGNvWrrMHBeEHH3B3Zbt2Ea1WlCSEEOYUthW/ihOeBrc2lGzewn/yKXBKLPDU4+PQ4+M8XoWMe09kmqZv3O2XYRhX+340TTcq8ESOIvFcPjraxDsQxhaH6LDxrMWqjozyspcENqGFocVfbUlxq/GxHvTUqVN9MChfM/vcF6HqMEmUCCE7izKaaxLaBrZzX2VP4e5M4yWe55upo5LDUppSBLV3SJ/thVvVjJZIxCKYeof1cVMYKRQICEgEMQzyIt6aHDvOv/b6iY7aZUMCVFqDyCnu0ncYEz+WwU0xE7z//vu///773bt3m0yml156yWN5ccXKWpcJUKmkzEz3PwNi2f8JHSQE3M6IicnE/2smCg8HAExRwuKldM+eqKU72bamxI02iGygG6XW4tUuIk3Tb75ZM/NzI6JZUdjbITm/WDnJYucYz88/RVEYYzfbmF4O1U9dbt/9Sl9hESwUomunzCxWFFmL3BvoY+VHf85ZLueQP1V5kkJU37DkJhksAEAQFzSn77zTZaesdmurgNZufEjI0WPit99BeDhCyL5nH3E46DffcNe01Sq8/gZEhC95gAkyIVJTiuLjzxrPnqw80TWom++vpAFhYWHTpk3zvjweMogcPgIOB1AUUBg8ZZVEvZLIl3MEQ1ANTxibNf++h1qKoHR99kyKi1GdeS7iFKQg//Yx0JIk3aC8Xz28KS8MHPjeeaaNtagmMCQ/NNacX304q6JXC8/iR4QQN3qEfq6Pv76BVtJKkYjkT49OnvDBnHNnkloyqy/VRpyraPVV01VwLgt6s1DT6h5hPT2GVkpnz4JGY+Mlk12osYkRa34nz70YoHG9IM3PB47jaYQJAgDAFNgdjJqtctymuWlwYldh6XJEUSIAUJhO9aD3hkJDbQsWpc36SU/shVEtDsUkdjlc+HTvKJflw8OJ3fHftbfNhqJjfDX4OxSbQMr0oeeimlEUBZJEY2TmPR9UHLtavfl8DpHIPa0CkxL8UnY+w7mBNplMmzZtqqioqPVnfO6555pwVL4EAXqm9XMLLy9QIIUoid1CurcPvMt9FQpRQECecxMgTbd9ZrWK//lBXLHSgUD12qswbKh7qUyk0/EOodAq0BRiKOQQxNXHSyf1jXZZQW8gNjtTUCxK4ZJAECFAU1bBFqVyXeWWQk6dxM3jiM2OMQUMTfYfgPh491XOULrtfR9WKWiMMS2KGRcrRieGazjnzzlSq6l3p/EffWylGN5izxz6SJg2/HaZP98iNAqqV4L+XGENBQAEzHaxZajbQ0JCzi1ek5O2ry2FTkXd9X9Z7Z/tGz20Y2gTDfevjvMHd9iwYREREaGhvrzLbo4aZD9otdpbjyhZn9778j3UPTo065BZnhnAaOMC4j2eEPaI7Lm3ZC9LMQRAEMW7w7t439eNIC5dJm3ZisLDMMa2b77FAVr36pqoXwr57HMVo5KAVtos6weO351ZObZ7pEbhYlWvC0A2q8TzU77iP5scw4iSBOb7mz3QWuchDOFWIa5dj8LDQMEhjIEQKCjwohKS32oCc01gKxEf6D5kgkq9d5kjtOjMZWtQWLk6sHx95hej24Rq/9ayPkM7hl6tsF4qsQAhT/aOigtyd/wrbkoL+v7rtowKE9Lj8mHp3glbzyv9BtpXODfQkZGRS5cu9W1PNput4f6UREj6hfKcSh6AtAtXJTX3KmZPPt32XsoLAAwGQ2t1a1EULWbPkkwcUfKEF0WBEJCIqCbqen0xDOON00JjEZcs+28YcUAAOXnag7qmTnfm38tOL1uvk+x50a2vhsYSs4OhXL5+yNU8otNhjouw27/41lKulAJefl4V2dfzyGRV5SYX2KMeHCbt2/9Hvw47NGvmsUrbCLXZxiPDHl59hhBaaRAPV0r3RriM3zHZxa2FkiGmNUVRWJI0Cvp8oflvbqAzLpVXmPgYg0oQxZ8PXeudEKhXuTxDJqfPmDgNEiQJUJVS1/7qmR3t/FEqPsP50WpgYKBHUWafsO1c2Xe789cdK1x/vHj2tpxD2bfFZujeot0hXHAIFxqsCA7hQveV7G2afvHAAbV7SkSSQO3Z/7QdY9aXFgSUF+tLCmw2x+C7QhW0y+NypOSQJIFSCYGBtFoTZBQ4pQe/aVJVJbz8iqNPSmXnLuZ/vgdNq+pLjRpFSkpIVTWpNFLdu1MPuPOxk9GrmJeHqEB3Vk0H6FhlmDpwXd5aE29yVZ7G//M+I4Qw1N/a38AhSGlnyjgWIwQURhoFdSq/xn0VjKDuMsUf5u1DnM+gMzMz4+Li2rVrV+uGuW3btpvR/fYLFbwoMTQCAIcgbThT2j2+iYQv3GAVrRj9ceEI0P6SfWPix7qv4jSBd2PVo3BSD2n7dggMJACkrJzypK5J8gsUzz/fV62rtEntMo+i0tLOA9z6rkVE4EEDxYydoOTA4sB9++B2bd13If7zfWnPPqBpAOB/WUEZ9NQzNyTe1jiimrGbN0kXLyl1AXSbNmbvQplKbUZJpKrsDg1HEwIMpo280ZXOOMfg+9oG7b1SqaawIJEau3hXs6bLWUwI+e677yorKx0Ox5QpU27GsqyxSBbriH2/xpXmlmmD1vUYLugMouTO4uIOdwVs2manlSCSAFvN+di7qm03lAbMT12cG+i33367aUKkLA6xdkcYY1Rt8eqnrXRUbircWFpdEq6M6B3Wh8UedNwbS4Qq8mzVGQXFAQAv8f0jB3is4jSBd2PVo3C/fnRQsHTwIKfT0an32gweEsFJ+/bZtQFVNsLQWKDVw05umvz7oKUTO7s8WUSIenkyat2a5OSoWrZ09EsRPf3K0v798Kd7NWJYcffeJjXQAMBxFQltzpfY4Vxpu1AuSONhwIVV9h8yLOp4OwG6xiY4RFGl5EM4dzp/Y7tHhusUJRZQIDGlZWCAixPFm8Hx48e1Wu2zzz6bm5t7g+kNfQX1xmuDjh4TEW4FUtKFvRMe/TxCF+emPBo08GJutfXQMaCojOYdSuI7DYrzNpzVj0ecP4u9evVavHjxkSNHEEJJSUmPPVY/1Njpm9/pLNI9wVo2z2inAQCQKIrNAj3v/VkFyzvH3jYo9Iig05WnSu0lo+PGeKzVKPqE9a2WqtMLdoBEuof0TI30pBPvIoG3U/Wo+fPnr1q1CgC+/fbbFi0auAz0S4F+KbLfiNrTWtGsUNQAxoj8+ZJDShpTSq1e7faNNf4JkLN6e7EWLQIMQP50JpEUWo0hyEluBJ94vzqNfc8us7zxywWdigGAKgv/+aOd4oPd7fykHynhbTp7cV9F+C6QKAcIz7V61aD18Kp7qJuG4ziHw9HY2PcbPD3OzMy0WCzz58/HGE+YMEH+ctGiRUuWLAGA2bNnd+jQwVXdRkUSyuWDnP12dRGyskuPHBUxDQgkQtGi8GDeIZPU3X3FlDcmfbvj8r7MUgRgtYjjklsHBdT/Hf3+0deHcwP9wgsvWK3Wvn37AsDatWuPHDkyd+7cugWcvvmdziLdM+Lu8HOFZgohBISiqFFdPSeXulxzWU0paUyLoqiguAOl+wc3G6JlfClcSSN6bMtHH4wbbraYVZ5kYmScJvCuS6161Lhx44YPHw4AHMcZjc733OUXnsdjAKlDB7amChgtQcA67AcT77OJhDjMRt7zQahOpzOZTB7/bKjRI8WlSyWaBkCId5CHH3Y6Zoqiblw71Gns+8bjBXoVTdMYAPQqesOxvKdc+zUDgNlqR0AcxjZCdXOgzQ6bJqxznDfnySzLWq1Wb6ax5OxZafNWRqNhH37IFuzccnkZ+y4IQlhY2LBhw9auXZueni4/NiNHjpT/4f4JQQh5mYQIACiK0mg0HlNeSdlZAH84mCIEgFCgpdpqtboaRi1PJ4UPuitEIhCppRjJajTWf3Qxxs6VsPy4xbmBzs7O3rFjh/zv559/vmFCeKdvfqezyAsXLuTn5wNAp06dGr7wE5sr5oxVnSowIYBucQFhDV68DUEUqpueEgHGjOd0ZwghlmW9nx9RFKWltCxyPhVtuJvsNIG3U/UonU4nP6lGo9GVOfA2KKt5vOKzT8w/rWl2eNf2nsO2tk1+8Z4YIklezlXcBKrVgl97hegDYd9+ilMwo0aJ/VKcVrl5ruJ2QcT4v5tgDtHDL9i3pX7dyRIWIyKyosDGBXHNdL5MSyimpUnvfUB4XgSwfb+Q/mEhbudBNsANsbGxFRUVAKBWq2tVLAICAuS3XVVVlavI6ZsUSSi1awc0TQsiIQQAUUQ6ENPp1Qi1u4qSJK1bL1242Iym2Z497H16++fKPsS5gZYzcMsnhKIoNvx5nL75nc4iT5w4sWvXLgBo27ZtoLNQ3dbNuHYxwYQQb6ynmJWVsGG/KbqMZXkqQCdIfM+IpAhdhEfXZllM0nsdcfdZkxsO1WlW7yZQj6K6Jd7VtcvlUntboFM4KSzAx9vxQFHUhKepCU+7F0u6eUQGKk/k1ShZDAB2QYoM9DAtbROueeme2O925wGGtiGq51JifPvukH5cTAgBmgEEIBJp/td4/lfX3VpSUtJXX3312Wef2e12Wc3m1oIZBiUl4Z27gEgEYYFRPDc+xaB2t+8vrVsvfrsAdAE8QvzWrXjaOzjZC8dNP97h3EDfd999vXv37tevHwCkp6cPHTq0XgGnb36ns8gxY8bIyr+VlZX1V1hWq7h4ibhsOUJIOX2a4CmQF/LyHY+Pp4ODXgtj9iXUHOxac0/c4HvDUqur3KUdqrIK608Wbz5XcU9rQ2obQ6xbr/ta3NsjhmHqzdldZfVuAvUojFC7SI0Zm3PLclV8uG93e245A9sFVZod286XAVvVK0F7XxvPy+SB7YM7tRC2F2/bf23vnqo+A9WDgjgPe6/eQ86fl9OpAAChECkvu5HWKIp69dVXfTEu30DKyuD8eVvzlmVGC6FohcN6Ycu+8KeHYtdvOeniJdAFAABCiBiCyJEj4DfQvsO5gf7ggw/69et34MABjPFnn32WnFxfKqjem1+eMD700EN1Z5Ee+xb/84P0ywqoNkmIWD/4iFKrcE93iSnFPXuQQQ80HVUBY4zsyHVX2IyH3HdBCCw/VHimoCZMx53Mq95+vuzfj7XXKf9qCiSb8jem5W2iEO0QbeMSxncN7uqyqN0ubUoj2TmWli0gNRWU3i7/qxxVx0uP2+zWNoFtQxRNl/yQpfGYHiFMxO6jpYeuAPo1r+PQqKEG10ncAcAsmD449p4g8YDQjsLtRdZrr7R7nUK+ibLBd98tnT4ji+QhQcDxzX3S7O2CKBKAohoHzTIYAGF0+mp1cH5N52iv3voICDSh7uPfgfqmasyYMT///HPdKfPu3bs//fTT33//vW6xem/+2glj3VmkR8QfF4MoAUMjBMRsltasc2+gweEgZgvJyUGAwGAAQogkIbfOxRVmfn9WpRwHhTFSc/SFQlMP1/GKRJLIjnTyUMNOAAAgAElEQVTp+HGrWsMMHAAJd8CfX745b3PeJj2nF0VRTasWX/mxg6GDAjvZlCeSJM79Stq9BymV5j174NQpasqb7uWSZUrtpTMOfaBlAgghq3J/fantKy20TSdZ8Vvm9n1lRymkVLH4SnXmjqIdI2NHuSl/rPw4LzlozAAhgOBs5bk8y9U4tQcRDy+h/jFFGv8UcjgIACgUeIpb+cA7DRQWJiansDv2SxSDiaS0Wa5FtyiqsoNrsRYqsQu/fTvoDUAkUlZO9XWnjuunsdQ30M8//zwANNGyy26rXS0CxqSi3H1xpAuE4mJgWUAgVRpRpw7urTMA0BT6n11nItGuI6EBgKxdJ3y7AOkCHACOVauo+V+hNrepTkUtpbbSup7gDGbKbeWRqsiGJVFRkbRlKwoKAgCsVAp79qH7z+FOnTx2sb94byCrpzEtSRLDGg6XHmwyA33mmmnjpUuMBgMIVRYSpmN3F+1yb6CrHDWEIFEiCAAjAAQmhwl8JKaC2rRhtm0hp05zGg2d2MVyezgv+wyEuBefP3hV6H96+9FOKUc6p1Qw6ohAd8sslHovzbLSwYM0xylSU22eQp/8NIr6BjolJQUAal3lJEmyWCxyFgyfg3smSYcPAUUBARB43NbDaTgxGlFEOFitUF2Ng0OkrCseZ9A6JZ3S0nA4x6ihaF4kJrvUJsLdtQhzvkLhYTZesvIS5gLIph0ht72BDuFCHISvdQbkJd7Vliux2v7ndmEE3sXmWURrbdYVBHCg9MDY5s6zcPmcg1lGFQ7k0VVEaIpCJrvQp1kvN+V5kVzIDiKARSQRAAoBQ9HNtS5XQkSSpAMHUXa2LSEBenR3Lx8og7Ra1LsXrVIhhOAvZqABkEHf9r3XXt78oErB8LyY2lrfwX1oJUI4uS9O7qtUqTDGYHIZVe/nOnC+G/vNN984HI5nnnkmKSnp2rVrb7311muvvebzvvHIh6Xz5+RsPJIg4FEjPVTgFMBxSKdDEREYY6mgwOMMGgAe6xkZoVOUWUFJSfe2NqhZD3uRFodYUu2gKISIdOx8yV1F5tbhTSFld91EqaMHRg1Ky9tEIcoh2h9PGO90fwMAUEw02G0gikBRIElgMmPvXj/R6uhTlSfkzKG8xA9o5jm00inbt2+XU7yXlJQMHDhQznTlHlEirLmDXXsAE5YQ5AB7Slg/N+VPF9RczFErgpPsmoMIQCDk8RaPq1ykRQcAacH30pp1RKmsEXjcuzd+4zXwIjFNbrn15OkKhKBjhNLLY+c7iI5R2q8fa28UGBaEME1TK2T5qQty6nnWo0eP3bt3//bbbxkZGfPmzevXr9/u3btvsCez2dywL/HESfHQIVqrZQf0FzyFOUkFBeaRo1FQMFAYmUzMM5PYR7z1XVOr1Var1aMnn/2HH0sX/lSDFYgQtaV62fDJhr49J6XE1SuGMVapvApgcYMbP+jG+rTRNG2mzDklOZGqCA9eHHn5wi+/SL9vVD08XLp/iJSQ4E37AhEWXP72cPFhBNAqoM0LbV7Ustp6A3DqQ+kUURQ/+eST119/vZ5fvNMbsv1C+c+HCrVKzLMFVt4xsl3nQe3cadplXKz4+XChkqUIWy2SyhqT9ouHuxpchVZWVDhGjUEhwQBAUZRUWUn962Pkac/nYpF5xoYrgWoGIag08+8MTmgbUf8F0Kgb4gqLxeLKMVSOe3I4HF42hTHmOK5RXpJKpdLhcHjpam2yCacLTIBQ23BVoDPpO4TQjf/J/A1xPllQqVQsy27atGncuHGy1s+N9yQIghP72L4dat9OoVJJksR7XG6HhrLLlkpbtmCrVZWUZLu7s/c52QghgiB4fNrQ6FHns6qEK9kIwaXmnXJi2mgEsWEvtBeTLI84z+oNAI1PoY0xVlEBhkgPAc0AAG1aw3v/hPf+2ajI5sMlh3Kqc+J18YSQatF4vPrY4FjPk19XbNmypW/fvrXW+bvvvvv5558BYP78+W0azOhH9jIArfhhVzaC8CeTm4/oHu3G5QsAOrdQ/HSgUENRIOoxCRQc9hbREa5qCJWVFSyD//w1MctoRInzNFE4frwiVMcJXLaDvazRk9+vXuvVfmy9rJU+iWzmed7VEy4HankvOUlRlEKhaJREJcdxdrvdmz+xkmr7aysuaJUMAKmxCf96qHWMof62NUVRfgN9HTg3NLL62t69e7/77ruDBw96bwfd4CZurRHZzCLCybhxuRU2nlEGmx2NcphzGnFTH4xNDzz02/FiDccAQI2VbxmqbFjLJxkwXWX1hkbOoPddqZyfnkdRqHeCbnjncG9iVSrMfJXAKBAfGeCVJNaOrGM2G2uz2ZUspWQUeVV59YKnvYxsBgBCyJ49e2bMmFH7zZgxY+6//34AUCgUTkOKB7TWPdg5CQCsVmu1p2DlIBae7N3s2525DEX1iNe9fl9cVZXrMGWdTrJaiSAAQhhjsdpkjYm2eQprNpmtZsh2aNcRQYURzhaurL2gvCfif7z4fRL7fqew9Xy5Qc0yNAYAFqNt58vcpBnz0yicG7ilS5euWrVqw4YNLMvm5+cvXLjwJnVPzGa4fNmh0+HWrb0pL/660jx7nlKE8+16fX734GeGd/LSQ9N7+ltzY67sPlFiP9qi28iBnfp4kS7zFpJbbv12V16olsUUPnvNJJGi51M8ZNU7mGWcl35VraTtDrF/u+Cx3VxOMGWO5FQdyTbRWgcArrYKId7ZdFdkZmbGxMTUXRzURja7j30Hr6elyS0Ck1sagFGCw+yhFsb0d99IK351ZKQfa8/lvTiEM+/qaeoVrgx30z6NwIgus7wSERCJpGK5fFN+vV6aLk3aLYfnW6xbPnj7OgSwo+9DexL7b79Q7jfQvsK5gQ4LC3vhhRcAQJKkgQMH3iQvDnIli396goVSWB3Cifi7bS+89GDPGHcxSwcP2r/6Ny8Sjc3U9cJ+CqPPlAFLJnTy4d+CtGWr9NmsVjpdG4DR57bSIxYh5CHD7K3lcqlFxVJyoDtGaP8V42M9It0IZvKiNGdHbqiGpRlaSeNt58u6xAS0cXsKeiK/Riu0sVCnkaimKFTtqG7nNie6e/Ly8iIjnbgAuoEA2Z6/bXnmMiBkQLOBAyIHMdjDS4KmsFbNVjo8ayShVq2o6dMyxnXYVbFXSVWJFcfSi3b8s/MHQa5jYQRCOAYTQgggikLw5/vj74n068pWRzIqAgwYod6H0owKtXb4sFs9qL8Ozpfq33zzzdy5c202W2JiYkJCwpdffnkz+hZXrqrSGspppU0d0DH/XNXq9ekXK9yUJ+kZuKZawdtEiuZs5p7Ht1EIzHZf+jlJR4+hoCCgaZ6ipaBgadt2HzZ+M9AoKFH8r3WQCFEy7g4MjBaBpXCtcomCxkVVdvddSBKh+HBNxVjW1pq2JbQkj9wd1OW6B5yamjpsWOP+gI+VHf0te1UwF2xQBO0t3ru90Me5IwiQtOKtakYNABhRGkZ7pvK0u/KEaMQESlFDKctAUWJDlU69zv8mSFfz1IFaFUsJEqlhlXeb8od0aLpA0788zqda//nPf2Qvjp49e8peHPXc7JzqQTc2gYi0KY3X6OXFIM+wETWl2WVuDzHKyhDG8mSFAGIF3iEQVwmbrw9p8xYpNLTCzJsdIiJS5YWiDrzEMbdv9Gqn6ACzQ8QUUtCkhq8Z3S3OTU5CADCoGRsv5FUKDl7ErEVJqSM9aXC3DFOdP3dVpdFa+V5VNnv3FnG+vAAvyDJlqek/1nAKSrEpf+OgZoN92L5EpLq3DAESiLu3fssw9f4iCwaaSBQhoGAYq9gU+eFuUzBCQII1bJAGEVGkmwdTrnIW+2k8zk1PrRfHiBEjnHpxyHrQb7311vjx42v3DeUEIlOnTo2Njd2/f7/Hvqn7B+M/s+kwgr1UH866NS7Qpg2IIiYEE0JJopVW+DxBHjXuUXOV2cpLNEZau+VAQHza2VJfd+JLOBp//8RdfTpV2KPnqRMWb7N+mGPKcVMeI6RS0CKu0MRkBLb6WZHw/aHKdHcdVFb2XbXggxXvdc58zxH0OZew8Bq1pYntEYtZhyDyogQABEj34B6+bZ9CVHJ4P7toBwACYBbMbdymOU9uqW8TXyU4NKJDG8gaQlT6zQVp19f1oUOHJk+e/PHHH3/88celpbf1k+YKnJICZWUg8FgQcHkZHnidPvJOWbZsGQDs3LlTFlz7G3KdXhxO9aCdJhCZOXPmypUrAWDFihW1msgywqSJwu8bJYmmiHSmdbcd8d3n9GwRHOxyP1QcMybvP4urJYwQIELWdRlCCCjUOq3S3Y4kf+y4kJ0txETru3b1GCdGXp686nDBfSd3IEQ29X88t11XHY+Dg+tvQ98m2YlkzKTiqGVllDZMFEUC8MXZWV90m10b+FeP3HJrWY1DG3OSUhYRQQ0Ae8q2dqtq2Vrn/JBWXLqMHD16Ijn8WDccUmGHYO0p40kNq7o/qon2GU024UpOswKyGUSViqEZxnZXrMskI7Vcqb78xb7PgUCPkJ73RqS6P/QDgCFR9weqA9deWdM9uHvX4G7NVB7OuBBhEZIIwYSABKR7cPdGXFIdriPHxe0G7tEdzf9K2refVSrZ+1KtXuRR8hKLxfL5558/+uijKSkpcoTz35Dr9OJwqgddl9oEIq+++qp83igIQnn5/6pt6PXclk3UkTOZZixFx30SpQ7AtvJy197QWs2GVz6WNqUpJOFyaPPD8V3sglRRWemwuFxSiQsXib+sAJqhCEHD7sfPP+fRRpufePq9vFFyameHnWegwbABGIZx6kSVnp6+cePGzz77TP54HTnAroM8U56S/sPtFAGwiC2zl4Yrneem0XIUwgITcJnwannxwoAiz3zVpYFeuRqFh+UHI84BQGGw21is21KwpckM9MYzZVfy1QHKJxzcKd7Bdw7q3knvIZCkhq/+8sznwcpgSZQuVl84ULrfzRtLhqO4ES1HDggf6M2rN/1CxcUrkThyFxLVRpvdAY7hMXc17qr+xGmOiwMHDhw+fBgAhg4dKj88DWlswi05x0WjEnTJKbVq/5DdkZgIiYk0TSOEsC9ccmWeffbZzMzM8ePHP/7447Nnz160aNG4ceN4njeZTBMmTHjuuedKSkrqfZOWlvbNN9+sWbMGACZOnNivX79x48Z9+umnGzduZFk2Pj5+7ty5HpN73FY43+IIDAxkGGbx4sUAEBcXFx9fXwksNjZWPrlWq9X1EogAQGZmZm0VjuNkPyqEEGmIQhHWO3HQw30fTGwWomWdFPhfou9ut67XiJ96jNofn+ggoGKRknHWLCGEEKmoSPjhB1JSQq5dE4sKhV9+kS5f8djFEJ2t/aHtbU/ukaqqKyz8wHbBTos1vGlGo/HEiRN1o+Pk+dG0adOmTZvmvXWusQtpp4q2nC62OrzawtGyATZBsDhEOfuyAIKW0boqHKRh20YEAvzRMiGg5EDHuox5w4MGAiFKOxExACFA0wSgZ4hb0UGfUmlx0JToUB13qE6LyotXbIeMDg9+yrmmXI5SyjkcMGAWs8W2Yh8OKavMooFQbdl41nYXZ2vbXHzkbsPd19dUUlLSSy+99Oabb4aEhGzffrufSDcx06ZNa968+Y8//ih/XLVqVfv27dPT0/fs2SNr0Df8piG7du3KyMjIyMjYsmULxvinn35qugvwBc6nFS+++CLDMIcPH/7oo4+2b98+d+7c2tsk41QPugkSiCTG6/oWGI7mGDFF20VhfI9m7uLK8gqgqoYAQYAIEKiskrKuUC3cBTdLh4/o//HWUwFa3iHhnYvxLys4t+kk6vLjjz8+/vjjc+bMqf3G6fyouLhYznUQEhLSMCLxconljV/OCpIEABRG8x/rEG1wFwBCCOw7pzKWxYH6siRSASoyNO5+HecuyPjjh9rM2jv8El5Pg1LLQUdDh8TQRFcTTDxsqG3z5p4n9ekdlWqTROnUZr6yZ3iveiP3SaypU1Qs7VCd4RWZWFITAmY6b3vhthGx7mRbOFpZ9w1KQFJSru8hIdKhQyQr296yBUns6ikzDwAAhVG1XXCYVVDZhaFRgPb6Q7qd5rjo2bNnz549AaCqqspVNkWVSoUQ8ibX4h9jpiiGYbwvDwAsy9psNu+D1FQqFcbYVRcURXkZyuSK1NTUL7/8sqqqatCgQbLoZsNvGpKRkXHu3Dk594jJZGq4XXmb4zIn4fbt2+Wrmjp1qvyPurjSg77ZCUQUNJ7YJ6pNhNZoh/ZhbOswt0u2qmogBP2R0Q6BJEGZB0VTadt2FBKCEGI4BBxLb9sMTzzuzcD27NnTqlWrej+/0xxgv//++7p16wDgiy++iIuLq9fOd6suAgKGogBAksh3u/Nnj3Pn03Yku2JPZqVBNcBBWoi4qrIkcPTgMe53cbQAM4eOvWZJyay8pGG0nYI7uVv+9+mt2fi77tDhzzlytgsnstRdwR3CVfXX3d4ne3QDy7JMA3Hq4YlRW9NKaYkFAEkiepVyV/GucW3c/ShtFW07V9x9zniWxpRdsPeNSI4MjHSVFM3+76/5X1cilarGwdMpycq3pnoUS9KqFWU1DoZGQFC1jag5tqHp8TJQpV6mNG+q/G1p1arVmTNndu7cuWLFik8++eTw4cMNv6l72+UXnkKhGDly5KxZs27dwG8I589i3Z04q9XaqBfvTYUQWHeyZN2pEobCKx3ihw+0bBHqMsCfsDTCiBBCEDrXVnM1Vh2gL+oumGp9thoibd5CQkPLTQ6zQ0SEVJ++2l6QFLRnN7sjR44AwMWLF69evbp582bZFjudH02YMEE+VjUajZWVlfXaqbHKW/AEABCGshpLwzJ1ybpWTiEQBcJICVgUkY3PLSz1JgK+maGZVtQKglBTVeOhqFIJKcmBanUvOfrcDpX2+kPyiTYQz/MNt4ADWBjdqcXO4kIaMQoKAUhJIUk2T7Itj8Q/cqL6RF5lXqSyWZegLnab8/UvqajglyyFkBACgBUKftt26b57cefO7huvMtkj9ZyNlwBAyWCzjW84Hi/VWuplSvNTF4xx3Y2LVatWRUVF9e/f/957742MjLRYLJs3b673TUBAQElJCQCIonj48OH77ruvT58+kyZNmjFjBsdxs2bNuueeexITE2/dNTUa54/RwIED77///pycnDfffHPDhg3jx49v4mG54uw106YzZUFqFmOsVYjvrctcOtHlkRHqcBcoleDgd/QL2pEcyNmJZCj47eg/ZiZ+pqKdm3U84qHKjdusIqYx4uyWHYrwgrNlwzqFehxY7fTn3XffHThw4PXlAAMAFUsT4pDnAZIEOs7DEU1kIGcXJO7P4BRBJFruTvVCdbW5nxLRd2vRRopS2SSwCJY+YX2dFqsLSylSo++r1FTWtuy8R6ORUDSRSJVNkIjA8MR+tTSyk4fGEYCCQipWntRLCDlp3+MI/XhElgRITk7+5z//CQBt27adNGkSwzA8z0+ZMkWj0TT8pnv37oGBgSNGjDAYDO3atSOE9O7d+4knnkhJSeE4LiYmZvLkybf6shqHc7lRAMjIyNi5cyfHcX369JEd5m4Qo9HoShVBNmHeSG1tOlO67mSxgqYwxqIoVpj5rx9r7yZWRdyy1fbRR2+/Ex1gFCo1elVIEEXzD8eO6B7iwpe2svL3l/+v55XDiJC93QbtSBrWrpnumeT6CX9ceXE0CqfSE1dKrVNWnhclAggwQnPHtI3We9iD/vVo0YYzpSyFrXbh7SEJ7SO9iss3GAzV1dXe+wu612/yyQzajRYHwzEXKs+bbZYEbXM3C6C649Fqte4XHwAAPM/fN6BMY7DwEgEUWFP54Zj3/jmhV7DG3XvxZF71F9ty9BoFEGI0O15OjesSU/9h8MkNqaqqcrUFfB170DqdTj788BK9Xm8ymRq7B21yIdhPUZRef1vL2tyeODdtixYtevrppxtuPd8ILMu6ehlQFCXr1XpsJEKvFqU/tBYRRhIBg07tTr5j2NAXLjOiYpktJEDC2GxyhAVSAhZc9hURUfHSG59dLCCMQqAZUZQC1YqGhW+eFE5CiPKnpzueKLABkMQotZL1sLuCEIzuGt6/fSiPWC22Kz2lI7hDYSm2Y3An32+1MYzjq3nspOcoTBVG0l8/PKBSX3yioOy+1u5CtztFB0wd2PxEgRkh1DFCdZf7hCN+/NwAzg304sWLH3744RufAtTFbre7mkFTFOXlDLp9mKJbnG5/lpGlsckmvJIaa3e7HVlc7bBxBoX9LlFxFQAASI3DHK2IcdNXvxYBaaeLtBiBIFTb+JSWAQ0LNzzL8iEaBT2wQ5ib6WpDQrSsVqutrLyNwmfuFFDrNk8+PsegP4Gi9iN8kZayfynd3ithtqtNMJn2kZpuLUIbNYf14+c6cG6gOY5r3rx5+/bta526t23zsULN9UFT+OnezZJbB/OEClMR90tRANBylEgkztSTx7SNO42wNDD4ySi1uzixaIPy34+2v1LOIwStQliPKbL83NHwObkTD/684akiCZAkURISJZDSi7Z7E4njEB1Wwaqk/2opr/zcPjg30FOnTr2pk8QbASPUPlKrVqudirvXQ8VSA9qFrD9VbC/uwTFJd0drhzSvH3TTEJ2S7tta16g5rJ87EcILymcmtFTqBCaAFghFeJ5mMcLZNdnuK0pEWp21avPVTQCoR0iPoVEPaBjfb3SwLOsqkO/2iiQEAAA5krBRXfjxiHMDnZiYuGjRojNnziCEOnfu/OSTTzbtqHyGREiNTdBxDOEQAnL6mqnKKgZpbl91Oj9NyrUCUCj0LE0LsmMjwkAIkDAXgfK1HCw7sOtahoELkiTpbOUZjlIOj3nI56NzOBw+PCS80wNV/p44N9Bjxoxp3rx5r169RFHcuXPn1q1b5fD2WpyqTDSN9ESjKDNayObNgyuLi3WhJ1omqhSKSyXmJI0v99b9eA9xplJ7K1GpiCTVWMSk/Y6DPViBBhFJLFLcF+lBvSjPnMf9ubNBYya9cMfNMNB+/Dg30AEBAfPmzZP/PWnSpNTU1HoFnKpw3W7SXESStN99PWzPNjvNJAp8s/xLP/cdg8ErB1WjhccIbur2s+yK4uQ/ysqrzHw5axUFUzOVuwzWdZuyCJZcS26UMsq9KhAAEF6QysuKRFxozzEo9AG0V/6C565VCWALUxOnWcO9dGuRVWqfffbZ3Nzc20EREIWECIPuV67b1G8nCS+2H+0SkhfUYUjzgXrWg0OYhtaIkogRFomIEeVzBVQPHDuWhZQFESqNytY6wItccVlZZSfPp7fpIgZmdgvpovHCT/F2oKys7Dpq3XHB3O5x/sesVCotFouchddoNEZH13cEdqoy4fTLtLS0Y8eOAcBTTz3lyhGSYRhCiPeZWDHGFEV5TMQl5V7lt2+3shwBsLFUYs6Jve36qFQd3Fc02YUfdudmXCghAAPahz3ZJ1bhNkfJdcMwTL14M1Jebpo7r2zH1q+fDMqL5gChaHX0m12mhHIeImUWX/pp49WNiAABMrHtxNSo/q5KioePVL3w4tHmqt+HBRaHMgihHmHdX+34hpvGCyqsr/x80hGwizOcxxilNOv1RNsx9ZyRvTTQTlVq9+3bd/ToUQB48MEHXa26rmPLFWPsTXnu7Snfl6pCmasZqYUSUghwvpqOUqo61cvSXY/k6JR1eWsFiUcAFKbHtBrTNHuv0rlzjmdftDuqZ73TqtzMAgEVo3mt3cstXJtpx8DBpLBw3psts8pXQDn8dGVhl+Cuk9vcYfEaf1ucG+isrKzo6OguXboIgnDixIkOHToMHToUAH7//Xe5gFOVCadfBgYGNmvWDADk0BKn3VEURbzM6v0n3pQXq6sIQhgjBEAACEUFg2jnBfcVVx/JP5JdEaRRAMDezLJgDTu8S/0dSZ/4QTscjnqzSOH7hcZd+5Y+HFLQjGYEScRUgaXg61PzpnZ42007F6vOb8rdyFKMHL628PyCLvquHHbm6G2x8C9NzmP16x5QG/WY5QlP04dKjvyetS41wqVNn7b6jJU7odRdkXi1BLA775ieVT8YM7xuGZqm5de5ezyq1DY9FMsMf+fp946/iEU9AaRXs2dr9p8sb3d3sDsJlPOV5/UKPQEiSRJDMZerLieGdG2C0QqvT0XVxm9fTqgwMIgQAGQRTF9f+Prz7rOdl586FQqLDvYMymr+56+D4FjZkezq7PgAz6flfm45zg30tGnT3M9nnapMuJfmqqysdOV97L0ftIw89/RcPiIC2a0aFWcVACFQOWxX9JFP6Rn3FUurLDT+I1SXxSi3tMZqrb9nfZNcXKTVaxwafXkwRhIhgBAhEkEXqi66r3Wm6lztj4UAAKFLxksdDR2dFC0oEBWclcNlIRQtEECACEEEXzBedGOgq6wCE1QJ5I9LFkW8o3B7PQPtJbGxsXIwm1qtrpVZ6NWrV69evQDAaDS6OmKS56fen3HRNE3TtJflm2mJTsnqWDUCghEIEpNdkd1K6W7rINt4RUkrESBZJWrr1S1DI/7HLY+m6Zuyw36tgCBUGFbrWUEAcEUDaZRapBOnAeBQ1zoPMAEA2Fu+12+g7wicG+ikpCSt9r+awteuXauXibmeCtd1S0/cXDiOXrBAvWyFasuW/c277U55YvLwDh5dpxkK1wY8ioSoPMXy+RA8aCC155DCRgBjkIAghACi1THua4UpQgghtWJtBCBC7cIJQW/AAq+wKuDPjXiCACHJ4DqDNQDQGNsFDoFEAAMAQpAUmtTIK/uDeiq119eIz6ExTUBiaSxJEiFEkHj3NwQAtHSAKAk0ZgCAAOnRVALZxKBHlUalRazSyX+5CAC0rj38SHAQKSqKvGY9265uGdJS2/Imj9SPb6Def//9ht927NixY8eOshjm0qVLx48f//LLL9ctoNfr77nnnj59+vTt25dhGIPBkJSUVO/Lem3abDZXod5yFLj3Dj0URck+QB5LoiCDosHHV5gAACAASURBVF9fbsKT3SeO6dujebDG88xXr2Y2nC7BCAsiMVr4F/rFahokwaQoypvAdPfYbLb6Kp1aLb32N2UJOtqNA0AiRgiJYxIei3KbgSlS1ex01WmjvYIgJBGhiyGxX/g9zouqVECAO360RkFfjaEJxgSRCFX4hFYTWezyvaVi8b4LRBV2DAhGSFIp7WObjwn8X41/LyP1McY9e/bs3bt3cnKy0yfElWyp7I3r/ROCMVYoFN48ITKxmtg9JXsQAbtk76jveF+z/u73oEO4kLSCjQiwKIk1QvWI2FF6xf+cr3h5Q9xjt9vr3RBEJLL/YLNC676eBvjzjLl/5H3tAp2ndKF7dBd+Xdn6gjH9nhCBwoAIANIyAZNaPeOxd6VS6XA4vBeSZRgGIeRwOJz+L8a4sUsK51EIdjs5fwGMlUivB2erfG+22u4gnIslnT9//oUXXujUqdPVq1dZlp07d25oqGdFN/e4EUtSqVSEEO+3OGiaVqvVVVVV3vceGBhYU1Pj5TZ3pYW/VOrACNqEKrTOlJh8IpZUVVXV0JOBFBWZDx49I1gPxVZpA5h7I1NiNbEem8I0Ti/anl2R3cbQrmewh9kcOX2m5NTFg0HClfDqOEPQkMj7FbSHJEDnrplWnrxqobJ6JGjvie4Y2MDJgaZpnU7ncZzucXpDZJRKJULI+7gh+Qy5UU+IqBDOFZ/jMJegbeHeOv8BC6fLT1ts5la61g29PnxyQ6qrqxu+k8T9+2u+/88pivz2ULg+VP1AfP/OBrf6mZWVttenlFwr/npclDFO1TW83YSWE7zpXafTmc1m751t3P9GFEU1VjqioRcHKbjGP/oYUqmAEJTcl375ZdDUP5tt6MWxePHiH374geM4q9X60UcfuZJ+O3HiREZGxm2x9K+DSzW7vXv3jh49WqPRrF+/vlWrVk08LD9+/PzNaWighS9mk/37QU7fY7NTo0bgxx6tV6aegT569Og//vGPDRs2KBSK0tLSefPmTZ48+bnnngsMDKyurv7Pf/6zZMmSHTt2tGzZMicnJzs7e+bMmXPmzDEYDISQ+fPnz5gxo1OnTgMGDHjggQfS0tKaPp+hcwM9adKkS5cuLVq0qLy8/Nlnnx0xYsT06dObeGR+/Pj5O9PQQDv6paLwMPnfhBCc2IWeOqVemXoG+l//+ldsbOyjjz5a95sWLVqMGjVq9uzZer2e5/nc3NyPPvpo5cqV+fn5NpstNjZ27Nixs2bNSkhIuP/++4cPH56QkDBmzBifqC43FudLubZt26anpyckJHTv3n3//v2NWir68ePHz80APzAM1e5S2h24mecwroZZIHJzc2NjYwEgPj4+Ly8PAGJi/nsOn5OTs2zZsieffHLv3r1Go5Fl2aFDhx46dOiWWGdwZaBffPHFhQsXvvvuuwBw9uzZGTNmNO2o/Pjx46c+1OhRUkkJVFWD0Yi7JeIHH/RYZdCgQd999528M15cXDxx4sT4+PisrCwAyMrKkv0g5MNWhJAkSXFxcRMnTvzhhx/mz58/cuTImpqa9evXDx48ePXq1Tf32lzgfItj4sSJclbvI0eOfPrpp2fPnq2X1duPHz9+birOQ71tNuniJcQyqFUrcJZLvuEh4ZIlSxYsWCB7d/zf//1fTEzM888/HxgYaLFYFi5cuHjxYgCYOHHi6dOnH3vssY8//njJkiVKpbKysnLBggUffvjh6NGje/bsOXDgwNWrVzd9UhjnBjo1NVXO6p2RkQEAtf+4EcrLy28H+QWfwLLsjf9Uf6UbIrta3mAjFRUV3jvS3ebQNB0U5MGZ2iN/8xvi1+KApszqXVNT48pH8o5DqVTeuIE2mUx1kxbf0XAcd+MG2mQyee+5fJujUChu3ECbzWbvfU9vc1iWvfEb8jfE+R503azeXbp0GTFiRBMPy48fP378OJ9Bv/POO7VZvb///vtbdYLpx48fP39nXGoH9+vXz7dZvf348ePHT6PwJ3/6q7Fs2bL9+/ff7Cq3M7t37z58+HDtx7/Y1d0g69at27p1660ehR9v8ZB94xaSlpa2detWlmWtVuvo0aNlRUpXbNmyZe3atfPnz09LS9uzZw8AFBUVDRs2LDk5+dNPP5V1c957773y8vJvv/1Wp9MZjcYpU6bU1NTMnTtXzk4wbdq0xmoF3EIOHTp09OjR559//tq1a1988cW0adO8ObTct2/f999/LwsTTp48WdaGvaM5dOjQRx99tGrVKllN6ZNPPsEYT5lSP7oMAERR/PXXX3/55ZfffvvNy8avo8rtxq5du7KysuScogUFBQsWLOjSxZ3O9V/gkv9i1DfQP/zwQ8NChJCnnnqqKYbzJxcuXNixY8cnn3wi6z4vX768V69e69evP3PmTGho6LVr1+Lj4wsKCjp06DBkyJCKioqjR4/K4mGDBg0aNGiQKIrvv//+wIEDz549+8gjj3Tu3HnRokXHjx8vKytLSkoaMmTIokWLLly4EBoaOmXKlJCQkHnz5mVlZbl/dm9DiouLZ8+e/c477+j1+uLi4s8++ywmJqakpCQ+Pt7pvaJpetSoUYMHD66tXrfKrb2W6yY2Nnbfvn39+vWz2+0lJSXh4eHr1q1TKpUdO3ase3VVVVXt2rWLiqqvC7h27dqTJ0+Gh4fn5+dPnTr1ypUrK1as0Gg0QUFBI0eOdFrlTmf37t2nT58uLCx87733eJ6fNWuWRqNxOBzTp0+vd5cmT548c+ZMtVr9+eefDxs2zK/J0/TU3+I4cODAgQMHVq9e/eGHH27btm3z5s3vvvtuWlpaEw/r8OHDgwYNkjNCKZXKp59+GgAwxrGxsRMmTDAajcnJyS+//LLsnb1gwYLa/EkyGzZsuPfeezmOS0xM7Ny5syAIly5datOmTWpq6tq1a99///2TJ0927do1Pj7ebre/8sorJSUld999dxNf4w1SXl7+j3/844033pD92zZt2jR8+PCXX35ZTujl9F6ZTKadO3fOmDFj7ty5giDUq3KH0qNHj3379gHA3r17655m17s6g8HQsaOTJAYIoZiYmGeeeaZ79+47d+48evRoSkrK22+/3b9/f1dV7nRiYmJef/31Pn36ZGRkVFdXjxs37u2336Zp+urVq/UuuV+/fjt37pQkKS8vz2+dbwn1DfQ333zzzTffaDSa8+fPL1myZPny5efPn3eleHdTkYVojxw5MnXqVDnNKADIxohlWYPBwLIsz/MZGRlt27atq4ZKCElPT6894aysrJwxY8ZTTz1lMBhWr149duzY999/v3fv3tu2bQOAqKioOXPmxMfHyx/vIAoKCoYPHy7HQQFAeXm5nNAvIuIPtf6G9yo5OfnNN9+cPn16aGjopk2bGla5E2FZNiAgwGg0Hjt2rEeP/yZvdX91K1eunDp16qZNmwBA3uoxGAwVFRWjRo3KzMx85ZVX5ESafwFqBZ0lSZJjmuUUdCEhIZWVlQqFYuPGjfPmzcvOzm4YppCamrpjx45Tp04lJrpVNPVz03B+SJibm1srrKfRaGTj2JT06NHj999/t9lsXbt2/fTTT+Pj412FVO3fv//s2bMzZ87MyclZv349AFy8eDE+Pl5+FmtqambNmjV58uTWrVvLH+X5lFarra6uXrJkyYkTJwAgKCjIJ8E4TUnHjh2HDx9uMBiWLVsGAHq9Xs4mlZ+f76pKbm6u/EeoVqsFQfCmyh3BgAED1q9fr9frqTqxv+6vbuTIkZ9++qm821NYWAgAxcXFwcHB+fn5zz777OzZs9PT0/8CcVUxMTEXLlyQ/338+PHmzZsDQHFxMQCUlJQEBwevXLmyX79+L730UmhoaMN5WGBgIMdxa9asSU1NbeKRu0GqL3/UOH777bfNmzf7bjg3F+eHhAkJCampqUlJSQihffv2yb9rU9KqVasHH3zw7bffViqVkiS1b98+Pj7+4kUn2fnefvuPhKpvvPHGsGHDACAnJ6fZnzJXK1euLCkp+fLLLwFg8ODBDz300Pz589PT000m0xtvvGG1Wr/44os1a9bY7fY7VE/1qaee+uijjzIyMgYNGvTpp5/u27fPbDa7en4DAwO//PJLOT3CW2+9ZTQaPVa5I2jVqtW///3v1157re6X9W7I2bNnly9fnpubO3369AEDBiQnJ9eWLCoqmjNnzrVr1959991jx479+OOPgYGBrVu3zszMdFXlTiEuLi4xMfHVV1/lOE6tVk+ZMmXz5s2FhYVz5swpLCycPn26SqVaunTp7t274+LiVq5c+dBDD9W75P79+69YsaJexrtbhU2QVh4tSjtTCgRGdg1/oFMo9pS+OS0tbdu2bbNmzQKAEydOzJo1a8mSJU0yWN/gXItDFMWNGzeeOnWKENK+ffthw4bJ28E3Qk5Ozl9gSiKjVCqjo6NvsJHc3Ny/Uqh3Xc3G6+Pq1atNH+otnyj27+8yZ+71oVAoZE3LGyEvL++Wh3pv27bNarXKU58bgWVZWTrOexpqcaw6VrTtfLmCxgBgsgvjk6L6tqzvvFRPi6Ohge7Tp49Go6murt61a1dcXNylS5cWLly4fPnyuh9FUawr6m+1WidNmoQQiouLe+uttyZOnBgYGGi325ctW7Zw4cK9e/dGRUVlZWXdddddly9f7tOnj91ur9va0qVLg4ODx4wZM2PGjK5du6pUqs8//1yn00VGRs6cOdP9TXC+xSEIQlFRkc1mmz59ekxMjJeZovz48fNXYvny5RkZGbVuP7ec1ceLZesMAGqWyizxalty1apVsnPXiy++WPslxrhNmzYzZ84cPHjwqlWr6n1csGDBI4888v333/fq1WvlypXffPPNE088sXr16k6dOl27dm3atGk//fQTwzAXLlzAGLdt2/bjjz8uLS0dMWLEV199tWLFinqt1RvP1q1bR44c+dNPPz322GMeB+9SD/rYsWPyEcr27dufecZzikk/fu5EHnjgAZ9Pn/8yjB07dsaMGTe+evYVKS3/K8glEeAYJ3KjDRkxYkRaWlpaWtr8+fPrfi8vccLDw+VDiLof64n65+XlyQvE8ePHBwYGLly48NVXXz1z5oy8vgkPDwcAjuPCw8M5jpOXxfUar8trr712/Pjx5OTk9PR0j4N3bqCzs7O//vpr+Txt6tSpTX9I6MePHz/16B6vqzA7BJE4BKnSzCc32N9oFNnZ2QCQm5srH1nV/VhP1D8+Pv7y5csA8NVXX82YMWP06NGzZ8+Ojo52k/K8bmsKhUK22vJ5dWZm5syZM3fu3PnLL7943NNrOrlRP378+LkROkcHfPhgqxN51TRGPeIDQ7TsjbSWnZ390ksvXblyZfny5T///HPdj6IoPv/88zt27JBF/WtqaiZOnPjLL7/ExMQMHjz4X//612+//da+ffvZs2ffe++9HhsvKyt78cUXr1y5UlJSQggpKCj44IMPQkNDExMT5fA6Nzg/JPy///u/vXv3nj17duTIkRs2bBg/fvxbb711I/cCAKqrq12+cGjIrLpkdzgStAlKWumxKYqiOI5r1GtDo9FYLBY3b7x6KBQKQoirU02apm88uKOmpsbV5r7s4+j9EeJ13BC1Wm21Wr2/IYhGl4wXbQ5bi4AWSlrVcABardb73p3i5oZgBl+svGhzWBMCWqga9N6Q67shNpvN++MW97+RT26IyWRyldKBZVmEkPdPCMZYpVKZTCbve2/EDTGZxVMnGQVHd7nb4cKt4jpuyE0V7JejPcaNG+f04w3iw9aaTm5UFEWnP7bRYXzv+HQlrSKEWEXru53fC1GEuG8KIYQQalQ6EoyxqwE4Rf7zc9UF8uTc4w00Tbva3WMYplFNYYxpmvY+J7xNsP6WtTrLeEVBcfdF9W+ha+G+fLWj+vVdr9CIBgBeEj7sPqOZxnO+zsYiiqLTG27iTdP2vaWklYQgq2B5q8PbkSrPvWOMr+MJ8b6KbCJvak4cN+ORtUe8752iKO9vCCFwMr+6oKZcRZMecVoV626rl+TlCeOeAK2GB0RMNcyqVRDkJHXDHe3HeQvxSm60tLRUDsq6Gewq3hmo0NOYliRJQXEZhemj4kbfpL5uK+x2u6s/GLVaTQiRM116g2zrvZ8wfn3x34fLDgEhALC7YNeHXT4KV7oLJlx/dZ3ZYcYYA4BEpNWXVz7dcmK9ASiVnpc+18fe0j06JpChGEmSOMztLNo5tvmjN6kvPwCw/lTJmhPFWo5xCNL3u/gFT9zlxkaLv66CsFDAFMIYKTnpt9/wxAmuCt8+PPfcc24++rbxG8H5IWFsbOyaNWtqP44aNcpX/TWkxlFD4z/eExTCe4p337y+/ABAUbX1UOlBQggBBIAEwq/NXeO+ynnjOcBIIkQiEgJ0sPRg0wxVpsJWwVB/LCkwQgdK70jt0EOHDk2ePPnjjz+WXbLkLwkh33777cyZMz/88MNb7vIsI4jSiiOFARxNU5hjsFpBncirdlNeWrce8J/mm2Gl8oqmGOXfBucGWqvVzpkzZ/r/s3fegVFU2+M/987M9t30XgmQhF4DhK6AoMgTsIAg6lOfir08eSry/T2xPcUC+iwoKoooKF3pIEWUTkIvoQSSEBJIdjdl68y9vz9G8mKyOzsbNpuEzOevZHLu3Ds3M2funHvKK69I2ygJIcuWLZsyZYrHX2USqY10CX+aenkq3BDn2eiuEBAohcU5ZwHo1d8oAJTYS6Rb2YmdEIFQQaBEoDyhQfWLj9XGOoU/ja0CEQbHDglm74Giurr6tttumz59+vTp02u+R3NycoxG44svvnjfffc1kwrCDp7WDs9jMap2SSkBfOftUJOGwelACc0i5vC6wbOJIzQ0dOPGjdOmTRs9erSY6sEjVqs1IyOjJgy0zq8yGRw9pEKw7i7ZDQDdwrrdGNeMov6vP8w2d845AbUFwH9qaQoQrfeRGJpSAEBAKQIAhEyqkMYYG8uytZNp1HBj8rByoWznpZ0A0COy56iUm31a2xmGQQjJN8oDAEJIpVJ5HIC30cLVvQqPZ6tzpLq6ev/+/bm5uUaj8cEHHxSb5+Xl2Wy2jz/+GGNck5Hx7Nmzoo9Xp06dvO1FS/deH4yxzAlRq2FQesShwgoWIQTI5iKdEkMlGqruu9dVWenesg0QcCNGsBMnIE/CAdm2aYV4tUGzLPv+++8vWrRoyJAh3oyhYWFhtfPE1/lV5NKlS2azGQCioqI87okZWeP9HR4YlXyLw2mP1cUh8P2PFB8/v/znRXn5dwnGmFLqrQvRGtsS0XJYEHgOqSj9X/KptkYfuVY4xGGECQgACCOkwY1ibqaUetzFZYAZnDCUUGJz23uG9wxhQ3xu9la5qzZd3HixoihOG98/ZgCHZW26+rWNLCaH8yZfX9FnZ2dnZ2dHREQsW7Zs8+bNI0eOBACe52NiYsaMGbNy5cotW7aIB48ePSrGiCUlJXnzSRDPL/9+FvfVfTp1iUwZlLZ4V8HmYyWE0n+N7tAhUbJee0KC9vXXjv5xKOdidVVkbE8L9Inw0It8fyGF2nhWQPfdd5/4w8SJEzt16lSTkKgBrFixQrzbPvzwQ2+5zzHGKaoU+fu84t3ml9cOQkin8+2eVXtI4N2bouXebVoVc3OX6I12FaZ6ihwcw4VpDWrs47lN0CdcqDrPYY4CUEoiNbI8mfzFm9PC+ar82cfeD1WHUUoPlR28O21S74gsifO4iXtx/g+nKk5iYPcLBwqqCia0mejzxS++HuTbGUQFLV++sLBQzGuq0+lqWqWkpIgp9/R6fY3P3JgxY8TcF1ar1Wq1ejybTqdDCMnfFmYYJiQkxNvZ6qABuK9v9BMj2jvsNrfb7bPVkaKqWfuqwgwqVFm+/vClqUOT+rapW5yIYRi/PmgUROoq6IkTJy5atGjlypUrV64MSAePPvqouKdpNpvFpXR9DAYDIUS+0wLHcXq93mKxyB9GeHh4RUWF/PWRtB8Fx3EhIR4+8wkhK1asWL58uZim2WazzZkzh2EYhmGeffbZZrLu7p1g2rm7fYXpPKUmk55zCFUdQjpINSCkL+m0F/YjYDgGAdBBMUHN65ZTdiBUHYYRJpSYONNJy0lpBZ1fde6w+bBRZRQEQcOo91zZPSL+pgh1RNAG7BGTyfTJJ5/o9XpCyDPPPHP69OlVq1Y9/fTTH3300axZs5xO53PPPde0I6wDy8i9XXNOlfQsO0Ot7MW4tBAdc7Cgsr6CVmgYdRX01KlTAeCZZ56R0/jEiRNLly4tLCx84403brzxxrCwsNq/ZmdnB368zZs6VvgNGzb0799/yJAhS5Ys2blzZ0Dcya8RYfGPSW+9/QaHtg+K2JvR7mRU+0d63ROlifYmTy9fqXjm+TZHjz+drFk3uN3+Nt0eyBrcOzKo1Wd4ytde/+65sntyW6kQAJfgQuh/ygUDqtmFbkLatGkzc+bMml/btWsnamSZz1owqXDwvxwsXXv00JCMiAFpoR3i9BLCtOjibdP/Xo3VAqBjKZ3WDL6LxLbgAj3NjboKetasWbNmzaovN3z48PoHMzMzp0+fXvtInV9bG3Ws8Pn5+b179waAtLS0Y8eOiQr61KlTFy5cAIAuXbp4s7qIFkb5n4Ry98TKyyvffAtTUDthxObSEZtKXxo75GCIYVS614ZVz/1Tc/ggIJx2vurxbw+s7hy+itfe3L6ufKNuAaWHZO6+stukMgGAgzjGJP9NWj7FkOpw2/ScDgAEKnQL7x6laSwv/usQSrct3ADH84aERx3Xdt128sqs2zNjQ7zeIeSHRRQzoVXlAKjHmZxibVhVxv1BHG5gWL58uU6nE/cAmhV1FbTH93lZWVlQBnM9I4Z+AcChQ4d+/fVXAGjfvr1Ylao+jbQF5Ni8GejVtSgFCjD8xI6jg/pJNKw8coReXY0ShPrkH1ha7aov36hG+a5hXSelTz5pObmz+I/RSbcOjblBWt7AGV7o9uLu8l3bCrYOiB44LH5YjaO9gk8cX87v9fVCXqvl3O627bovGTLp6MUqCQUtLFnCuQWBYSkFrbO626VTe3Bjva0p0EPlB49bj7OI6RHes63JRwQsAKxbt+7JJ5/s1KkTAFRUVLz88st11pq5ublbt25tht8xInVv3JrR5+bmirHwTqfz1VdfnTBhQrCH1vJp27bt6dOnExMT8/LyaqrS3HHHHXfccQcAWCwWb9svDYgkNBqNPjdzCC8A0BoVjQAQof3bmKQa1tK8GBAAFgRaX96vQPMGMDBu0MC4QROT75Ypn2JI6RzXeXz87Y03pOsSWlGBFy60afRqSpxqTYfTB1LbZamypWpToDZpcCoPABACBEgLjegjv+fy7p/yfzSwBoro76U7nsh8So6Ovu2228SE/Tt27Jg7d27v3r0feuih8PBwSunHH3/87rvvnjt3Li8vLzs722az/fbbb23atNm7d+8PP/zgcrlq5+aX74IZQDyvLJ566qnffvvt4sWLmZmZhw4daoaGC6vTWmgrjNJEqXEz2hquY5QfMWLEhx9+uGvXLp1Od9ddTR+/jjIzAbOI8BQQAqBA+QHZ2W2lnJpR9+4oJ+dPlU7hj7ReSeHNaMIVAguyVgClieVFBABRsGkNqMLaNVHKXQp3yIDCQlxVjYA61Nq86DYd4xvLBn264rSRMwIAAmTiQnPNuXIU9MqVK0+fPl1SUhIeHj5nzpzPPvvs9ttvv/vuu999993Vq1ePHTu2sLBQ/CjEGKenp8+YMWPmzJm///57Wlra9OnT+/bte88995w4cUJchgcZzwp67969OTk5Y8eOXbFixeHDh7/++usgD0uaTYUbV15YgQG7ievRjMc7hEo6IQSR+kb5adOmNdVg6oPS2oDJgNxucLkpyxKV6tZ7bpI2pHAffnDhwSdiTh0BBNvSs1cNmzQ8wRS0AbdyxBxY3v7kVyiAuPrzKU9joqnFjFVqoJRQMNgr/zEyM8IoZTrD48aSLducMdEunrJ2W9L9d/fMiKp/TwXEhan2vYoAKJVlWBNX0Fu3bp0/f367du3y8/N///339evXW63WiIiIOt66Yg14nU5nt9u1Wu0HH3zwww8/1OTmDz5S2dQcDgchpEuXLkeOHLn2nsSNLI9/QghJ3It1KKi68HPBqnBNOCEEEHx28uM52f/1aWRUAlUAADQa9pOP+cefQDodJoLmnbdplC+P5pAQOvfzB5efMuk4ACB297AMybAFhcAhcZuJf5L/0S0qdJ/ypLyciYggPI+qqjhKUVRUOOKlWzG9ezML5qt37nJRTAcP6ZPiOZA4INvI8br4g+W5OlZHgVbxlZnS7qF/ZejQoa+99trx48dTU1Nvvvnm22677eLFi0ajccOGDd52UGbPnn3XXXcNHz58zJgxTRX64FkBtW/f/sMPP8zKyho7dmxqampANgnFW8TbnwghMu+2S44SNaP+81QUOKyy8pZorY9gZfBTq4rbbt6G1FIVNADu3Em1bQtUVYcnJ1VUVMiJs0iJ0H54d8djJQ6EUMcYdZjOv1SotSkqKvrmm29MJpPVan3yySdNJmUxLgXP82632+OfxOWOXxnDtVqtb3mTiRCC4uKQQBgVJ5SX8+Hhgq9Wztj47+L6bc8zo3UXs9OqJ/dNMKjrPjgBMeAOihmMABVWFwBARkiHzmFd/Go+Y8aMGTNmfP7551OnTl2+fLnZbP7iiy/S09NfffXVbt261XfhGDRoUO3c/BJJLxoPzwn7eZ6/cuVKVFTUggULLl68OHny5GsvUWw2m73FifgVqHKm4vRnpz4NUf8Z71vuLJ+V9Z4K+6itEB4ebrVaGztQxS8sFksA040ajUZvcUAeESN35AfCSQ+JZdnQUN+xCWvXrmVZdsSIEQsXLszMzOzVq1ftv0pMCFGR3Cs5doc93ZQhx2euARMSFhZWWVkpf0KkY/lkTog0VqvVm4JuWCShGLUoDVm5Svjov1Srw7ybGXMrmvoo+Fr8/nywdPWRUp2KXbDzDwAAIABJREFUAwCnWxjcPmxCVt3stQzD1M8DIU2jJuxvKXheQVsslvXr11ssFkqpTqdbvnx583FDSTO17Rvdb/ulbZQCAJ3UZrJP7azQTBgyZMgrr7xy4MABi8UyceJE8eCiRYtWr14NADNmzKjxdanNZfvlf/72nEltAgpLzv/4r94vZ4ZlSnckGs38UpEWl+WM/bSBNbQPS5eTEOb34h3Hyo/9XrRjfLvbb069pU66j5abDADf9jfUvRs5fSY0Pd3RJtUt441VbHVqri6QOQZZ7J5fKgoNwLOCHjNmTNeuXRsvSX8dTpqPbyjY4HQ7B8UM6RTqY6uUJ7xDcGhYLSWEUlrqKA3OIBWunZ9//nn8+PEDBw5csWLFtm3bxHpu/fv3F/VySEiIxyXhxvwNYVdLOoSqwrae35KkknL8AgCGYXQ6nfwF5jHzsU+P/1fDaHgq9IzodXfbSdK7GgfLcr/Jm69jtUbOuC5/rdvlHpV0c50B1Hi+tzhQSgqTksKGhYG8ElkGNcNTKl4toZSTHSOu4BPPd2FGRsbcuXODM4Kc8pz/HpuNMQsU9l7efV/7BwdLpnrIqzh1pPyQSWUU7RVbL20ZFjfcwLW86FIJq5z0FmV9xP1Pv9L7SQ/A3yHJPFV1dbWYP9NgMFRU/JkGPjk5Waxpb7FYPH7RV7oqMGBKqWiO21nyx8RUHw7RorA3+0B9Pjo6J0oXRQmllOaW5bQztpNO93Gk/IhTcJodZgDQstoV51cMi/1L+EPLrfBES0rID4uFFSsrx42lt4yC9u19NhnRMfKXw5dNWgAElXb38A5NnPbkesLz85aZmblx48auXbvWPHiNZ9lZW7iaxSqEEADFSLWleLO0grbzdgBc4a5w8241VmHADsHREhW0xCak9BZlffzd06/dSibSQ5K5Rz969Oh58+b99ttvVVVVTzzxhMyuk/TJB825YqVaN+GHxXvIOnAt8ITHCCNAYvkCDqvKnD52xYvtxXbBzmAGKHUJzjid7xzoe/bsWbBgQWxsLAA8/PDD4uep1WqdM2eOSqVyuVzTpk2TmQ608aCEkHlfkpyDKDbGtWsXv2KFaslPHmsM1ibCwN3ZK3bR3mIAGNcjJt572KGCv3hW0CdPnnzzzTdrByLn5+fXFwtI8jan4EIYicnjEcBF20Vp+ZKykJLqK4Aog3AlqkrWJ4WrW6TjF8/z3rakWJallMrfoxcD+eTLA4Ber3e73fL3xKSHJHPxHhMT04Cgp75R/ayCZUPheqCoT2TfYXG+FXSpvXRl0QpLlTlEHTokZqgY3eANFrOEEvpnlRlwCo44rQ+Fq2d0AhEIiIZm6rMkDVytqFInzjg/P3/8+PGdO3deuHDhoUOH+vTp4/M8jculS8LWbSgiAgAAY2Q0kiOH8RAfJWx+yzP/cuhyQpgWAH49XmbSsLd0UZKfBAbPz1VxcbHZbPa5IgtI8rZkfdJFWxGDGQAglHQK6ywhfPaK/cfcE0yshmKbAAJHtWXOMhtva4kraAWZMIi5o91dY9rcVlldqWV81wqwC/ZXD/xfmDYCEeAreLPTfE/bKdL7fv/s/MI7R96iBADRQdFDOodK3YQAYOSMABSunjM9xLcdwGNFlW7dugEAz/Nnzpy55ZZbRMnt27fv2LEDACZMmJCQ4Ll+uWjU8jdbi7f6LDXQiAgrAMJYbIKBakNDOV+t8ssvheg4cTAGLVdSLfjsSA7XmT9Gw/CsoNu1ayfHiCYneduiRYu2b98OANOnT4+O9pDWcmqPxyv2VRwpPwwAGaGZT/V8JkTt1YOt6Fy1Rk14qsJuIwB1E2rU8Cq9KkTrw+kNY2w0GuVbBsWX0/WXsL/lombUPCNrvZ9feU7L6ljECCCwiM0tzxmZMDJaI+Upf6rilIE1sYAJ0D8u/zEq8eZQlZRPGIMZBAgjBBQIUC0jlZBTxGNFFQCwWq2fffbZpEmTah4lo9Eo6mWWZSUqtngrQOMR8XPWt3xoKDtmDL9pM9LrqMNJKypR164+WzEYEUqZmreFp4EpJa8ahlcTR0pKSseOHWsW0evWrfPrvDVb2N27dxffhCqVyuFw1JdEgP7db2aZ/YrT5QpThyGKPIqJcIhQZzRFTkRVFIAC7R7RQw96iSYiLMs6nU75ilVM/ePtix5jrJSHaLYgJO4oEp7yDBLzAkpZ2wglP19YFaWLIoRQShHChy2HB0VLbYQgwEnGZCfvEChVY/Uxy1Gfo/JYUaWysvKjjz567LHHapsTe/To0aNHDwCwWq3eIozFFbH8+GOxoIks+UcfRinJcPq0tk0b4aYRDoTAV6s+KYb1Ry6F69SAwVzl6p6gr9+R6Fcjc7QKNXhW0C+//LK3xaMEHpO3ZWZmZmZmAoDZbPam7ziOM7EhNpfN5fSRWL1rvK6yUmdgxgjRKwlF6fpeo+JGul2+N+v1er3L5ZK/4pA2uTZgchSCRqohtdJdUeYsQwAEaPfwnpFqqY9lQgkgWuYoq3RVAtAQVahL8GHNzzBlbCn+1SE4AEDDaG5OuMXnqDxWVImNjb1y5cqnn34KAMOHD+/bt68/F9ooUISRWkU1GqRWI1bWfZ4eo5/5t/ScwmqKUOcYTUas7+8JBZl4VtDnzp174IEHfDYOfvI2nYqZd2/nvedTbfyAJBPunKCYnhXqUsVXqrBay2l5QcAIn6o46SZuiWgmFrOR6qiC6gsYIUDY4rL4NFlU89UcwzJYX+2u4jDrpr6XCN4qqkyaNEn2lQUD8umnZMMm0GqrhS344EH03LMgw7ekTaS2U3IExrhKnuu0gkw8K+gFCxaMHz/eZyBWkyRv06mY4R0j/a1J2CQoqSeahIu2i2pWxVMBgGKEVQiXOkoTdZ4LFgMAT/hL9ksCFSgFClTDaqr4Suku9hXnCS4DAojgQnQqZkvxr2OTxwX6OpoCs1lY+TOKigQApOKEP3Yyw4ehJvctacV4VtAajSYtLa1Tp041ltZNmzYFcVRSnLti33rqIsOyJhUd1TlKw/p25nMT99r8NWfKzqixun/UgDhd3UQBjcShQ4eysrLE1BN5eXl1Uk8oyCSvtPrQxSsA0C1e1y7atx1Th7VXHGUsZhEFu+BACJk4qVcjgxkHb+cYlVhmhhfc0m5zB85b9511MiEuAKbCwUcZuD6RTW+aCAjUZoercYB2DooSOL292LMfiUJQ8Kygp02b1jzNrKUVzldW5nEYAGFKidXmvq+/15VRDT8XrMox7+eQiifC9ktb/93jtTDJPfpA4TH1xMaNG/fu3QsAU6ZM8RZML/pgyQ8kwRhjjP3ybUII6XQ6+bum/g4pUBwpqnxn/dlQvRoAVh5wThuZ1jlByqkZAHgQNKzWxTsRQpQSFVY7BSd4v50FIqhZjZu4MWAKlAKV8CMCgAMFFQZ3ZxuzHxEtwyCLu7p3ZO8GXVyzA8XFMoMHkYOHLsQyc/6G1HYNUf/aN98xPvl2pWxYk+B50vv3779gwYJ9+/YhhLKzsydPnhzkYXljb761ysEzGFj9JWCq1pyKvLtPvEpyEe0m7u0l2yI0kYQQBmEDZzhhOZ4d3T8Io/WYeiIkJER0omIYRsKJCuQ4RV1FDMKWLy8iCIJ8BS09pIA4UanV6vq+MQcKSyIMavHFEGFQ7y+s7pseK32e6iIndnFqrEfAh+h0TuJQa9R6vZRZmcNcmCbMyTvEkMKMiEwJeY5TsRBquvKwW30WKN8hvFPP+Ovl2whj/Pe/0x9+mNM1N4LoIcoIGu2BK/vTjGnSse8KjYRnBf3YY4/Z7fZBgwYBwMqVK/ft2/fhhx8Gd2CeKTA7MKLa2D+4kJOUsoBcO0qYGxOkIp3yy202l2CtrKIUok0qjoGrAWCNjsfUE3369BEDxiwWize3JzHxhXwnKpZlVSqVX0UfxOzA8iMJpYfEsuy1O1F5HI/D6bK7eJubAICBZZxOt3QKpOqvvo359mv6UoLGoa7UmiyE7xvX1UAN0q3+2Wnae0ff4bDKLfBDYoa017SXkO9cVcTu2MKpVSfa9zyvDunUPr6+MMuyWq3vmBppOI7zFqIpfuDK70LMxi5Lvl1bOmM63vYwq4sS399qVl3uLvfZVoyd8Sam+EE3DK9eHGLlaQCYOnWquPS7RtRqtbc4EYZhMMZy7p74MD3WHWZDT1FeSwEQcKuKlgxvc4Oa8eyVTCj998qDxoQujCYPUfZypcOod3aL7i7nbgPvD0Cjpp5QqA3H4iLLn05vZurOaiu1cU127yELv3dyoffPd+R25/f3JFVlfUf0+BuW9IMGAGdV+DDD/8Nsad/k6EiNpE/e7j1d35zeVmNw8WTUjqVHXp/dL72xzGUSCftFhevT/b8G0Q9avjyhRKBETDrlFJxhbJjPtmKKV29iih90w/CsoJ1OpyAINV+1/n47S5zT458YhiGEyFkAdkvQ6U7YMGUoQhiBXsUwwJZUlkSpPRtzSypcHMbqimwW9DwyUwGPSBhqAINEX4TSDcfKiqxuBJAarrohI6K+NpZpoG9Y6gmF2hwvrsIIEUoBAGN0vFjKi4ueOUM5lbHCElJJYi6oblvuevHvj+sYHzbrhbsvLt5XjAERgO2xZa+PDZdImEm2boPISD1CRowhRNv35G58Y/eGXZpPahL4efwT+JMzzy/5y5WuVOekw44FlHBGDe4f06dHeE+ZbaUHrOAvnhX08OHDBwwYMHToUADYsmXLrbfeGtRBeSclQjulZ5cfCrYCqIxqNlTHWtyVYZzXJYxRwwiUIqpSVfXlCKmw86ndfJSG2XyifMmBSyYNBxR+z3NpONy/bTB2FBU8YncLLIPETBoUwO6WWisgjtOUFGHEUIq0YBMwYwjRmTRSu1suXli8t5hjMQKgAMdLqtcevvK37h5yEoiQtetQ7J9R45RhkU1uyukWxLKcknNFoWHqx9z4UkUxzk7PVnYImwrP8/7qq68OHTp0165dGONZs2YNHiwV9notCITO+63gWIkdIdonJWRSH98OcDe1yzSETvrp3I8M4i1u15MdnpK4e3QqZkj7sPXHrrgESin0TjFl+gpzOnfZZlAxAAAIjBr2WHGVoqCbkEiDqqDMwTIIAASBRup9ZMHntTpsd1CxmBvG1kpXhYOX0NGXKv5iQ2CAni+X+pZn7psirFyJNFoAgKpK1LGj/GtpEVQ5hd9Pm8P1HCJqlk/SUyGv1J4aoVgnmoa6N25NIFBWVlZWVlbNwYCkp6rP59sL1h65omIQIHS2xMYiuKteNbP6DIkbOjT1hoLLBRGaCBZJvdsJpb+eLA/TcgIgBDSv1FZW7Y41SaXRQAh4QpwuHlirmqMYKcGKTcmjHTTfbd3koMyRhA6g0z88WKqWCqWUD4uo5BwMJW6VRltdgRBlsdSGQXyImgICQgEjACAEtY2W2p9gJk4Am034aQkBpHn0YWHkTQ27rmaLhv3ToESQnVeXuIHRcT7cZhQaj7rarXPnvyRaRAjxPF9YWNhIJqTjxdUIUQdPWYwYjHadtchR0NTN6/UhMTIqeV+udKsYrFMzohca4+TPXrZLK+j4EPUvRyoM8btY02kXRVe0XSrddxslIx0UGgl69FjY4088YTK53QTvWYgWL9JKJoPHPXuqPptbzRoZBqkF967Og2/oFK1TSWXNZRn04MCEr3YUIUop0O7JplGdJLNcarXM448xjzysNRgww8ivqtVSYBk8oXfcsuMHUeQyICoC5CwU9yUTFStHk1B30msn5qeUfvvtt6+++mrtHAISlJWVffLJJ2q1WqvVPvHEE3JcHSocPKEII0ooJZRWuXzsRvKvv0GWLHUCuLt3h9deRUk+atMZNIxQ69UiUFq/IHwdLlU6Q2KOI/0F4HUIoUL72U0XN45Lud3ntSgEHGH1aoiOQQ6HRqNC+mhYuwYelEoRg9q1Vf/nzfh1m+n69aduvM0wbvyo7r5rnYztHtOvTehZKwlV0w7ROlkeOiyLGhSzs2XLljVr1syaNUv8tXkmA2gfo6PmpcRtAoBQLXvMcuhAefvrJlqyZeH1rZiTk/P444/HxcVt3bpVLBnnk7Vr144aNSorK0ssDyEmI5fGoMFl1VcVKIVQndRbWvj+B7JkGTAsAuo6fBS/PINbMF/6/HoVM7Z79JrDV/RaxuESslJDO8T5sEGvO1rGRVdwlAUAQqmLx1svbW0MBS3h5Srm0pNfAIlhGISQXwWTEEIqlcqvsocSQ2okL1fy82pwOMDpIABIq0UlvguXUGsF3rC+mif5F0rPnbySnhYbH+o7MWxsiLpDalhlZaVMx/AKB7+34ApCqH0EF6KVO4cWiyU3N7f2HDbDZACUwszVZzTtEMMgClDp4FUce9l+uanH1UrxcG+ZzeZXXnll27Zts2fPrlOhRxq1Wl1jwi4oKBAV9IkTJwoLCwGgW7du9R/v7klhFvsVu0sAAL2a7ZoUKpFn2bZ9O1BCeVGh8/TQwbIqPj7Ch8K9u19Kh/iQ4ioSqkFZqSE+Sw63idAVClpAAlAGAARKhsQPrTOqgEQ8S/gvinpTfs1TSqlKpZIvLzbhed6v/KsSQ5JZDnHz5s27du0CgNLS0pEjR9bUEPGKVkMrKsS1KrU74fhxaXF67Ljjrbcvg4plSe+zOWgNmcXoPrirg5yxyafY6nz+pxMmHYcoWO3ud27PSAyT9Wr85ptvpkyZMmfOnJojHpMBLF26dMWKFQDw0ksvpaenezyVeAfKz8cgOin7TH8GABV2twr/mXwfASCEXMSdFpnms604JG9iSo2LhlFXQc+bN+/NN9+cOnXq7Nmz/U3HMXr06C+//PLw4cNQq1xNbm6uWFGlQ4cO9f95/dKjfj9THhOpJYSUV7uHdoyVWAY6qm0CrSldhIDSlYfLnh3lu4Rwv4yY45Zjp8pP7TEb+8Vk6zkpnd4+1mQ+nslHHKBUjQAQJ9ySdkudUQXkbiOEeNOPogOsfO0pLmD9dVeXGIC/Q5K5gh42bNiwYcMEQXj77bdlRT+VlCIGg9gpy1CXj3ThZN8+XF4eiRhAgAm54fhv3/Ued8nqjA1oGdONx65EGjhWrLnDoE3Hy+7v7zuh0I4dO9LT0+uUcfKYDKBv375JSUkAEBER4c3GLd6QfgWq6PV6ORZzRClPiLFsgi1iEaJqSoV0fXYnY2efbdVqNcZYIji2poiHgnzqKuh//OMfaWlpixYtWrhwYe3jubm5Ps9VUVExduzYpKSkjz76qP3Vau0TJ04UlwZms9lqtdZp0jmae254yuFiO4NRz0RdogHqy9RAOnemhw6K73WghOdUW48VT+wVKbELRK1WsmLlJji6KcWiNYbzAN8em/92r1liiWgP8hbLqLVfjt284VKcaunYzvmR8eMSh2vc2jqj4jhOqajSYDZs2DBo0KCad57T6RQLI1BK6yh61CGDnj0HLAuAgBAcFeXjTVBYCBgTQABAMKN12wlmGAZLtKLFxcIPi4WVqyrHj6W3jkZt2/ocv4Mn+OoJMQKXQOqfv/6Rffv2AcDJkycvXLiwfv16seSVx2QAiYmJiYmJAGC1Wr19snAchxCS/80kFouRKf/M8NQ5m0DnmOqG0l4p0VM7dyU88ZkgQVzPXeM3lkId6iro4uLihp+LZT/66CODwRAfH19TUUUKh0NY+H3GgoXdbr0F9+7NR/soHoxvGMKvWe+yO1gqOFXaA50GEoo0nHdrA88LH3/i3r9vzaOG8HICDmBiYihrOGI5mhXpOfML+W5h7LHcvK5xn4/nDFWlsVqywfx1qkXdIfR6c3dtKiilO3bseP3112uOzJ0799tvvwWA+fPn13Eisj/9tHnqY8AwCCgVhKjXZjIRUh9MVWlplYTyiAICTImD1XaJM3RI9e4XJAjWWe/SfftRQoJtx060fGXM1s1YsgsASIu2njt01k6xxRCm4nBSVGhEvSb1PzWeeeYZ8YcZM2aMHDlSrKgyefLkZpgMoHeKac7EDpcdWI2ElDCVkkWjCamroGNjG+7zGBkZ+cYbb8iXFxZ+T1b9jGJj3Ady6KbNWKvFfaVSg6M+fZhbb2F/WIQAlUbErety4739E7DE4ujCBbJtuzs6DBEKCNOqKhQSgtWsjff6sSYsWYZiY450ZMLsCCMGuV0aVVRueY6ioANFXl5ecnJy7QXmU0899dRTTwGAxWK5cuXKX6Sz+3HLlpLVqzmDUTN5klnFQR2Bv0Lat6fRkSBQh9NtQ1xx595PjWxb95y1oAUF/IZNTlPIxSuVCIFGYA8sWN33HknLeHl55/kfdtq2HSj9o12fpX3HR2lI/S5YlvVmjX3ttdegVkWV5pkMIFzPtU0Mq6qq8mtjQyHgBDu9b22EBQuhJhtRaCg9cMBHg7w8Zt1aVbs0d3JKgqtyGn/spo5SLqtUIAghrRt6nSFEvFBKbXx1W6PXz1g88iag1M2AXQ1mA5Sr3dXuaqKkEQgcBQUF8fG+Xd9qQGltmCef0D7xGArzvcGFe/VkHvi7SuBDNGzabTf1nf5YlFHS7qlSUUouWpwsg1iMWEQ3n6vOK5Uytgrf/4Byc+3GULsprG/hkTEXducWVMi/HAUFv2hKBQ1QS/ERAXxZdYVduyE0FGNs1HLGiJDwlUuo5GYdSk3BgwYinh95gHQoJGYjKsO2KW3vTdR79Z5mht1AL19GglCuBwcHTg4sLrPPAkgK8hk2bNiYMWMa7/zMxAmqjes0y5YY33gdEn3s3aHoaH7YCI3bAQCs23U6rWtpUtsLkqHewpJlhGGBAgJwq9TR5ktEeX0rNBpNGR3EPPO08N77gDFBCHieuWGotDxiGPjLw4Ckt4wQx+F/PCQs/jF06bIpWXdP6DIa+Vq7oT59uK/mVR/6SstfsqnciAohXIiB9ZEOzRuU0s8//9xsNrtcrhdeeOHaEwQryILjkMypRkj11ONrSjXtqootodE5nfpXIVWYpF8zvvUW7ebfqK2KUHAx3CXGkBKh/FsVGosmDd+sqEBqDSUCwgwgRCsqpHcjUHY/mPcljYhALEsrK9gH7gdf+xcoOpq5fTzTt4+uQ0cSGiLHq2wvhP2BYjC2IsIQCpRlGhyFkZOTYzQaH3nkkfPnz8tPja8QTFidtsOjk77cUWjQcC5e6JcW2i1JKpwPZ2bqvluoRhgoYCocT+o4QLGAKTQawVPQ9QPnqr6ej2JjkejiLgh4zz61dP3gzEzhi7n86rXI7db06C4MH444H+N3L13m/GAOaDVlLpfqHw+p7/Fdu+vIxWoNNjpZC1AWIbDyDhVb16lOZqBKXl6ezWb7+OOPMcYPPvigePC7775bv349AMycOTPJS6i6eH75fqPywxBqd2E0GuWnWJEeUosOQxiSHp4Qpj1e6ozU4X6pJunXMTl6zByXQmx2ihDPcn2Lj14o79lIA1OpVN4mXPRpk67jVRsxwb98eQAQY1Pl34RiRRW/ulDwSfAUNCGk7mNcSzlQQoDBvle4GRlsRgbLshqttrKyEiTlaVmZ8/0PUEwMADAM4/z8CxjQH/sKWyeEUlyF+XCKnBSBhmp40sCSBTzPx8TEjBkzZuXKlVu2bBFdXwcPHiyGhxkMXuswNSAMQafT+ZW4x2g02u12+dclPaQWHYZw/PC5n5bvtYdFXzREFHSJvLNXnISOJmvXUUO4Xa1DCBClWmc1I5kt71pwuVzenCh0Oh1CSP5/nGEYjuP8ukNUKpXD4ZDvxaHT6TDG3rpgGEYx8TWA4Cno+pHNzONThS+/pCwHmKFVlXhAf5l2AISQGKksLUYLi6B2nS21mr9wAfsyQ6dEaHZaKaYqRFUCoXqDShCEOn3JNHqkpKSUl5cDgF6vF2MxACA5OVnMbWKxWLzd/SqVSn5YAVwN8/PXI4rnefmGF+khyc/p0dzg162P+Peb/1BrWN69o+/on9GIzgnGjnFec8wykyYafl5TQYDFSOVy5IUkDm0bHswBK7QqmtKLA3XpDBWVYC6nZWVs716QmBjg8yfEU4dTILS82p13qbLaWn3R6LVSRg3DMsMHxnXjUbWGY8L1HGB7mklG0I0nsrOzz549O2vWrF27dt1www0NO4lC40Grq4X/vG01hts1+ipD6IA9a1ItxRevlkD0CHP33dobBifxldF2s+XGUbdMm+Iz/ZaCQoNpyoWPsGIVJCYijDHGJO8MWrMW3XlHIDsIDWX+9YL9tf8QRhXBu1YPuWvNrsqP2/DSOfMwQn/vOTDbFnHoyiG3293O1C4rUtIy7h2GYWrix2RCT+WRffucRiN7ww1gUJ78xoVeuoTVanr1u47nVKHlJTEmSVuN0cA896z20Ue0JlOMWn395YNWaFY0pYIm69bXlHcDtYpeQ5S5N8wDb/j3JH2KcLEw7VKl6bCKHtx84f7bM/v5bNgrqnfPyF42my3gQ5KA/LGTn/F/KCTEAQDvvc8s/A4l+BHToeAvKDaWOl0x4aaSChfGCLucqd3TO8XLqKGj06EWa3NXaEE0pYkD33oLkKurF7sDpfgo59oAOAZHVJZVRua6NacZwYh405byhRdtFwPeUUAg27ajyEhQqZBGg6KiyLp1TT2i6xyk17OvvKw1l6WwrgS+UvX3v/9tfD+J5AHXzpYtW1544QU5BxUUILAraH/LQ7ATJrh+/gVptYRQ1eib6S03B3AwIoZFCx/bvPD152MiyoRqraFcF2pS6c9UnY7XNceVKVm/QfykoAguR7DEfSWOEoyaNtozeKjVam85AhvgVYYxliNPhw9zXrrEHzmiats26t4JVHYX/g4JPCXs93ZQQUEkkAra7/IQSYmqTRsgP18bFoaSkwNuT6ClpcJ335miowAjyjAGR5UhKozHVI2baaZQZuIEYf16p169tB8cTEOMIb/b2QV/Sxobogpp6qEFA6fT6c2rRNSD8g2+LMuyLOtbnlJ+1rvk9z+QVkvOnHWWluLnngV53mDSjm4sy9b3KqufsN/jwZr8q4QuZNAiAAAgAElEQVR4SGQqgq4iZ6hw1e/I35Arv7qo3ZH84wrSBFJBeywP8dlnn61duxYAPvzww0SPfhrR0RhjSqn8DMvifRMWFiYtxhcWmdUaFjOjDsG2jlhjpxT4at7VP2WAUeUjeluMy/A2pEaKy2AmT7JVVG++/OuJOAMRQtwo5ITllI7deHtKQPdOFa5CS0rIxs0oIhwAkEpFdu6Cw0dwH8+paK8Rjwn7PR78+uuv582bBwDz5s3r3r27xDn9XXfXT4sqTQNqJHobUsMiCRQCqaA9locYO3bskCFDAECv11dWes46pNVqKaXy4zLE5Ym3s/2PiAhqt5EQ000HIN7CnNHawrsP7ttmODih0umjrfSQRLd/maP1hocver1+0bB7tpYygqYIAKibsE68vWT7vR3vkz6V/C/6GhBCWq1W/ptGvN7rbB2E3DzUuiAKCDVaRL7HhP0eDz766KOPPvooAFitVm+5UhsQqBISEiJ65cskLMy/dKNioEpN0bv6A/C5olKoTyAVtMfyELGxsWKOabPZ7O0DllJKCJEfNCEzUAW0GvzG68LL04HjwgiOe+x2Q1iKGtRyOhIrUHiTDIie8vhF/3PORS5KR1RuIAyDEU+EwdEDfD6Hcr/oa6FWq+12u/w51+v1lFJvZiiPX/QtgPg4PGQw5ORSlgWBQFUV6tRYib89JuwXU0LXHGykrhVaLsy///3vQJ0rPj5+8eLFBw8ezM/PnzhxYp3locPh8Jb5wd/AOYZhxDhUn5I4KYmZPGlPdtQ3vSrOaasOmnNLHaUdQzsyyHuVrPPn6Zat6Fw+Exvr9lKnh2GYa9/VcTgc9Rewh4uqzl/S6KL2IQQU8RTb/p5+n4Hz4fiFMVar1fI/QQBAq9U6nU75K2gxktvb/whj3EgTIqd3j+ORNSEY4w6ZpLKS7t2nvXkUM+0FWuP36QvpolMSEyJ+WYaHh2dnZ9c5WAeJf5C/Ja/E8XgrGOgRrVbrcrn8+sZCCLm81I3EGLfIV3hTE8gVdExMTDMsD3H56KlvLMuJQ682UINac9Ry5LD5UM8IzxuYdM8e94svI1OIHajt9de5n36EqKhgjjZCx+mw0XriIUZ3Uc2i3gmZsdqG17hR8E1UFPvUk/DUk4awsMrKSlCSDio0J65zFy5+4ffuac+o7PYYawlrLi+2OhEwlW6vBmhh8xYUFQUaNdLpcGQUWRtsT2StCkcY2NgQQzSXHo7bGSULkCsoKFzftNQcN3Kgly8LX35dzRgIg3iGMdgqbGpdlcuV5L2iClm/AcVEg9sNDAMsCxZLMAcMAANSTYXb97JGU2E8U+ly9kvr77MJ3b37/IFTu7I6qiOLByYODGX9SDqqAADgckFJKbnmXd/gILhc8NuOIw7VyU6h0QZX98huDPgomE327LmSc3xp9844prR/bFakRqpQXA0u4jpuPm5kjDFauWafvaV7SytLB8QMYK9rxRJMrut5LL1MOQ4EuPcb+54+qrz2DOGq+4SMS5OoSXjLSPLzalRtEwCQTofTM4I5XnLiRJuXpj99qWDOkynuGB2L0ILi354KfSpG4+UJ4XnnjcORxfrJ/2VcdGyCQlha+FOfqKypGc2lPnTzh+zdx78wDVSqMp7npr0Ao5r3Tt3hw/zjT9id1R/9X7q1kKUIafN0j3eY2im0q7cW/A3DaFnZRy9mXHD9igrp8sJFnUM7P9/ZR+DiUfPRxQcXFVUVUICOoZ2e6fAsi6V0RYWz4rFdj9p5GyC08My3D6Y/3DeybwOvUaEW17WJIymRcTmNWja8VLhlreOZOcX9rQ/dlS71BCKBAmYoUAAKLEZuzzsejQR94y1aULjw7sSieB3rJgxPS6qLv877ypu869HHkcWyemR0cezV/VgEey7vueKQKn3dhFBK586d+5///GfmzJl+bVg1Fk4n/8I0FBODwsNxXJzr3fegoLCpxySFe9q/wGr99NEUq4kFCoiAXbDN836HCM+/QMrKf+8fdiFZA0ispAhHzEfOVZ+T7mjxuUWltmIOcyrEHbcc/6XoF2n5t4++ZeftCBCi4Cb8/FNfNuDqFOoTvBW0xC4/y7KU0sAH8ur1/Dtvwwv/MjAsdbjOPvj0/bcPMmikLtmyYSOTEA8kFmEMQNkLBdprrhCxZcuWNWvWzJo1y6ekcPgwZVWl0RwiAgBClBLAp6wnvTY4nQeAjnQx/c85hgIA+r3k99tSbrvGYTcGza0GGCksRGr1/wqn6XTkzGmcFOC0tw2mfkUVc1ExRbgkuuZRogDY4jB7exYsR48CwL6ef81YjWBP+Z7O0Z299UuAFNoKVIxKFGYRvmA7J/24lbvKazxPEYBDcCqlVQJC8BS0w+HwFk1kMBgIIfJDvTmOYxhGlttvVm9u7S9sSUlYenqoIAiCs7paKtsvGnkTyckBhDAAOFzusFDiqReO42T6DPmVaQG1T4dz+XobAYSBUgCEgCYbvOaQQhERtNwce8l5Nk33v6MUuoV1ktNd8PFYA+zIkSOnTp0CgL59+4aEeA5qZxgG/AmcEys8+ZSniYlVbl6MGkUIgcutTkxi5PUiVnjy1kVAPOXrV1RBkRGorFxf7a4wiXZnBAAGzujtWUBRUeRicXJh1dGOf/HUTNWmSj8+6M9yRxQoEEpCmDBpeS2jdfAO9Gcb4LCqjrxSUaVhXNc2aBGtFqWmYoMBrFafsszoW9zr1oPRSCmlVRXc6FuusfP6mRbef//977//HgC+//57sfZVDfbHp5qfeXbc8ktvT2uDCQgMAiTc0/meOqHANfBff3l52IjJiwoO9AxxqDFgAAoxhpjeab7zqQKAXzUMRXQ6ncfjMgN5PdYAu3Dhwp49ewCgW7du3q5UVNDyozfFZAC+5SMjdU8/6fjkU9BpicutHT9W072bz0rEDRtSQGAfesj9n7fv/b7oP8+3BYyAAlB6U8Jwr/IfvEdG3TpuRem2gdE2HRbDJkO4EJ8G4tvbTFh67ieEMAUap40dlzpeWv6hdg/POvp2zZdcv+hsKWkF2SD5ZUOvEavV6s3pXYw5rikK5ROWZTUajbegUo8Yjcbq6mo5Xvf08hWSm6symZg+WS4vzyrLskajj2weALBjx47Kysqbb755xowZr732mnjQ4XCIzvxinaq6bU7mVa5Ymc/AjsHhpnDtjQlD47RxEl3w5eXul166cKFk3j0pjiT1jclZ41Lv9DkwADAYDP7WJKSUevsfMQwjc0LKy8v/9re/bdq0yel0jh49uvZfKyoqvI1HXEjK14aCIDgcDplf2STvND1zujo8XN+zJyO7dpfb7aaUeqvEyDBMAxJZ1KGysrK+IUg4dMj66bz9btcvoyOjUkLvbDsmI0RyK9tisb80veh00dzb4+2d9AMTu09s47t0MgAcLTmaW5kTqgkbFjtMw/r+qrhgvfDtifluTrg18das6Lr5TDDG3j6PFCQInoJuhcyePVv8IScnZ9KkSUosryAIH330kdvtdjqdzz33nLf1eH3++9//EkKeeuopmfInTpyYNm3aqlWr5I9t/PjxM2fO7NzZq2W2Dp988onL5fK3Yk6g+PzzzysrK59//nmZ8mfPnn3sscfW+ZNh/K677nrppZd69OghU/6LL74wm83Tpk2T34WCT1qBiaPpqJN+oWkH0xxoQA0wBYXWjKKgg0GNfUOhYXTq1MmvT73Q0FB/34gjRowID/ejPnenTp2a0BElMzPTr9QrRqPxllv821AZPny4ty0Bj3To0CHIJeJaA4qJQ0FBQaGZcl0HqigoKCi0ZIJn4igrK2sOsQkBQaVSXXv28etpQjiO88s+4C+U0qqqKjmOIg2TD04XAUSZkFZC8BR0ZWWlt1yxLQ6tVnvtCrqqqkq+Z2EzR6PRNJ6C3rdv39dff00I+fTTT+fPn5+RkVE7k/K1yweniwCiTEjrQTFxKDR3li9f/t5774lvxDvvvHP58uWBlQ9OFwFEmZDWg6KgFZo7YlyS+LOc2BN/5YPTRQBRJqT1oLjZKTR3YmNjv/rqK4vFsn79+j179rRt6zVbbMPkg9NFAFEmpPUQPDe7/Pz868kGnZTkNeu/TM6fP3892aCTk5Mb6eSU0l27dp04cYJl2YyMjKysLOlURP7KB6eLAKJMSOuhJSno7du3nz179v777weAoqKiL774QqLi7ZUrV95//321Wq3T6f75z38G9nZptgq6/hTdc889ubm5d9xxR2A7qkMjKeivvvKc6fiBBx4IiHxwugggyoS0Nlq2iePgwYM//vijwWCIiIiIiYk5ePBgbGxsYWHhtGnTVq5cOWbMmOzs7K+++ionJ+frr7/+z3/+o9fr33vvvTFjxtRJI3cds3jx4uLi4vnz5y9evLjFXX5Ghn8VbfyVD04XAUSZkNZGy1bQ+/fvHzJkyE033XTu3LnDhw8nJyfff//9v/zyy7Zt29RqdWXln8Vh8/Pzhw4dum3btlGjRhUUFLQU9RQQBg0aVFpaihBqiZc/YMCA+gfXr18fKPngdBFAlAlpbbQwBV2TL5QQghC68847v/3229WrVw8ePJjjuJiYGAAIDw8/c+bM+PHjP/nkk9zcXACIjo4eOHDg66+/Hh8f36tXr6a8gManzhSJPw8bNqzlXv7Ro0eXLFkivm55nud5XjrPhr/ywekigCgT0npoSW52ycnJJ06cEH/OyclJS0srLCx85JFHZs+evWXLFpfLVVxcDAAlJSWRkZFWq/Wuu+6aNm0aQigjIyM0NFSj0axYsWLYsGFNehGNS/0pErNOt+jLnz9//pQpUwwGw3PPPTdw4MC77747sPLB6SKAKBPSemhJCjo1NbVXr17PPPPMiy++ePDgwTvvvPPy5cuvvPLK22+/nZGRoVKpLl26NGfOnF27dg0aNIjjuNmzZ//f//1fSEhI+/btAWDEiBGXL1+Oj49v6utoROpPUXJy8tq1a48cOdJyL1+j0aSlpSGE4uPj77jjjk2bNgVWPjhdBBBlQloPLczEMWHChAkTJtT8Onjw4MGDB4s/r1q1Kisra8SIEeKvBoPhgw8+qN3W7XaPGjUqaENtKupMUZs2bcR99k2bNrXQy9dqtdu3b4+MjPzqq6+io6PLysoCKx+cLgKIMiGth5bkZifNqlWrtFptjYKuww8//HD06NF///vfrOyaRhI0Wzc7bwT28uvTqH7QLpfLYrGEhoauX7/ebDYPHTpUui9/5YPTRQBRJqT1cP0o6GDS4hR0Y9OoCvrw4cNbt2612Ww19+qLL74YQPngdBFAlAlpPbQwE4dCK+Sbb76ZPHmy/DyW/soHp4sAokxI60FR0ArNndTUVPmlSxsgH5wuAogyIa2H4Jk4rFZrjYtuHbRaLSFE/ve+mDqrqqpKfu9Go7G6utrbAOpQ6eDzLjsxgoxojVbFeBzAtS8WKioqBEHw+CcxMZj8onMMw+h0uprAHFm9I8uuot0hbEif6L4IZMTBc3DCfNzmtKeb0g2cof4ATCaT/N79Yu3atRs3bkxMTMT4T6cj6cqz/soHp4sAokxI6yF4K2iEkLeEGAghjLH8dBn+ygMAwzAYYzlvo0Kz4/nFR41ajlJa5eQ/ntwl0qCS35F8CCHeFDQAUEol/loHcW7ly28s2rDo3PcIIQqwpmDNS11e5hhOQt7qsr60YxrC2ME7OKx6qcvLKYaUOgOQ2XUD2Lp165133mkw1H0rBEo+OF0EEGVCWg/BU9ASKhVjTAhhGA9rVYlTyZevaSVHbMPRy5FGNctgAFCzeP3RK/f2r7sfKPNUzZYfzn0PiIqvq/PV534pXDUu5XYJ+Z/OL3YSNxAKADxxLjr3w7+6BG8LKDk52a/yHP7KB6eLAKJMSOsheAra7XZ7W+JxHOeXiYPjOJVK5ZcLhF6vd7lcctaY64+WRhlUovLCCCzVjvodcZzUerOZY3FVUKBw9VuCUnrEfERaQedZTxEQaprkVZxq5DH+hYqKildeeSUpKanmvfiPf/wjgPLB6SKAKBPSelA2Cetya5foHafL1RgDgJMnsSZNU48owKzMKQOgUGN3RuCmPmrXVvPVqEahA7AoqLfN0KFD/TKh+CsfnC4CiDIhrQdFQdfl1q5RVju/O98CAP3TQkd2jmzqEQUSm0vYdNTKtkeARB1NEUVppjbSrUK40GreBvCnYhd8KfTAkp2d7VfFaH/lxSb+Dskv+cCiTEjroWXbUhsDo4Z9eHDif+/p8d97uv9jUJKG9WOKCCHLli2bMmWK+KvNZnvrrbfeeeed9957T6YDSWPj5AkGzDk6IGAQYKCYQdyIWB+Jx3pE9mQQZhGDMcYI9YjoGZzRiuzbt++JJ56YNm0aAMyfP3/nzp2Bla9DQUHBww8/3Hjy144yIa0HRUF7ACMUbVJHGdX+NrRarRkZGTUJiTZs2NC/f/9p06alpKT4+1Q0EmE6rl/bUK5spNaWDYSjVekPt3suQZ8g3Wpc8vhB8UMYxHCI7Rbe4762fw/OaEWCXGE6Pj7+7bffbjz5a0eZkNaDYuIIJGFhYeJjIJKfn9+7d28ASEtLO3bsmJjafM+ePcePHweAESNGhISEeDyPmDFDq9XK7Fd0a5EpP2VA6vL9qg3H+g3NGDO0b2TnBN/+y4TS8ckPj0t+MERDNKwHo3yj2h+DU2G6xgjAMEztf6JP/JW/dpQJaT0oCjpIqFR/OlNbrdaioiIAEATBm6egqO8aye8wwqhNjtQPbB8TYVQlRxh8tqp08F9uP/fH6XKgdGB65AODUw3qoN42QagwvW/fvq+//poQ8umnn86fPz8jI0PaqLp69epffvnF7XbXHJk3b57My7l2lAlpPTTwSduzZ8+CBQtiY2MB4OGHH46KivJ2sDXTtm3b06dPJyYm5uXlpaWliQdHjBghptyzWCzegiH1ej2l1GazyexIjGyUE1pJq6s3zfq2Mu8sow9fkt7/u9/zv3mgq95TtGQNi/YUbzleWungEYVfj5WYVHBHr9j6A6hZowWcRx99dNeuXQih0tLSkSNHZmVlBVYerhoBZs6cCQB33nnnq6++Kq2Pdu7c+d577+l0Or8uJFAoE9J6aKCCrq6uvu2224YPH+7zYKvixIkTS5cuLSwsfOONN2688cYRI0Z8+OGHu3bt0ul0d911V1OPDoAQ59vv9li/mQIgoCnlFz4deN+ao1fu7BEj0WjveUuFnQcACmC187vzrfUVdCPx0UcfPfnkk19++eVDDz0kx0/AX/ka/DUCREdHN4kyUiaktdFwBb1///7c3Fyj0fjggw+KNlOPB+fPn79582YAePPNN+Pi4jyeTXRurzEC+EQM9Q4NDZU/YIyxyWSSn3hEekjeXDIyMzOnT59e+4i4dd5cKCiE9es1Lp4ihIAOztu9tX328YtRIKmgdWfy7sjLdbLczja9rhgiSqzBS5Gan5//wgsvFBUV5eXl1T7ubQ/KX/ka/DUC2O32adOmtWnTpiYu45FHHvFxMYFAmZDWRgOTJYkVEyIiIpYtW6bX68UCkR4P5ufnl5aWAkBaWpq3ALwgJEsymUxVVVUyfd0o0D1lu/OseTsv/j6uze03xg/D6C/uLgzDXHvaAYvFwvOeHYobZuIwm83SYmTHDvcTTwsADCEEYwD4ps+d7L2THxroNbc1Xb+h6uUZrMAjADdm/zl+BpOW9smkjvUH4Nf7UiaCIFit1vnz59977721j0dGenZO91e+Bkrprl27Tpw4wbJsRkZGVlaW9Lbnzp076wj069dPuouAoExIa6OBCvrgwYMxMTGxsbHr1q0TBGH06NHeDtZgNpu9RVobDAZCiHx9xHGcXq+3WCzyBxweHm61WmWmE9p38Y+fLi4zqIyEEBtvuyVx9JDYoXUG4M0BQz7BV9DCyTzh7ruB/98kzL5p6t//3/1RRq/fLu7JU1zHTxJAAICpsCelx9op/3zn9oz6A2gMBR0ExHpg9XnggQekG/ob+tFSUCakWdFAE4fJZPrkk0/0ej0h5Jlnnjl9+vSqVavGjRtX+2BgBxokrFb+8y/yyB+aNDWNiITwcB2rK7IVNfWwAgMCQoFiAApiFCG9OytGQjsDAD16FLEqMU0SRUxcdXmbSLnOf41BQUHBa6+99vnnnwdKPiOj7stGDv46OTQeyoRc3zRQQbdp00bc4RVp167dc889BwC1D7ZEhO8W0p278RAdcJiUlyOWpabraEVwpQwopSwDFAEGoCRBqJZugbp0RceOYQRAAVNSHhVvVPuXRDCwBDxoQnROv3Tp0q5du8aOHQsA3377rc/quv46OTQeyoRc3yiRhH9B+GkpqLhu+dSqBcIy1OmocFd0DK1rcm2hoKQkpNYCwwDHIoZBGi1q3166CXP3BIYQ1u1meTcA/NhrzMhOTeA9SSkVyxE0UtDEBx98ILqHAkDXrl3r1IOvT8NCPwKIMiGtBCVQ5S/gkTfR3Ny2xfDEOpqTTKB9dOf2EzpcLwoaEhPQraNh86+UEoQZPGgA6tZNugXNO42SkqjTyVMEDH47uUotaRJpDIIQNCEIQs2mVvfu3b/77jtp+QaEfgQQZUJaD4qC/gv4xqH8xo0oJCQ1n6bkWLifZkNoYy0Y1Wq1Wu053Yfo7iI/fhpjjDGWs3KhM6a7u3UVzpxRpaayY26lvupUWVasxHGx2KDnEKIUuOIibdDXR0EImkhISPjkk08yMzMJIYcOHfKpXxoQ+hFAlAlpPSgK+i/gvn25r+aR/Qc0JhM7ZLBdtmt2A3A6nQH04mBZtrrah0H5T8bcCgC68PCKigreVxN080iyb7/4BgCn0x0WRjw1YVlWfuYQfwlC0MTTTz+9Y8eOM2fOMAzTv3//Pn36eJNscOhHAFEmpPWgKOi6oNRUJjVVpddTSkG2irxeYceNda9ZC0YjoRSqKtkxtwZ/DI0aNLFw4cLJkyfPnz9f/JXn+WPHjh07dsybV1mDQz8CiDIhrQdFQStI0r49u2IZHD6iNhmZnj3tsuvSBhB/P58HDx4s3zrUvn178Me37J133vEY+hFMlAlpPTQwUKUB2O12b3/iOI5S6u17vz4YY47j/KpJqNFonE6n/IsVrcC191XqcO1f9MEPVKlNuGjikD3n0kNqpECVZhg0IS4w6w/M55ACgjIhrY3graAdDkcAIwkZhpFrcgUAALVabbfbZUYSgi99xHFc45lcFWoIWtCEfD8HfxeYgUWZkNaGYuJQaL4ELWhizZo177zzjpwFprhdVlxcPG7cODGVts1mW7BggTjUxkaZkNaGEqii0NwJQtBEbGysX34OgiD861//Onr06Pbt219++eUgu/0qE9J6UFbQjUhRUdE333xjMpmsVuuTTz5p8uV0rOCRRg2amDt3LgBwHPf888+np6fX1JeRzpY5YcKEfv36/etf/zIYDO+++26QE0UpE9J6UBR0I3Lo0KGsrKwRI0YsXLgwLy+vV69eTT2iFkmjBk108xVL6ZHly5f//vvvL730ktlsnjlz5tixYwcPHtyA8zQMZUJaD8Hz4mhB6UZBxiahnHSjNpvtlVdeiYmJsVgsr7/+urgY+fjjj5cuXQoAc+fObdeunceGolOUX/8ahPz7VzZAXmJIgiCI9RkaA0JITdBEenp6nz59avx56yAGTcybN++hhx7ytxe//BwWL158++2319Sp+Pbbb6dOnepvjw1GmZDWg6KgPRMQBb148eKEhISBAweuWLHCZDLdeOONAGC1WsVSAxqNxttzJbqISDgm1oFlWZ1OV1FRIVMeAEJCQqqqquRPiPSQGIZpDAOOvy5czz//PMa4qKgoKekvJQh8Bk00wM+BUipO+LVnBpePMiGtjUAWjbXZbHPmzGEYhmGYZ5991pv2aT1UV1eLhVcMBkON9gwJCRHvYAk/aEoppVS+9hSXt/LlRQgh8ptID0l+HIRfBC1owl8/h/3798+dO1etVotz+Pjjj3fp0sWvHhuGMiGtjUAWjd2wYUP//v2HDBmyZMmSnTt3Kn42o0ePnjdv3m+//VZVVfXEE0809XBaHqILl/wbadGiRZMnTw4NDV21alXt4z6DJvz1c/jxxx/fffdd8aPBbDa/8847b731lsxBXgvKhLQ2Alk0Nj8/v3fv3gCQlpZ27Ngx8TbKzc09e/YsAAwYMMDbf5phGIxxzQ3hE3/lAQAhJL7eZcqzLEsp9daFzI+DmJiYOjVkFRpAEIIm/M1uoVKpakw6YWFhjWd/94gyIa2HBs5jdnZ2dna2WB928+bNYn3Y2tTUw87Pz9+zZw8A9O3b11vRWIwxpdTbXz3KI4Tky4uIOld+F3A14FuhaWnUoIkVK1YMHjzY3+wWsbGxs2fP7ty5MyHkyJEj8fHxfl7TNaFMSOuhgQq6sLAwJiYGAHQ6XY0htW3btqdPn05MTMzLy0tLSxMP/v/27j2uiSvtA/iZJAQClPtSLnLxBmq99lNQqEBqP2p9V9/qVt61Iu3qqi1ad10r4lK7fa3bG2rFS624XQTUT211peW1KtUKWgREW10Ray1utYpaBRNuEUKSef8Ym8aQhBkyySTk9/2Ljsc5J4/1cXLmPOdMnz6dKXlSKBTMGRDd9e4lobm7mRQQENDe3s7jS0JzWzkD73pXNDF37tympqb9+/dPnWppB76Wlpbs7OzAwMCUlJTU1FSWh7VnZGRUV1fX19dTFJWYmDh27Fj2w7MeAuI6ermK48cff9yxY4f+fNiGhoaSkpJFixZt2rRJp9N5enouWbLE6MWRC67isAybJfWIKZpQKBS3b99mXzRBCLl27Rqnoon6+vqKioqamprw8PCUlJT4+Hipxa3Aa2try8vLVSqV/q/PypUrWX0k6yAgrgbL7ExDguY0JBsl6OrqapPX9XV0JjFFE+np6QqFoqSkhFPRRH19/d69e8+dO/fJJ59YaLZ8+fK0tDTDSQZzS9r5hYC4Gszlg+PS5x1ORRNqtfrddyK5BB0AABiVSURBVN9l3lPFxcUVFRWxyUeXL1+uqKg4ffp0VFTU0qVLLTeOjo4eM2YMm8HwCwFxNXiCNs0OT9CG3weNMF8n1Wo1y1uJRCJmP1X2vXt6enZ0dLBf1mJ5SBRFcT1UiT2bFk0w3+UrKytDQkJSUlISEhLYfJBDhw4dOXKkX79++vU8PaYwHiEgrgNP0ILp6uoyN8MgFotpmu7o6GB5K4lEIpVK2bcnhMhkMrVazemQBEKIuS5suqzKpkUTeXl5ycnJOTk5nKZoysvL2b9A4x0C4jqQoAXD1OZZ+CX2X26Ylly/DHHqwnJ7m34Ps2nRxNq1a3sxpMjISAEPSEVAXAcSNDg6ByyaaGlpWbVqVUREhP4b/YIFC3jvxRwExHUgQYPjctiiCblcbqPtRyxDQFyN/V4SWn4nRtO0hRNajYjFYqlU6uzvxLDMrkdFRUWVlZVM0URiYiLLKU6dTqcvmhg8ePDYsWNtnTtKS0u7F9PaAgLiauyXoJVKpblFFEzBC/uE24tVHP7+/i0tLTyu4rB+d00kaJYcsGiirq5u3759TC2rRqPRaDRbtmzhtwsLEBDXYb8pjh5fSXF6J8b1BRebAbDvwm7/qgEhZNCgQYMGDfrDH/7AFE1s3rzZctFEYWGhUdEE7woKCjIyMoqKihYuXFhZWRkaGmq7vrpDQFwH5qBtiKbp7du3KxQKtVqdmZnJ7HkPveBoRRMeHh4DBgygKCosLGzmzJmrV6+28+a6CIiLQIK2obNnzz7yyCMvvfTStWvX2E8mgJ5R0cSsWbPYTP0PHDhw2bJlNi2akMlkJ06cCAoKys/PDw4Obmpq4vf+5iAgrgaVhKbxdeRVa2trZ2enSCT64x//yEwU1tTUfPfdd4SQiRMnmrsJKgkZmZmZycnJSUlJnCa4s7Kypk+fbvgCjcfTPbKzs99++221Wq1UKv38/EpLSxUKhVwuj4yM5KsLCxAQV4MnaBvSaDSPPvrotGnTPv/887KyMua9dnNzc0NDAyFEq9XqdyMzwrxkN/er3TEbZLNvzxCLxezf5nMdEi8csGiisbGRECKVSoODgwkh06ZNs1FHJiEgrgYJ2oaioqLu3btHCPHy8urs7GQuTpw4ceLEiYQQpVLJnB7bXe9WcZi7m0lSqVSlUvG4ioPTATc2ZdOiiba2tl27dnW/PmfOHL664B0C4rysStBlZWUHDx7U/6tu8iRZV5aQkLB58+a1a9d2dnYuW7ZM6OG4CpsWTYjF4sDAQBvd3EYQEOfV+wStVCrPnTtn+Nxk8iRZVyYWi7Gnl/0ZfZ0vLS3l8eYymWzKlCk83tAOEBDn1fsEXVhYmJ6evnHjRv0VkyfJdnR0MG+WaJq2/M84p/lQBqcBc/otTEtz7VHV6si6F03wWNXW48YXDggBcV69TNAVFRUxMTFBQUGGF02eJJubm7tv3z5CyKeffqo/qNAkrssAuH6x6kWpm7mVy1gz58hsWjSRlZXF493sAwFxXr1M0GfOnCGEfP/99z/99JO+7t7kSbIrV65k6koVCgXzwre7vrrMzg5onY6uu6i9r9LFxRE81xNCUDTRDQLivHqZoPVTq6+//vrkyZPr6+tLSkpmzJixdetW/Umy/A3S5bR1aAhFek63XV3a9Rvo8nKtRNKoUkneX0eNHm2H4Tk4FE0YQUCcFwpVTBPq0Nj7au3umptf/6CkCZkQGzA7PlQqEZm7g670S82WDygvL4qiKEqkvXlDWl7Gsncn2iyJPRRNGEFAnB3WQTuWgxfufnOtNdBbSgip/o8y0Mtt2qhgc43pW7epX7YxoyhCUSK6S0O5ue6fKYomjCAgzs51/zILzt3d3d3d3ehicyctkz4o8PN0l9xVaS2cadQ1JEb1LzXl7k5RFEXThBBvP7bP9RRFyWQy9qXebm5uxOGXr6BowggC4uyQoAXT2dnZfYaBonUajVYiERNCNFqthOja29vN3iIujkyaqCv5PyIWk85Ot+3bLDV+GLN3B49THI6wVx+KJowgIM4OCdqxTIgNOHqx0ceTEEKaVV0ThwVZai0WS5a8Qv/ud+KO+z7Dhyu5bJbUJ6FowggC4uyQoB1LVKBsy+xh399VU4QMCXb3lfX8B0SFh4kkEsrDg7h8gkbRhBEExNkhQTscf0+3p4f5cdosCRgomjCCgDg7+yVok5XW2pZ2+vChk1pZ7Qiv/kGShJAEMelhQ0vNgQM/1f7nUFLsI4+2PB2RFOIR0kP7CxeUB778POaxm7H3xofGjgx4vIeBdnRoar453i66HN0Z5W96SDZ8V9bWpjl8uM7N+98jvQI8qMTQngOirar68Xx9+ah+4oDbT0cmh3uE22psAGBfQp7qrTl0qO21v92Rda5dPqjNW0IT4in2yn7itUE+g0zfoq2tJVlOt7ZmrxnaFCglhCaEGhsc/5dRy8112vb889oz3+6aFfF1sj9FKJrQPlLf7SkfmWuvPXtWuSL7XlvDe5mD2n0kNE08JV5Zo1fG+scaNrPRqd668nLNqtfvuqvfyxzc6i2mCC0Te/3lsaWDfGJN3kGrVmv/ewZ98+bfVg+585sHARkROGrZ0J53zuuT66AB+hizRRC86+zsvP8w1Zt/J21tHy6MbvMSE5qmaKLSqjb8+/37ZijTX6RbW/81I7QpiFn8SxGKnLpTc6fljsn27cePa858SxPq6+QAQiiaEEKoFnXLum/fM9dF+5q/0zeub305ut1bQnQ0RROVRrX5fK5Rs66uLluESPPmW3RrW97CyDZvMUXThKZUWtW27/PMtadX/Y3cunlgSsjd37gxAaEJXdv078YO0yX1AOBc7Jegu6Mbm2hCWh95aJql6b755HLjBiHUd7E+RP8gThNCSPXdk6bvf/gIIdR/BnhTD39JuNZ+zeyQ6i7qiKjVx4382gdp7LSqNLasrCwzM5NV08ZGQiilrzv59asG1dRhtnfd9z/QhFx6zJv+pSycqQ//+uevrRkwADgIIRM08fOjCPHofKj82s/d7Ddlyt+fEDrsloo8nHBHBJjegIKOj6cICfupjaYITX6tyAj0MFubRw0eTBHi0aE13HjIV9r7L+/dd822JMCPEOKh+nXagSK0n4fZ2hNR+KOEJqENHQ/PiNOjg7AjB0BfIGSCFqelUTSd9vENQlGEUDRFEUL/T/9Uc+2lm3J17tIXdt/w6NT+kpLocK9wc+8JJc9MJKEhMg2J+aGd+uWTuouli4csNtcFNfdFqbbr+Y9vMv/FDGlmlNkh9YjZNdvwygcffDBhwoQJEybcvXs38GGPLF5E0fSLuxuYfx5oihBCpw9LDzQjaMsWkb//rL03ZCotIYRQhFCkn3fEE5FPmPsteiKRyNfXt8dmejKZzNPT09yvGh5ICgB8sd9Lwubm5u6FxbqzZ5WFH1fpNMcmBfXv7/+7Ac+GycIs3UWp7PjfN6/89POOqWF0rPuk/kmTw3rYelzzwQd3vvp6z4iAK3Lf0SHR6YNf9JBYep7VXb3aVHygvKW1Mk40MMrnuahpod79jNowZwBa7pcQUlFR0draOmXKlNdff33NmjXMxebmZubwQE9PT/0ZcXra2trWHbvO0l1Hnnk0tJ/vjKip/br1/pD79ztyN9bVXts5wYuKdZsYnfhfEaz2W2htbfX09GR/CGxnZydFUdJftv4wIhKJ2AQEADixX4K2ICcnJyAgYP78+Szbf/vttzk5OXv27GHfxaRJk/Ly8vr378+y/bp163x8fBYuXMi+i+5yc3OZH86ePTt79mz2x1hs2LDBw8MjIyODZfva2to33nhj//797Mc2derU999/PyYmhmX7jRs3urm5LVq0iH0XAGAlFKrYkNGu2cIOBgCcjkMk6FGjRlnYs627oKCgp59+mlMXv/3tbzl9Bx85ciTbN3ss6Oc3WBoxYgSzexxLgYGBkyZN4tTFM888w2lL6+HDh7OfDwEAXjjEFAcAAHQn6DI7AAAwzyESNE3TzJnwNmpvny54hIAAAHGEBH3mzJlXXnllxYoVhJCCgoKqqip+29unCx4hIADAED5BFxcXr1+/3t/fnxCSmppaXFzMb3v7dMEjBAQAGMInaIlEol8vwWYtB9f29umCRwgIADCEX2YXEhKSn5+vVCpLS0tramp6PAOCa3v7dMEjBAQAGMIvs6Npurq6+tKlSxKJJDY2Ni4uzvJ2+Fzb26cLHiEgAMAQMkHn5+ebvD5v3jxe2tunCx4hIABgSMgpjthY0weF8NXePl3wCAEBAENCJugnn3yy+8XS0lK+2tunCx4hIABgSPiXhHV1dfv27WOKIDQajUajsbyvENf29umCRwgIADCEX2ZXUFCQnp7u7e29bNmy8ePHP//88/y2t08XPEJAAIAhfIL28PAYMGAARVFhYWEzZ848evQov+3t0wWPEBAAYAg/xSGTyU6cOBEUFJSfnx8cHNzU1MMJrVzb26cLHiEgAMAQfh20Wq1WKpV+fn6lpaUKhUIul0dGRvLY3j5d8AgBAQCG8Am6tra2vLxcpVLpR7Jy5Uoe29unCx4hIADAEH6Ko7CwMC0tjf1xJ1zb26cLHiEgAMAQPkFHR0ePGTPGdu3t0wWPEBAAYAg/xXHo0KEjR47069dPJHqwpER/1iov7e3TBY8QEABgCP8EXV5enpqa6u3tbaP29umCRwgIADCET9CRkZEJCQm2a2+fLniEgAAAQ/gpjnfeeae9vT0iIkL/9XnBggU8trdPFzxCQACAIfwTtFwu57S5MNf29umCRwgIADCEf4ImhNA03dbWxn4VF9f2TgcBAQDiCHtx2PmE6evXry9cuNB27a2HgADAA7TQsrOz79+//9e//pV5DMzMzOS3vRGNRnPv3j3btbceAgIADOGfoO1zwjRN08x2xmKx2N/fn/3wuLa3HgICAAzhXxLa4YTpM2fO7NixQ6fTffjhhwUFBbGxsZYXjX3xxRcHDhzo6urSX/noo49YfhzrISAA8IDQj/C0TqerrKzMz88vKio6deqUTqfjtz3NfRLgtddea29vZ/8R+IWAAABDyCfozZs3L1my5J///Of8+fPZ1EFwba/HdRIgODjY09OT/f35goAAgCEhE/TVq1czMzMbGhp++OEHw+vvvfceL+31uE4C3L9/f8WKFf3799fXZbz00ks9fBg+ICAAYEjIddBarba5ubmgoOCFF14wvB4UFMRLez2apqurqy9duiSRSGJjY+Pi4iyXXVRVVRk1GDdunOUueIGAAIAhhyhUsZ38/HyT1+fNm2f5N9J9tPQDAQFwIsKv4jB0/fr1NWvWbN++na/2sbGxvRgG10UOtoOAALg0Id9QdmOjoolbt24VFxczPxcWFv7888+W21tZ+sEjBATAlQlfqEJsXzSxYcOGkJAQ5ueRI0du2LDBcvvelX7wCAEBAOIIUxx2KJrQarX6l1qjR4/etWuX5fa9KP3gEQICAAzhE3RxcfH69evffPNNQkhqaurq1ast56Oqqqr169dzWpYbHh6+devWIUOG6HS68+fP95hfXn755erqaoqi7ty5M3ny5Li4OPZ9WQ8BAQCG8AnaDkUTf/7znysqKq5cuSIWixMTE+Pj48217HXpB48QEABgCJ+gbVo0sXv37rS0tIKCAuY/NRrNxYsXL168aG5VWa9LP3iEgAAAQ/h10LQtiyZqamri4+NPnjxpdP3JJ5802b7XpR88QkAAgCFkgnbAognmAbP7wHocEi8QEAAwJOQUh92KJtivcxg8eHCvB2Y9BAQAHiLcEuwH7FA0sWjRopaWFvZD2rt3r0ajYX5ub2/ftm0b+99rPQQEABjCF6rYoWgiJCSE0zoHrVablZVVV1d34sSJ7OxsOy/7RUAAgCH8Kg6bFk3k5eURQtzc3F599dWYmBixWMxct7xb5u9///tx48ZlZWV5e3uvW7fOz8+Pw+exGgICAAzhV3Fs2LDB3d1dXzQhk8kyMjIstKe5LHKorq42ed3ybpnFxcUnT55MT09XKBQlJSXTp09PTk5m+XGsh4AAwAMCT7HQtFarPX78eH5+fmFhYVVVlVarNddy06ZNNE3/4x//6EUvOp2O/azrnj17urq6mJ/b2tq2bt3aix57DQEBAIaQT9Bcl3C9+uqrIpGooaEhIiLC8HqPRRO9WOdA03RLSwshxNfXt4ePwR8EBAAMCTkHzXUJV05OjsmiiR5x3d3im2++ycvLc3d31+l0Wq128eLFI0aM4NRj7yAgAGBIyATNbAFhroatuz179qSlpfn5+ZWUlBhe77Fogus6h08//XTdunU+Pj6EEIVCkZOT884777AcpDUQEAAwJPwqDjsUTXDd3UIqlTLJiBDi7+8vkdg1SggIADCE/5t28ODBnJwcNmXKzAPmrVu3ZsyYwawPU6lUO3futPDI+dlnnyUnJ3PdLTMkJCQ3N3f48OE6ne7ChQthYWEcP5NVEBAAYAifoHtXNDF37tympqb9+/dPnTrVQuOWlpbs7OzAwMCUlJTU1FRvb282XWRkZFRXV9fX11MUlZiYOHbsWPbDsx4CAgAMIVdxMEUTCoXi9u3b7IsmCCHXrl3jVDRRX19fUVFRU1MTHh6ekpISHx8vlUottK+trS0vL1epVPrgrFy5ktVHsg4CAgCGhEzQ9i+aqK+v37t377lz5z755BMLzZYvX56WlmY4yTBo0CCWXVgDAQEAQ0JOcejzDs1lt0y1Wv3uu+8y76ni4uKKiorY5KPLly9XVFScPn06Kipq6dKllhtHR0ePGTOGzWD4hYAAgCHhS71tWjTBfJevrKwMCQlJSUlJSEhgM7176NChI0eO9OvXT39GSY8pjEcICAAwhH9JaNOiiby8vOTk5JycHE77+5SXl7N/gcY7BAQAGMInaJsWTaxdu7YXQ4qMjBTwgFQEBAAYwidoByyaaGlpWbVqVUREhP4b/YIFC3jvxRwEBAAYQiZohy2akMvlls9ptREEBAAMCfmSsKioqLKykimaSExMZDnFqdPp9EUTgwcPHjt2rK1zR2lp6eTJk23aBQMBAQBDwq/icMCiibq6un379rW2thJCNBqNRqPZsmULv11YgIAAAEP4BK3nOEUTmZmZGRkZRUVFCxcurKysDA0NZb/DHI8QEAAXJ/xLQuJ4RRMeHh4DBgygKCosLGzmzJmrV6+2cz5CQACACJugjYomZs2axaZoYuDAgcuWLbNp0YRMJjtx4kRQUFB+fn5wcHBTUxO/9zcHAQEAQ0JOcWRmZiYnJyclJXEqmsjKypo+fbrhCzQeT/fIzs5+++231Wq1Uqn08/MrLS1VKBRyuTwyMpKvLixAQADAkJBP0A5YNNHY2EgIkUqlwcHBhJBp06bZqCOTEBAAMOQQc9Cc2LRooq2tbdeuXd2vz5kzh68ueIeAAPRVzpegbVo0IRaLAwMDbXRzG0FAAPoq50vQRl/nS0tLeby5TCabMmUKjze0AwQEoK9yvgTdvWiCx6q2Hje+cEAICEBf5UCFKiyhaMIIAgLQV4mEHgBnRkUTR48eFXpEAkNAAPoq55viQNGEEQQEoK9ypikOFE0YQUAA+jZneoJG0YQRBASgb3OmBI2iCSMICEDf5kwJGkUTRhAQgL7NmRI0iiaMICAAfZszLbND0YQRBASgb3OmVRwAAC7FmZ6gAQBcChI0AICDQoIGAHBQSNAAAA7KmZbZgQPSarULFiy4ePFiaGior69vSkpKdHT02rVrOzo65syZM2/evDfeeOOrr75yc3OLiYnZvHnzsWPHtm3b9tlnnxFC5s+fL5fLg4OD33rrrYEDB7a3t6tUqt27d/v4+Aj9sQAcAhI0WOWLL764evVqVVWVQqEYOnSoXC53c3Orrq6+cuWKv79/WVnZ4cOHKysrxWLxrFmzdu7cGR4ebnQHkUh04cKFgwcPenl5LV68OD8/n/dTyQGcFKY4wCrnz59PSkqiKCogIGDChAnMxccee8zf358QcurUqaeeekosFhNCUlJSTp8+bfImjz/+uJeXF/PDhQsX7DV2AEeHBA1W0el0+hMRmURMCHF3dzfZmKIow+MTNRoN84NWq+1+NwBAggarDBkypKamhhCiVCrLysqMfjUhIaG8vFyn0xFCjh07Nm7cOB8fnzt37hBCtFqt/oH67Nmzzc3NhJDjx4+PGjXKrh8AwIFhDhqs8uyzz3788ceJiYmRkZFJSUkSyUP/R6WkpEyZMoWZ5Rg6dCizzZ6fn99zzz0XEBAwbNgwppB1xIgRf/rTnxoaGry8vObOnSvMJwFwPCj1Bqs0NjZ++eWXs2fPpml6/Pjxubm5cXFxnO5w9OjR3NzcAwcO2GiEAM4LUxxgFV9f34MHDz7xxBOJiYlyuZxrdgYAC/AEDQDgoPAEDQDgoJCgAQAcFBI0AICDQoIGAHBQ/w/m8hA82PV/swAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","source":["* What do you observe? What is going on for some genes? (e.g., *Gm20775*)\n","\n","* Bigwig files are available through recount3 for some of the samples and allow to visualize the read coverage (for example on the Y-chromosome) on a genome browser. For example you can provide these links to the UCSC genome browser directly:"],"metadata":{"id":"ReezTG_3H4nX"}},{"cell_type":"code","source":["%%R\n","\n","tail(dds$BigWigURL)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"FULHG4FdHuYB","executionInfo":{"status":"ok","timestamp":1718911728964,"user_tz":-120,"elapsed":304,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"0cf69c63-049b-4dcc-e1ae-a60e394df13c"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["[1] \"http://duffel.rail.bio/recount3/mouse/data_sources/sra/base_sums/56/SRP218156/14/sra.base_sums.SRP218156_SRR9956114.ALL.bw\"\n","[2] \"http://duffel.rail.bio/recount3/mouse/data_sources/sra/base_sums/56/SRP218156/15/sra.base_sums.SRP218156_SRR9956115.ALL.bw\"\n","[3] \"http://duffel.rail.bio/recount3/mouse/data_sources/sra/base_sums/56/SRP218156/16/sra.base_sums.SRP218156_SRR9956116.ALL.bw\"\n","[4] \"http://duffel.rail.bio/recount3/mouse/data_sources/sra/base_sums/56/SRP218156/17/sra.base_sums.SRP218156_SRR9956117.ALL.bw\"\n","[5] \"http://duffel.rail.bio/recount3/mouse/data_sources/sra/base_sums/56/SRP218156/18/sra.base_sums.SRP218156_SRR9956118.ALL.bw\"\n","[6] \"http://duffel.rail.bio/recount3/mouse/data_sources/sra/base_sums/56/SRP218156/19/sra.base_sums.SRP218156_SRR9956119.ALL.bw\"\n"]}]},{"cell_type":"markdown","source":["# **Step 4: Principal Component Analysis**"],"metadata":{"id":"n2N7sQWpISAr"}},{"cell_type":"code","source":["%%R\n","\n","# PCA on top 500 most variable genes\n","plotPCA(vst,\n"," ntop = 500,\n"," intgroup=c(\"tissue\", \"treatment\"),\n"," pcsToUse = 1:2) +\n"," scale_colour_manual(values=myPalette[1:6]) +\n"," coord_cartesian()\n","\n","## Plot deeper components\n","plotPCA(vst,\n"," ntop = 500,\n"," intgroup=c(\"sex\", \"treatment\"),\n"," pcsToUse = 2:3) +\n"," scale_colour_manual(values=myPalette[1:6]) +\n"," coord_cartesian()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":639},"id":"zGaJe9s_Ipxh","executionInfo":{"status":"ok","timestamp":1718911941159,"user_tz":-120,"elapsed":769,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"1601bdd5-647e-4a2f-d685-33d37d604560"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: using ntop=500 top features by variance\n","\n"]},{"output_type":"stream","name":"stdout","text":["Coordinate system already present. Adding new coordinate system, which will\n","replace the existing one.\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: using ntop=500 top features by variance\n","\n"]},{"output_type":"stream","name":"stdout","text":["Coordinate system already present. Adding new coordinate system, which will\n","replace the existing one.\n"]},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nO3deUATZ94H8GdmcpFwBFEERE7xxKKIooDiAd4H1dba2sP1trbd2nbdattXt1u3tde2dbf1XlutWrcVtWq9BS8oVkVRtHIIoogIhPsIOd4/ppumyagIIXlIvp+/Mg8zkx9PyJfJk5lnGL1eTwAAgD6srQsAAABhCGgAAEohoAEAKIWABgCglMiaT1ZXV6fT6az5jA/GcRwhRKvV2roQUyzL6vV6Cr+/FYvFWq2WqheRx3Echa8jIUQikajValtXIcAiPcayrJOTk0XqAUFWDej6+nqq3kVyuZxl2bq6OlsXYkoqlWo0Gqr6iieVSuvr6ylMHIVCQeHryDCMQqGoqKiwdSECLNJjHMchoFsVhjgAACiFgAYAoBQCGgCAUghoAABKIaABAChl1bM4WJau/wcMwzAMw59sRxWWZSmsikdnbXS+jgzDkP+dzUkbi/QYbe9o+2PVgBaJRFSd28txHMMwYrHY1oWY4guj8K+fYRiRyKp/M03EsiyFryMf0BQWRizUY/wvCK3Hqm82tVpN1bm9LMuyLFtfX2/rQkxRex60TCZTq9UUngfNcRyFryN/HjSFhREL9RjHcQqFwiL1gCDqjtEAAICHgAYAoBQCGgCAUghoAABKIaABACiFgAYAoBQCGlpdWU3jlcLq4soGWxcC0MbQeNEB2I2KOs3aEwXJ18v4xYFByjmDO3d0ldi2KoC2AkfQ0Fr0evLPw3mGdCaEpOaWf3E0r1FL3Q1ZAOiEgIbWcqO07pd805uJXLxVdaGgyib1ALQ5CGhoLUUVwoPOheUYjAZoEoxBg6XpdLq9+7SHj8hlnsRvtPnPlU74qwNoErxVwMI0b72t3f8TISSE5chMgYDu5+9q9aIA2iQMcYAl6VJT+XQmhIh02g92/8Poh3pCyN8mhrjIcFgA0CR4q4Al6X45Z7wYci9366YX0/z73p31oldQp8hAN2ekM0CT4d0CFmV2QwapRj0452ex/0tsDw+bVATQdmGIAyyJDXtMuD0kxMqVANgBBDRYEhsTww6NNWkULXmTSKU2qQegTcMQB1gUy4o//kizeYv+/AXdyZPs0Fhu6lQ2OsrWZQG0SQhosDSxWDTzT2Tmn2xdB0CbhyEOAABKIaABACiFgAYAoBQCGgCAUghoAABKIaABACiF0+zAAvQ3b+ouXiSEYfuEMZ0727ocADuBgIaW0ek0n/xTu2WLoYF74XnRq38mLD6cAbSUAwR0dY32p/36vJtMR082bgTj42PrguyK9rsdxulMCNF+/Q3j68tNfdJWJQHYDTsPaN3Fi43Pz/h9+ZNPxX9bziZMsllBdkd36pRAY3IyAhqg5ez6c6hWq131b5O2xmXLye1Cm5Rjl3SnTjexEQAelT0HtP7X67qzZ83btcnJ1i/GXrExMQKNgwdbvxIA+2PXAV1ZIdxeIdwOzcD2EZgAmh09yvqVANgfuwponU5fVNGQX1qn0eoJIUxAgOBqbGCgNauyY/o7dzT/+tKkkR0ymBs/zib1ANgZ+/mS8Jf8ip3n7166VcUvvjjUb2xvL278OO3efcarsf37s8OH2aJAO6T7/geBxhMnGxe+zM2bwz4mfHcVAGgiOwnoX4tqlu/JNm75MummmGPj336LuLpqt27jG9m4EeLXXycSiS1qtEO6nBzh9lOndKdOSbZvZXr0sHJJAPbEToY49l++Z954IquMODmJ/rpY+nOK5If/Sk4kiT/5mPh4W788e8U4uzzgp5qvv7FaJQB2yU6OoCtqNeaNF25W/vZIJmO6dLFqQY6BHRqr/fFHQoieMCmBEZc7ddMwXNfinGHXUzi9llRV27pAgLbNTgJaxDG2LsERsSOGc1OfrPth1z+Hz0vz78M3Hu02+HTQgEXH1yr1OtuWB9DW2UlARwYqU3PLTRrHP9bBdD2NRnfqtD4/n7Rvz0ZHEbncSvXZK4YRvbX04GOj0/L0xs2XOvXcHpGwIFRhq7oA7IOdBPSIHu2yimv2Z/w+Ej0g0O35QZ2M19Hn5Wn+8YHu558NLeJVX8jGjrFelXbqst6VENNTyw92H/ryjJ42qQfAbrQ0oHU63a5duxITEzdv3kwIqa2t/fzzzzmO4zhu0aJFrLWmNGMZ5sWhfiO6e1y8Vdmg0ffwVvTzc2P+OOyh+WClcToTQmpefkXSJ5m4ulqnSIfj5GTrCgDatpYGdEVFRbdu3Xz+N0XcoUOHoqKiYmNjv//++5SUlOjo6BZX+Ai6eSm6eZl+rNZfvarLziYarS4l1XyThoOHyJNPWKU6u+XqJPBXFOHvZv1KAOxMSwPa3d3d3d3dsJiXlxcREUEICQoKyszM5AM6PT09NzeXEBIdHa1QWG9cUq9S1b3zf42HjzxgHaasTCaTWa2kJhKJRBzH6XTUfcnGMIxEIjH5YPRUZOdj10pN1pzSv5M1O1YkElH4OjIMQwihsDBioR5jGHw537pacQxa8r/rQfLy8tLS0gghkZGRYrG49Z7RRNXfVzw4nQkhnL+/NUtqIj6d9Xr9w1e1LoZhOI4zeVt276T8akb41yfzU3NKCSERge5PDvAdGOxhzcJYlqXwdeTRWRjNPQYGFg7o4ODg7OxsX1/frKysoKAgvjEhISEhIYEQolKpqqqqLPuM96OvqFDv2/fQ1biR8VYrqemkUqlGo9FqtbYuxJRSqayrq1Or1SbtnV2Yt8cG1Df6aXR6ZylHCLFyryoUipqaGms+Y1MwDCOVSin8AyMW6jGO46RSqUXqAUEt/RLv2rVrK1asuHXr1ooVK1JSUuLj49PS0j744IO7d+/yYx22oi8WuLbQGDtooOueXSy+IbQcmZjl0xkALIKx5udolUpltaNCfUWFeshQ83bRn2YwAyNJ+w5sUKDc2Zll2erqakJIQVl9gaqunULSpYPc5pe90HwEXVtba34EbXPUHkF7eHiUlJTYuhABljqCNv4KCizOTs6DNse4ubGjR+kOHDRp5558knT6w20JK+s1Xx6/eSpbxS/26ew6bYB3qI+zlQoFALgPO5ksSZBo6RI2Ls64RfzvVSbpTAj517F8QzoTQtILKt/84VdVbaM1SgQAuD+7PYImhDBubuJPPtJnZemuZzHt2rFhj5lf211arT6TY3qNOCHkZJZqYpinVcoEABBmzwHNY0JCuJCQ+/20MOWCYHtxZUOrVQQA0CT2PMTxUOqdiZLXXxH8kYczJvUHABtz4IDWaGr++mb7mrKIm+nmP4zpgu+mAcDGHDeg9fk3+QfzTm0JL8gw/tH/TejSwQVH0ABgY/Y/Bn1f/zvXuV1t+dKDX1z16nJL6aOsqwgbEuYa0M+mlQEAEOLIAc34+//+mOh7FmX1LMoihIj7vWC7ogAAfue4QxyE4xSf/dO0LW4EOzTWJuUAAJhw3CNoQohk3FhxYGDlV1/pDhxkhwxho6O4J6YQzKAIAHRw6IAmhHChvcQrPyArP7B1IQAAphx4iAMAgG4IaAAASiGgAQAohYAGAKCUo39JCC10s6xuX0bJvcoGpUIc18Ojpzfm0QawGAQ0NN/xa6WfHM4zLB66UvJMpM8zA7xtVxGAXWnDQxwarT6/tC6ruLa+UWfrWhxRfaPOOJ15W38uvKWqt0U5AHaorR5B/3yj/O97cwyLs2J8H+/b0Yb1OKBrRdWC7ekFlb7uMisXA2CX2uQR9LWi6r/vzTZu2XDq1v6Mh9zGGyyrUSt8u2G1xnq3IQawb20yoH+6XPL7ZHT/k5IrcOcqaD1B7Z0IEcjikI6m9xUDgOZpkwFdUasxb7xws1KPQzcr8nCWTAgzHVYaFKQM9XGxST0A9qdNjkFLRML/VzDNkZXNifHtpJSuTi7gF5/q7z01wguvAoCltMmAjgpWnslRmTTiJtzWx7LM+Mc8xz/mqdPpWRbBDGBhbXKII7Zru0l9/hDHUcHuzw/qZKt6AOkM0Bra5BE0w5A5gzvH9Wh/saBSrdV37Sjv09nV1kUBAFhYmwxoXmB7p8D2TrauAgCgtbTJIQ4AAEeAgAYAoBQCGgCAUghoAABKIaABACiFgAYAoBQCGgCAUghoAABKIaABACiFgAYAoBQCGgCAUghoAABKIaABAChl1dnsWJau/wcMwzAMw3GcrQsxxbIshVXx6KyNzteRYRhCCIWFkQf0mE5HCCFNe6vS9o62P1YNaJFIpKfpvoEcxzEMIxaLbV2IKb4wCv/6GYYRiWicopZlWQpfRz6gKSyMCPWY9vKV+i+/1Bw9RggRj4yXvriA69HjwTthcH+zVsZYMzFVKpVWq7Xa0z2UXC5nWba6utrWhZiSSqUajYaqvuIplcra2lq1Wm3rQkwpFIqamhpbV2GKYRgPD4+SkhJbFyLApMd0l680Tn/WZB3Jju1Mt24P2AnHce7u7q1SHxBCMAYNAIQQ7X82mTdqNmy0eiHwBwhoACC6I0cEGg8esn4lYAwBDQDC2OgoW5fg6BDQAEC4p6eZNzJBQdavBIwhoAGAcLNmMt27G7ewkZHcnNm2qgd4NJ4yBQDWpL96VfPPz/XXrvGLjIcH+3iCaP48QuUJgg4FAQ3g2Orr1dOeMW7Ql5bqL2U08VoVaFV4DQAchkqlO31Gd+KE3ujUbO3pM+Yr6tLS9BkZVqwMhOEIGqCtatDoEi/cvV5Uo9XrfZSyJ/t5tVPcd1BCu3mL5uNPDIt1Ly4gc+cQhiHFxYLr64vu4jJBm0NAA7RJNQ3af+zPuXiril88l1/548Xifz/T09/DyXxl3ZEjxulMCKn78iuRqyv39DSmY0fB/TNewu1gTRjiAGiTdl8sNqSzwbc/3xFcWbtvv3mj7sQJQggbNcj8R2xkJNO7d4trhJZCQAO0SdeLBOYeOZOjElxZd+y4QOOZFEIIkckk321jIyMN7WzUINHbSwmVk/A5GgxxANgVvZ6YzzHHxsbqkpNNG/937Mx07y7+8l+69Iv6O4Wsnx/TuzdO4aAEXgaANimgvcBY84AAN8EZQNmR8QKNRkfNRCRiI/pxEyYwYWFIZ3rglQBokxL6CHyJN7W/l+DK3Phx3Ly5xi2y55/jnjOdXxRog/mgMR/0I8B80I+kteeDrqjTbEu7s/dSMSFkSFf3pyK8BU/hMNAXFuovXtJrGtnHHnPu2bPlPYb5oFsbxqAB2io3J9H82M7zYzs3cX3Gx4fx8WnVksCyMMQBAEApBDQAAKUQ0AAAlEJAAwBQCl8SAjiW4ip1QVm9p7vOW8GIOEyIRDUENICjaNDo1iQXHMr87bQ/pZNocrjX5HBMikQvDHEAOIo1J35PZ0JIeZ1m4+lbW1ILbVgSPBgCGoB2+qIi3eUr+pZdUVXfqDt0ReCSme1n71TVa1qyZ2g9GOIAoJc+J1fz6T91p07xi9zT00Sv/pnIZM3YVVlN4/1+dP1ubT9/12aWCK0JAQ1AKX11tXryFOMW7bbt+tpa8bt/a8be3Jzu+2bXWXG+B3gkGOIAoJTu4CGBxt17SFlZM/amkHJhnV0Ef9S1o6IZOwQrQEADUEp/86Zwe0FB83a4eFRQe2fTmxY+E+nzgINrsC28MAC0cnMTbm/uBHJuTqINz/f+T8qt8/lVN8vq+nZ2HdO7fVQwpqOjFwIagFLciOHaz78waWQHDWT8/Jq/T46ZHdOZxFA6QSuYwBAHAKUYf3/x8mXGLeyAAaK//MVW9YD14QgagF7s4wmSQQN1Scn6khImKIiLjyNi00FksGMIaACqMV5e3LSnbF0F2AaGOAAAKIWABgCgFAIaAIBSCGgAAEohoAEAKIWABgCgFAIaAIBSFj4POi0tbfPmzV5eXoSQuXPndujQwbL7BwBwHBYO6JqamkmTJsXFxVl2twAADsjyAX3u3Ln09HQXF5dZs2aJRCJCSHp6em5uLiEkOjpaoaBo5lmRSMQwjKxZ96doVSKRiOM4nU5n60JMMQwjkUhYlrqRMZFIROHryDAMIYTCwoiFeoz/BaH1MHqL3kyhtLSUEOLh4bFz506FQjFq1ChCyK5du1JTUwkhL7/8cvv27S34dC3EcRzDMBoNdTdk49PZsi+NRYjFYq1WS+F/DpFIROHrSAiRSqUNDQ22rkKApXpMKpW2fCdwPxY+gr5161bHjh0JIXK53PDyJyQkJCQkEEJUKlVVVZVln7El5HI5y7LVLbsXZ2uQSqUajUar1dq6EFNKpbKurk6tVtu6EFN0Tp7JMIxUKqXqb97AIj3GcRwCulVZOKBdXV2//PJLhUKh0+leffVVy+4cAMChWDigAwMD3333XcvuEwDAMVH3bQ8AAPAQ0AAAlEJAAwBQCgENAEApBDQAAKUQ0AAAlEJAAwBQCgENAEApBDQAAKUQ0AAAlEJAAwBQCgENAEApBDQAAKUQ0AAAlEJAAwBQCgENAEApBDQAAKUQ0AAAlEJAAwBQCgENAEApBDQAAKUQ0AAAlEJAAwBQCgENAEApBDQAAKUQ0AAAlEJAAwBQCgENAEAp4YBuaGhYt27dO++8Qwg5d+5cQ0ODdasCAID7BPTChQvPnz//008/EUKOHj06d+5c61YFAAD3CegbN2589dVXzs7OhJDFixfn5+dbtyoAALhPQGs0GsPjurq6mpoaa9UDAAC/EQ7oUaNGjRs3Li8v74033ggPD58yZYqVywIAAJFg69KlS5OSkpKTk2Uy2fr166Ojo61cFgDYJa1WO2fOnMzMTG9vbzc3t9jY2ICAgI8++qi+vv7ZZ5+dOXPmsmXLjh49KhaLu3btumrVqmPHjq1evXrXrl2EkNmzZw8dOtTT03PFihXBwcE1NTW1tbXffvutq6urrX+t1iIc0ISQ/v37Dx06lBCiUqmsVw4A2LV9+/bl5eWlpKSoVKoePXoMHTpULBanpqbm5OS4u7sfP378wIEDZ86c4Thu2rRpmzdv7tSpk8keWJa9fPny/v37FQrFwoULN27c+Oqrr9rkd7EC4SGO1atXT5w4kX88YcKEtWvXWrEkALBbly5dGjx4MMMw7dq1Gz58ON/Yq1cvd3d3QsjPP/88bNgwjuMIIbGxsWfPnhXcSXh4uEKh4B9cvnzZWrXbgHBAr1+/nv9MQQg5fPgwAhoALEKn0zEMwz/mg5gQIpVKBVdmGMawMjE6eUGr1ZrvzS4JB7ROp+P/QRFCxGKxoR8BAFqie/fuaWlphJDy8vLjx4+b/HTQoEFJSUk6nY4QcuzYsYEDB7q6uhYXFxNCtFqt4YD6woULFRUVhJDk5OSwsDCr/gLWJTwGPXr06OHDhw8ePFin0x08eHD8+PFWLgsA7NKkSZO2bdsWFRXl5+c3ePBgkegPERQbGztmzBh+lKNHjx7PPvssIUSpVE6ZMqVdu3Y9e/bU6/WEkN69e7/yyiu3b99WKBR/+tOfbPObWAXD/8LmDh8+nJqaynFcVFQU/21hy6lUKsNnExrI5XKWZaurq21diCmpVKrRaKjqK55SqaytrVWr1bYuxJRCoaDwbH2GYTw8PEpKSmxdiACL9BjHcfzYcdOVlJQcOnTomWee0ev1MTExn332Wf/+/R9pD0eOHPnss8/27t37SFu1UcJDHNXV1eXl5Z6enu3atbt27drq1autXBYA2CU3N7f9+/dHRETwR36Pms6ORvgIetiwYd7e3p6enoaWzz77rOVPVlFRwY8uUUImk7EsW1tba+tCTEkkEq1WS+ERtIuLS319fWNjo60LMeXk5FRXV2frKkwxDKNUKuk8UdUiPcayrJubm0XqAUHCY9A+Pj7ffvut5Z9MJLrfiIpNcBzHMIxYLLZ1Iab4wliWuslgGYYxGTSkBMuyFL6O/AkGFBZGLNRj9n0GBQ2E32xKpbKurs7JycmyT6ZWq6k6KmRZlmXZ+vp6WxdiitoxaJlMplarKRyD5jiOwteRYRiFQkFhYcRCPcZxnOF0L2gNwgGdlZUVEBDQs2dPwwl2R44csWJVAABwn4BesmSJ8cef0tJSa9UDAPaseee0tG/f3uKVtAnCo5zDhg1zdnaur6+vr6+vqKhYsmSJlcsCAADhI+hXXnnl5MmThYWF3bt3v3Tp0ltvvWXlsgAAQPgI+uzZsxcuXBg0aFBycvKJEycKCwutXBYAAAgHND8AXV9fr9Ppevfubd/zRQEA0Ek4oENCQr744ov+/fsnJCS88sor+JIQAFqJ/tYtzTvLGsL6Nr70imblh/ry8oduUl5eHhkZyd/V+pGsXr16y5YtzSrzESQmJh48eLDZRRoTHoNes2ZNSUlJhw4dNm/eXFhYuHPnzpY8BwCAIP21a+qnnuYf606eJIRot26THjtKPNo9YKvr16/HxMSMGTPGgpUsWrQoKysrLS0tLCxMKpV++eWXfn5+zdvV448/TghJS0treZGmAT1t2rTt27cnJCQYN545c8ZBpiYBAGvSrl1n3qjZtEn0+msP2GrdunVnz579/vvvt2/f3q5dO71e/+9//3vTpk2nT5/29fXNzc0NDQ3Nzs6OiYmZMGHC7NmzlUplQ0PD1q1b+c3Ly8tnz55t2DAzM/Orr75as2YNIWT06NGbNm1iWdZ4qw0bNpjvedKkSfPnz1cqlZWVlf/5z39WrlwZFhY2cuTIiRMnJiQkeHh4JCcnCxZ58uTJwMDAs2fPbtu2TalUPrh/uOXLlxsvd+jQISAgwNPTc+AfBQUFPVK/C6qvr6fqUm+xWMwwDIXXxYlEIp1OR1Vf8WQyWWNjI4WXOEokEgpnCGEYRi6XUzjZC7FQj7Es+6jXG5v0RuPiN83XYVxcuHFjjVvkcrnxoqenJ38S8KBBg5YuXXr9+vWSkpL6+nqFQrFs2bLVq1e/8cYb06ZNW7ZsWWxsbGRk5Msvv7x79+4ePXrcvHlTIpEcO3bMeMNhw4ZNmDCB3/OWLVsSEhLKysqMt+LnNTXZc1lZ2ZAhQ5YsWXL79u0bN24sXLjwr3/964ULF/gxYYlEEhcXJ1ikVCpdvnx5bm6uRqPp2rXrg7vL9Ag6NjaWEHLz5s2ZM2c2rcMBAGwgLy/v9OnTBw8erKio8PDwIIR4eXkRQmQymZeXl0wma2hocHJy+uc//7lt27bLly8bJocy39CE+Vbme87Pzx8xYgQhJDAwMCMjQyKRjB8//uuvv161alVGRsYDivT29iaEyOXypkxWJTwGvXnz5smTJz/08BsAoCXYuDid2TQSbLduTdk2ICBgzJgxkyZNKiwsdHFx+e6778zX+eyzz6ZOnRoXFzdhwgTDVJomGzZxKxOBgYG5ubkDBgzIzc0NCAioqqr68ccfx4wZY/KNXVOKfADhgJbJZEFBQb169TLcKwxzcQCAxXEL5psENBsRwT7/XFO2nTt37oIFCxITE1Uq1bp1AmPZhJDBgwe///77iYmJvXr1+uyzz4YMGWK+YU5OjmEMWnArw81tjc2ePXvBggXHjh2rra3dsGHD66+/vmTJkoEDB44aNWrkyJHOzs5NL/IBhOeDPn78uMlcHJMmTXrUXZvDHVWaiNrZ7HBHlUeCO6qYM+8NfXGxds06fXEx0WnZ7t3ZP81g/pduBg47F4fwEfSwYcPS09P5rmxoaFiyZIlFAhoAwATj6Sl6B5NJCMNcHAAAlMJcHAAAlMJcHAAAlBIe4jCeiyMgIABzcQAAWB/m4gAAoJRwQB8+fHjkyJEcx82YMcO69QAAwG+Ex6A/+eQTPz+/RYsWnTt3zsoFAQAATzigjxw5cuHChZCQkNdee613797vv/++lcsCAADhgCaEeHp6vvjiix999NGgQYNWrFhhzZoAwHHodPqkX8tWJxdsPH3rXH5lUzax/oT969evX79+vWGRn5LfInt+MOGAPnPmzGuvvRYUFPTWW29FRUXhPGgAaA2VdZrlP2Z/fOjG3kvFO8/fXbYn68ODuRrtQybabY0J+2NjYwsKCvjHp0+ffvB0no8//vioUaMs+Oz3I/wl4Z///Ofp06efOXOGn2QPAKA1bPm58PzNPxw1n7iu6untMv6xDg/YqjUm7J83b97GjRuXLVvG73/69OlPPPGEYR1CyNGjR1NSUq5fv7579+4dO3Y4OzuPHj16zpw5DMMEBATwMzub7FkikbSwf+57JeGrr76KdAaAVrU/45554/n8igdvNWvWrLi4uOzs7ClTpqxdu7Zbt2779u1jWbZHjx4rVqy4d+/elClTVq1atWPHjtLS0rfeeuubb74Ri8XXrl3jN1+9erXxhn369FmzZs0TTzyxd+9enU5XUVGRm5t77tw543UIIcHBwRs2bBgxYsTp06cN+3n++ed37twZFhbW0NBgvueW94/wETQAgK3omnYrIctO2C+RSOLj4w8cOHDjxo0ZM2akpaWZrBMQEEAIcXZ25rOYEFJQUMAPs7zwwgurV6++355bAgENADYT7udqMsRBCFHKm5RLFp+wf/78+YsXLy4pKdmzZ09xcfFDdx4YGJidnd2vX79Vq1Y1NDQ4Ozs/9FYAj+q+Z3EQQlJTU7/99tujR49SODExANiB0aECEz1P6tOxKdvOnTt369atM2bMWLBgwf1uH8VPvb9w4UJ+6n3BDdPT0+fNm0cI8fPz02q1oaGhcrm8KTufPXv2tm3bJk+enJOTw8/Q35StHonwhP2EkKVLl9bW1gYHB9+7dy8nJ+fbb79t+ZNhwv4mwoT9jwoT9j8qeibsP51T/v7+HP5xuJ/rtAHePb0xYf9vTD9KvPfee4sXL5ZIJLdv396wYYNIJCKEPPvss7aoDQDsX3Swcu/L/VS1jSKWcZFh0PUPTLsjMDBw1KhRf/vb36ZNmzZ06FD++Hr69Om2qA0AHIW7XPzwlRyPaUBPnz597NixS5Ys0Wg0u3fvtsgXkQAA0AwCXxK6u7uvXr161qxZU6dO3bRpk9VLAgAAQswDOjk5ecqUKUOGDFm/fv3q1atLSkrGjRt39epVmxQHAODITIc4Nm7cuG7dOqVSeeXKlXfffXfz5jYSb20AACAASURBVM1Tp0594403duzYYZP6AAAclmlAq9Xq9PR0V1fX69evKxQKQoifnx/SGQDA+kwD+h//+MemTZtKS0uDgoI+/PBDm9QEAADEfAza39+/b9++4eHhM2fOdHV15RtXrlxp9cIAABydaUAvWLDgX//6V1JSUv/+/c+fP883bt682eqFAYCjKFeXXyq7eEV1uUZD3eWgtmU6xHHq1KmMjAyWZa9evTplypRdu3bx85w2UW1t7eeff85xHMdxixYtYtkHzfUBAA5Or9f/kP/f/bf4mTn1hDDPBb8wzHt4y/e8evVqZ2fn1r4KOjExUS6XR0ZGjho1avny5Za9hwAxP4JmGIafaaFHjx6bNm2aMmXKzZs3m767Q4cORUVFLV682N/fPyUlxZKVAoDdOVh44H/pTAhhCCGbc77OUF1q1SddtGjR+PHjPT094+Pjx48f/0gRZ4K/tUpr3OGFZ3oE/eyzz/bv3z8pKcnDw2PAgAFfffXVyJEji4qKmri7vLy8iIgIQkhQUFBmZmZ0dDQhJD09PTc3lxASHR3NnxlCCZFIxDCMTCazdSGmRCIRx3GG2RHpwTCMRCKh8IORSCSi8HVkGIYQQmFhxEI9xv+CLZFZfsW88WTRid7ujz1gq7Vr17bk5ilr1qwhhIwePXrTpk0syxpvtWHDBvM9T5o0af78+UqlsrKy8j//+c/KlSvDwsJGjhw5ceLEhIQEDw+P5ORkwTu8nDx5MjAw8OzZs9u2bVMqlc3oH9OAfvPNN2NiYgwxGhMTk5KS0ryp7Ay3e8nLy0tLSyOEREZGisUUXXHPsizDMFSVxOPT+X4TDdoQwzAcx7X8bWlxLMtS+Dry6CyMkh67rMowb1TrHjJdIn/zlDfffDMuLm7KlCm+vr5TpkyJiop66623IiMjn332WZObpzz99NMff/zxvn37Hn/8cT6dDfhbrhi2EtxzcXHxU0899eSTT3722Wfff//922+/nZCQkJSU9N5772VkZBBCZs2a5ebmxt/hxfBcLMt27dr1nXfeeffdd0+fPj1u3Lhm9I/A3FExMTHGi+7u7i+99FITdxccHJydne3r65uVlRUUFMQ3JiQkJCQkEEJUKlVVVVUzqmwlmG70USmVyrq6Okw32kQMw0ilUqr+5g0sNd2oVCq1SD3GxNzD/3O05OYpxsy3Mt9zfn7+iBEjCCGBgYEZGRkSiWT8+PFff/31qlWr+IC+33N5e3sTQuRyebPnhrbw5H7x8fFffPFFamqqXC6fOnWqZXcOAHYmwW/yrps7TRojOwxsxq4e6eYpD97KRGBgYG5u7oABA3JzcwMCAqqqqn788ccxY8bs3PmHyptyh5dHZeGAlslkixcvtuw+AcBejfMdp1KXJRclGVoe958S4dG/Gbvib56SmJjI3zxlyJAhhJC5c+cuWLAgMTFRpVKtW7cuJyfHMAYtuNXw4QInkMyePXvBggXHjh2rra3dsGHD66+/vmTJkoEDB44aNWrkyJH8vVTMn6sZv4I54TuqVFdXKxQKfqhRr9fX1NQYimgJ3FGliWge4sAdVZoOd1QxJ9gbhbWFudU5YkbcxTXEQyowEIE7qvyBi4vLjRs3+LvY5ufnBwYGUviFFQDYBx+5j4/cx9ZV0Eg4oI3jOCAgAOkMAGB9pie0qtXq7du3nz59mhCydevWefPmrVq1isKPtAAAds/0CHrWrFmlpaUlJSUTJkw4fvz4lClTjh07duHChY0bN9qkPgAAh2Ua0BcuXMjIyKisrPTx8SksLHRzc1uwYEFYWJhNigMAcGSmQxz8cLObm9ukSZPc3NwIIVqtlsJLewEA7J5p8o4YMWLGjBmEEP5i9suXL8fHx48aNcr6lQEAODjTIY5PP/00KSnJsKjX6+fPn//UU09ZtSgAADA/ghaJRG5ubobz6tq3b9+1a1cKJ8cBAHui0+h0WpzOa8o0oBMTEydNmmSYX/TOnTuTJ08+efKk1QsDAIdQnFl66tNfEucdSpx7MPXL9Mrblrmyd/Xq1Vu2bGnGhuvXr1+/fr1hMTEx8eDBgxbZczOYBvR777138OBBfhImQkh4ePh///vfpUuXWqcaAHAod6+UnPzk7N0rv13/fftc0eH/O1V9t3Wv2o+NjS0oKOAfnz59eubMmQ9YmZ+Sv1XreQDTMeiqqqrevXsbt/Tv37+wsNCKJQGAo8g+nG/eeP3AjfAXQh+wVQsn7J83b97GjRuXLVtGCFm3bt306dOfeOIJwzqEkKNHj6akpFy/fn337t07duxwdnYePXr0nDlzGIYJCAjg7wJosmfD9PeWZXoEXVtb29jYaNxSXV3d7MlMAQAeoCjjnnljnarhwVvx0+qvWLHi3r17U6ZMWbVq1Y4dO/ip97/55huxWGwyYf/atWu7deu2b9++Pn36rFmz5oknnti7d69Op6uoqMjNzT137pzxOoSQ4ODgDRs2jBgxgr+mmt/P888/v3PnzrCwsIaGBvM9W7JTjJgeQY8fP37p0qUrV67kz31uaGhYuHAhzuIAAKq0ZMJ+iUQSHx9/4MCBGzduzJgxIy0tzWQdfp44Z2dnPosJIQUFBfwtB1944YXVq1ffb88WZxrQH3300eTJk0NCQgYMGKDRaM6cOdO3b1++IAAAy/KP7pR/+rZJY/uujzaFKe+RJuyfP3/+4sWLS0pK9uzZU1xc/NCJ9gMDA7Ozs/v167dq1aqGhgZnZ+eH3grAIkyHOFxcXA4fPrx9+/bRo0dPnDhx7969e/fudXJyaqWnBwBH1mtyV5MW77AOXeIDmrErfur9hQsX8lPv841z587dunXrjBkzFixYUFdXl56ePm/ePEKIn5+fVqsNDQ2Vy+Um6wjufPbs2du2bZs8eXJOTg4/OX5Ttmo50wn7VSrVihUrrl27Fh0d/dprr1n2hmOYsL+JMGH/o8KE/Y+Kngn7tY26G0kFpTkqTsx16N7OL8rH/MILh52w3/QIeu7cudXV1TNnzszIyHjnnXdsUhMAOA5OzHaJ94+c3ydiVm//6E64LM6YwGx2WVlZDMNMmDBhwIABNqkJAACI4KXe/H8wsViMG6kAANgQ5hEFAKCU6RBHdna2YTy+vLzc8JjOLzoAoG1x2K/7msc0oG/dumWTOgAAwIRpQPPX5wAAgM1hDBoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKCU6YT9rYpl6fp/wDAMwzAcx9m6EFMsy1JYFY/O2uh8Hfn7L1NYGLFQj9H2jrY/Vg1okUhE1Z3COY5jGEYsFtu6EFN8YRT+9TMMIxJZ9W+miViWpfB15AOawsKIhXqM/wWh9Vj1zaZWq7VarTWf8cFYlmVZtr6+3taFmJJKpRqNhqq+4slkMrVarVarbV2IKY7jKHwdGYZRKBQUFkYs1GMcxykUCovUA4KoO0YDAAAeAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKCUyLK7S0tL27x5s5eXFyFk7ty5HTp0sOz+AQAch4UDuqamZtKkSXFxcZbdLQCAA7J8QJ87dy49Pd3FxWXWrFkikYgQkp6enpubSwiJjo5WKBSWfcaWEIlEDMPIZDJbF2JKJBJxHKfT6WxdiCmGYSQSCctSNzImEokofB0ZhiGEUFgYsVCP8b8gtB7LBPSePXvOnz8fExMzaNCgQYMGeXh47Ny58+jRo6NGjSKE5OXlpaWlEUIiIyPFYrFFntEiWJZlGIaqknh8Ouv1elsXYophGI7jKHxbsixL4evIo7MwmnsMDBjLpsDFixc7duzo5eV14MABrVY7btw445+qVCqtVmvBp2shuVzOsmx1dbWtCzEllUo1Gg1VfcVTKpW1tbVqtdrWhZhSKBQ1NTW2rsIUwzAeHh4lJSW2LkSARXqM4zh3d3eL1AOCLDzE4erq+uWXXyoUCp1O9+qrr1p25wAADsXCAR0YGPjuu+9adp+CtHptSvHprMoslmG7uXWPbD+Qws/dAAAtYeGAto7qxuq111dfVmXwi8lFST/fS53f/UUpK7VtYQAAFtQGAjq/Ov9o4eGKxgqFSBHTcXBPZa89BbsN6cy7WJZ+4NZPk/wSbFUkAIDF0R7QyUVJX2f/x7CYei9lnO+EI4WHzNfMqcq2Yl0AAK2OuhNajdVp64zTmbfv1o+CK7N0/y4AAI+K6iPonErhg2Jfue+t2lsmjTLR72fdVxXV3EkvVtc0uvm6dIroyHLIbgBoe6gOaK1e+ERgD1kH84Ae3Wks/+DX/bmXf7huaPc85RH+fC9FB3krFQkA0EqoPrT0dw4QbL9YdsF4sZcy9K2wdwKcAwghZbnlxulMCCnOLL247WprlQgA0GqoDmilRDmq0+iHrhboEhjs0oV/XHi+2HyFOxfvNVRRd/EbAMCDUR3QhJCpAdNe6PKnUGUov+jl5GW+Tl7VDcPjhmrhIFZXN7ZGeQAArYfqMWhCCMMwsV5DY72G8oszT71gvs7l8sv8g5s1N4ucbgvuR+5B44xiAAAPQF1AN9Y2/vrTjYpbVQxDXH1duo0JEjv9XmS/9hHnSn4x2SSsXR+tXvttzuakouMSD1k8edxkhZCRAZyEa/XSAQAsiq4hjjpV/Z6Xj/66P7fo0r07F+/9ui93z0tH6sobDCuM8Ba4FcAw7+HH7hxJKjpOCFHL6k9NPFDW8Z7hp93GBYU+0dUKxQMAWBZdAX31xxzzxmtGjd3derzS8w+T5L3Y46XH3MMuqy4TQhg92/X8YzF7Rre724EQUt+5Ou7dmNDJXXEeNAC0RXQNcdxILjBvrCmpNV7s067vxpivSxtK9IR4SD0YwhBCMlSXCCE90/oGZP5+sCwrcD7yf6cm/ivOeJAEAKCtaAOHlncvC8x37iFt317ank9nQkifdn1FanFAZoj5mjdTClu3PgCA1kFXQPsN9DFv9I/q9NANozsOVlQrCBGYErq6iLobbQAANAVdAd19fLBQY9BDN+zn0W9CiPBco2I5xjcAoE2iK6BdvBWjP4g1HDL7R3UaszLWuWOTbgQ+vMewDr3ambf7hHe0ZIkAANZC3dGlooNTxKzeEbN6N2PbsKk9jiw7bdzS+8luSj9XC5UGAGBV1AV0S7j5uiR8FX8z9U7FrUqZm9QnvKOrt7Oldn77/N2iS/caaxvd/d2ChnUWy3HLegBoXXYV0IQQTsIFDvG17D71ev3ZdZcKfr7DL94+d/fyzuvx70a7dnKx7BMBABijawyaTrfOFhnS2eDyD1k2KQYAHAcC+uHuZgiciH3nYrGmQfh+AgAAFoGAfjhNg0awXadGQANAK0JAP5zS302wXeIssXIlAOBQENAPFxTb2bwxYmZvoesWAQAsBgH9cBJn8ZgPYztHehtaBr7Y1z/64RegAwC0hL2dZtdK5B5OA+aG9Z/zmE6j58T4rwYA1oCAfgQMw3BijGsAgJXgYBAAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohbk4HJRGp0m+m/RrxTWiJ8GuwcO948QsboMLQBerBjTL0nXAzjAMwzAcx9m6EFMsy7ZqVbWa2lWZn2eWX+EXfyk9e0l16cWeL7mKXW1eW/PQ+ToyDEMIobAwYqEeo+0dbX+sGtAikUiv11vzGR+M4ziGYcRi6o4c+cJa76//p/x9hnTmXS3P3JW/c1aPOQ/ekGEYkYjGT10sy1L4OvIBTWFhxEI9xv+C0Hqs+mZTq9VaLUX38WNZlmXZ+vp6WxdiSiqVajSa1uur3Ipc88ajt49MD3zuwRvKZDK1Wq1Wq1unrubjOI7C15FhGIVCQWFhxEI9xnGcQqGwSD0gCJ9QHBGL1x2gLcAb1RE5i53NG/t59LN+JQDwAAhoRzTGd6xQ4zjrVwIAD4CAdkSd5L5/D1/RzyOCX+zrEf522LIgl2DbVgUAJmj8Rh6soJPcd2GPl/V6vY7oOIbG88AAAAHt0BiG4QjSGYBSGOIAAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFI4zc7eqNSqI4WH7tTecRI5hXv0M1yNAgBtDgLarmRVXn//0grDYkrxmSjP6Fld5zAE00ICtD0Y4rAru2/uMmk5U3z6Ylm6TYoBgBZCQNuPcnW5yTT8vCvll61fDAC0HALafjTqGgXb1Vrq5tcHgKZAQNuPdtJ2gu0BzgHWLQQALAMBbT84hns2+HmTxu5uPaI7DrZJPQDQQjiLw64M9x7hJnFLvnP8cvllQsgw7+EJfpMlrMTWdQFAcyCg7U0/j4h+HhE6vY5l8PEIoG3De9g+IZ0B7ADexgAAlMIQB8DvdI26nOM3S3PKGYa079ouMNaX5XAQAzaDgAb4TUOl+uc16feulfGLt84W3UkvjlzQR+yEtwnYBv7y7F/NvdrsI/k19+qkLuLOkT6ePT30Or1Oq+fEODb8g8w92YZ05t29UnL9pxu9JofYqiRwcAhoO1d44W7Kvy4YFvNO3XbxVlTdqeEXB77Yt1O/jjYqjTq5x2+aN6ryK6xfCQAPx1D2TKfVGaczz5DOhJDULy/kn75t3aLaGIbBRIBgMwhoe1ZRUPXQdX7ZmGGFStqETuECHyYkzmLrVwLAQ0DbM12jrimrqWuEZ1lyNCGjA80buwo1AlgHxqDtmWsn5/v8RE+MpvAXSTjr1EM5j2DlsLcG/ro/t/BCMSGkUz+vHhOC3XxdWr5ndU1j1sG88oJKhmHad3XvMsKfxTe00AQIaPuk0+jyTt4qy61QdnYpFxjo+C2d9YR0Cu+IsDBoF6Qc9FK4TqtnGMKwlhl9rrlXe+DNE4bFOxeL714pGfhiX5y9Bw+FPxE71FClTlt7sTiz9I/NekIY41M4CCEMIaGTu1q5PPqxnCW/GLySmGXSUpxZmnXwRs+ERzt7T6/T558pLLleptfqPbooAwb7siL8Z7VzCGg7lJmYZZbOpGdC1x4Tggkht88VFWWUNNY2uge4BQ3zw3Fcayv4+Y55Y1neg87ey67MPld6trKx0tvJZ6j3MGeRs6Zek/pV+t3LJfwKN1MLb5+/GzmvD77DtG94c9qh3OQC88bSHBX/oFM/r079vKxbETyCH258f+zXY6yWq3Wp1rO6nfnfL3nsrcZjjCGdecWZpZm7s/tM72GrOsEKENCOAjf2biUanSaz4sq9uuL2sg49lb3ErOkhrU8fz8L0YpNG5w4Kwb1d/OVy6a6a4Xcm8osZUWdvdstOzN8ZdSPOfOWcY/kIaPuGgLZDXo91KLp0z6RR6oJp+y3vZk3+dze2Xy3P5Bd7Knsl+E3u4trFeJ2uYwLNA7rrGIGz91T5ldlf3fIgv5+O3ftMfx2rvxZyNUI3xNK1QxuALxnsUEh8gHljwOBOVUU1Oq3e6uXYLY1Os/zC/xnSmRCSWX7lH5f+3qCtN17No4t73PLoThG/DSv5R3cavTJW3k5mvsOco/nmjZ1y/QghjJNAAT59PFtQPrQBOIK2Q549PQa/3v/6wRv8qGX7ru10Ol3yyjT+p72f7BYyKgBXMLdcVuV1wfbL5Vf6efQzbnHr7DJwQZ+H7rChUuD+6+0LvRg903NsyKlz50x+JHhlDdgTBLR98uzp4dnTQ6vW1pU3HFxywvhHGf/9VafVdx8XZKva7Ea5uly4vUHVvB3e74T0MZ3HdgzoMPydQVf35Ny5WEwI6di7ffexwe1D3Jv3RNBWIKDtGSfh8s8IzIV0Zef1bmMCLXUhhsPqIOsg1Kzv4CTY/nA+fTwLz981aWT7ayb5P0EIcQ9wi3olXKfREf19oxzsTEtfZp1Ot3Pnzueee45frK2tff/99z/88MNPPvlEp2vSRBDQqm4XFAq2N1QJfJqGRxLkEtxT2cuksbtbT/PGJvKL8ukY3c64pdi38EDXXWUNv89SzYpYpLPjaOkrXVFR0a1bNx8fH37x0KFDUVFRixcv9vf3T0lJaXF50CKni09dqROerE4sw4enlmIZdkbIzMfahRlaQpWhzwW/IGKa2bcMw1yJPndm3OHrfTOye2f+MuLEL3EnGiWNe2/9aKGSoY1p6bvU3d3d3f33gbC8vLyIiAhCSFBQUGZmZnR0NCEkPT09NzeXEBIdHa1QCJ/+aRMikYhhGJlM4Pt02xKJRBzHtfAjiJ7oN1xf18Hfy+/XLiY/8o7ooHBrzgvBMIxEImFZ6o7gRCKRTV5HX5nvX8OXFFTfLK4rbi9r7+/8h29f+cePVNjP91KJJ1F5/uGalEpNhcV/O4v0GL5qbm3NDOg9e/acP38+JiYmLk7g/HmeRPLbibd5eXlpaWmEkMjISLGYoitTWZZlGIaqknh8Ouv1LToljv+q6l6nopzHrgZf+v1yhlLvu65xXPN+a4ZhOI6j8G3JsqwNX8dg9y7B7qb/BQ0sUBhjiZ38kW17DJqomQE9ceLEiRMnmrcHBwdnZ2f7+vpmZWUFBf12nkBCQkJCQgIhRKVSVVU9fAp5q5HL5SzLVldX27oQU1KpVKPRaLXaluykrvG3s3Gv9Uu/E5DvectH3CCtaFdWGHyT00c174VQKpV1dXVqNXXj1wqFoqam5uHrWRfDMFKp9JG6Otoz5nTxKZNGD3F7i79xLNJjHMdJpVKL1AOCWjrEce3atR9++OHWrVsrVqwYPnx4fHz8F198kZqaKpfLp06dapESoXmcxc7d3Xpcq7hKCKnwUFV48Od+6QlhnMX3mycabGyiX4J5QI/3nWCTYsDmmBZ+jn4kKpWqhUeFlmXfR9CEkOzK7H9c+rt5+1th7wS73Pcj+QMolcra2locQTcRwzAeHh4lJSUPX9VIVWPVjwV77tYVEUJ8FZ3H+o5TiCz/zY2ljqCNv4ICi8NX+fasi2uXJWFvr7n2pfF5Wo/7T2leOoN1uIhdngmabusqgAoIaDsX4hLyQcRHPxen3qotcBa5hLXr46vwtXVRANAkCGj7J2JE0R1jbF0FADwy6k5oBQAAHgIaAIBSCGgAAEohoAEAKIWABgCgFAIaAIBSCGgAAEohoAEAKIWABgCgFAIaAIBSCGgAAEohoAEAKIWABgCgFAIaAIBSVp1ulLa7QfP3eTPc3JYeDMPQ1le84uJiiUTCcZytCxFAYVV6vb6goMDZmdIbjLW8x+j8K7UnVr3lFW3Wr19fVla2ePFiWxfSZsycOXPmzJkxMZhdukkqKyuHDx9+9uxZCu+DDm0C/gECAFDKoe+o0r17dwrvNEqz2NhYLy8vW1fRZkgkksmTJ9u6CmjDHHqIAwCAZhjiAACglIMOceh0ul27diUmJm7evJkQUltb+/nnn3Mcx3HcokWL8N20OXRRE+FPCyzIQf9cKioqunXr5uPjwy8eOnQoKipq8eLF/v7+KSkptq2NTuiiJsKfFliQgwa0u7t7r169DIt5eXnBwcGEkKCgoBs3btiuLnqhi5oIf1pgQY41xLFnz57z58/HxMTExcXdbx0Kr1uhDbqoedBv8KgcK6AnTpw4ceJE8/bg4ODs7GxfX9+srKygoCDrF0Y/dFHzoN+gJRz0NLtr16798MMPmZmZPXv2HD58eN++fb/44gudTieXy19++WVc92Wuvr4eXdQU+NMCC3LQgAYAoJ+DfkkIAEA/BDQAAKUQ0AAAlEJAAwBQCgFtb4qKikQiUffu3bt37961a9dp06apVCpCSFVV1UsvvdS5c+eQkJCIiIjdu3fz63/44Ye9e/cODQ2dN2+eTqcT3KfJOvn5+dOmTXvuuedOnjzJr7Bly5YVK1a0sPLk5ORp06a1cCcAdkUP9uXOnTseHh78Y61WO3fu3DfeeEOv18fHxy9atEitVuv1+vPnz3t5eZ09e/bkyZOhoaF1dXVarXbYsGGJiYnmOzRfZ9myZUePHi0tLZ08ebJer1epVEOHDm1oaLDibwngEHAEbc9Ylh01atTVq1d/+eWXnJycjz76SCwWE0L69u17/vz5fv36RUREJCUlyWQylmU7depUVlZGCGEYprq62rAT83Xu3bvn6uqqVCrv3btHCHnzzTeXL19ufplc//79DbNPxMXF/fTTTxqNZvbs2UOGDBk0aNArr7xCCDl+/PjYsWOHDx++cePGI0eOjB8/XnCdUaNGvfTSS88888ywYcP42t5+++3w8PCIiIi1a9fyT/Hhhx8OHTp05MiR8+bNa2hoaO2+BbACx7qS0NFoNJqdO3dGRUVduXJlwIABxveg8/b2JoTIZDKZTEYIuXr1akpKyhdffEEIuXHjhkKhMKxpvo5KpcrKynJycurSpUtqaqpGo6mvr3/hhRd8fX2NBzqmT5/+3//+d9CgQcXFxVevXo2Pjy8pKendu/f69esJIX379k1PTxeLxampqTk5Oe7u7keOHCGECK6Tnp6emJgol8ufeeaZn376SalUnjhx4pdffqmpqZk0adL06dPPnTuXlJSUlJRECFmwYME333wzZ84ca3QxQGtCQNuh8vLyPn36EEL0ev2IESNef/317777TqPR3G/9X3755bnnntu+fbu7uzshJCAg4MHrzJ49+/XXX9+7d+/y5cvnz5+/Y8eOSZMmJSUlvfHGG6mpqQMHDuQ3mTZtWlRU1Keffvr9999PnTpVJBJ16NChtLR05MiRcrm8sLCwmg9ctAAAAj9JREFUpKREJpP16tWLf16e4Do9e/aUy+WEEE9Pz7Kysl9//TU2NpZlWRcXl2PHjhFCkpKSMjMzhw4dSgiprq5u37695boTwGYQ0HZIqVSmp6cbt4SGhi5dulStVhsGIs6fP+/j4+Pl5XXmzJm5c+fu2rWrW7du99uhyTpubm78Ee7HH3/83HPP8UPeIpEoODg4JyfHENBeXl7BwcFpaWnffffdp59+SgjZvHlzenr6Tz/9xHEcH6aEEKlUavxcgusYH/vr9XqGYUy+z5RKpU888cTHH3/86L0FQC+MQTuE8PDwsLCw+fPn8wO4586dmzx5cmFhYXl5+ezZs/fv32+cznl5eXqjCQAE1yGE3Lx58/jx4zNmzDC03Lt3r2PHjsbrTJ8+fcOGDWVlZf369SOEFBYWBgQEcByXkZFx8eJFtVptXmpT1omKijp8+LBWq62vr4+JiSkrK4uJidm/f399fT0h5OOPPz537lyz+gmALghoR/H99987OzuHhIR06dLl1Vdf/frrr8PDw7ds2VJYWDh27NjQ0NDQ0NCVK1cSQgIDA43vpSu4DiHkjTfeMByxPv3009OnT79+/fqwYcOMn3Ty5Mlbt259+umn+cVnnnnm1KlT8fHxGzZsWLp06V/+8pfS0lKTOpuyzrBhw0aOHBkVFRUTEzN9+vR27dpFR0c///zzsbGxsbGxFy9eDA0NtVzPAdgMJksCAKAUjqABACiFgAYAoBQCGgCAUghoAABKIaABACiFgAYAoNT/A/t83ULQ4RwTAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","source":["* To which principal components contribute which factors? Does this corresponds to the expectations? What do you conclude on the relative effect size of different factors?"],"metadata":{"id":"HozASpN8IwXO"}},{"cell_type":"markdown","source":["# **Step 5: Differential Expression Analysis**"],"metadata":{"id":"w9HPy-w5JCq9"}},{"cell_type":"code","source":["%%R\n","\n","## Update design for DE analysis\n","design(dds) <- ~ 0 + group + tissue\n","\n","## Launch differential expression analysis\n","dds <- DESeq(dds)\n","resultsNames(dds)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"QpskTfzwI7Tr","executionInfo":{"status":"ok","timestamp":1718912112607,"user_tz":-120,"elapsed":48011,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"6ec4f84f-e1b6-42aa-dbb4-56f4f1241539"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: estimating size factors\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: estimating dispersions\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: gene-wise dispersion estimates\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: mean-dispersion relationship\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: final dispersion estimates\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: fitting model and testing\n","\n"]},{"output_type":"stream","name":"stdout","text":["[1] \"groupVehicle.female\" \"groupTamoxifen.female\" \"groupVehicle.male\" \n","[4] \"groupTamoxifen.male\" \"tissueHippocampus\" \"tissueRetina\" \n"]}]},{"cell_type":"markdown","source":["## Extract results for the different contrasts"],"metadata":{"id":"PUhbOPS0KABV"}},{"cell_type":"markdown","source":["## Direct male vs. female comparison (in controls only)"],"metadata":{"id":"zRhsv59kJ3bN"}},{"cell_type":"code","source":["%%R\n","\n","res <- results(dds, contrast=c(\"group\", \"Vehicle.male\", \"Vehicle.female\"))\n","summary(res)\n","res <- cbind(res, rowData(dds)$gene_name)\n","head(res[order(res$pvalue),], n=10)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"ayH3iwWqJW8y","executionInfo":{"status":"ok","timestamp":1718912144650,"user_tz":-120,"elapsed":2358,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"3fdaa435-babf-452e-83c4-05dbafac8019"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","out of 25314 with nonzero total read count\n","adjusted p-value < 0.1\n","LFC > 0 (up) : 19, 0.075%\n","LFC < 0 (down) : 46, 0.18%\n","outliers [1] : 45, 0.18%\n","low counts [2] : 5392, 21%\n","(mean count < 20)\n","[1] see 'cooksCutoff' argument of ?results\n","[2] see 'independentFiltering' argument of ?results\n","\n","DataFrame with 10 rows and 7 columns\n"," baseMean log2FoldChange lfcSE stat pvalue\n"," \n","ENSMUSG00000069045 1296.4534 10.289768 0.3405561 30.2146 1.52292e-200\n","ENSMUSG00000056673 610.3640 8.736114 0.3096079 28.2167 3.64787e-175\n","ENSMUSG00000086503 15993.1573 -9.743607 0.4468543 -21.8049 2.08535e-105\n","ENSMUSG00000085715 986.8578 -8.190900 0.4309121 -19.0083 1.45637e-80\n","ENSMUSG00000069049 748.8289 11.095832 0.5970270 18.5851 4.23872e-77\n","ENSMUSG00000068457 497.0480 10.134968 0.5745282 17.6405 1.20378e-69\n","ENSMUSG00000035150 3743.6424 -0.656745 0.0388829 -16.8903 5.30097e-64\n","ENSMUSG00000098743 160.1305 -10.086746 0.6175810 -16.3327 5.78006e-60\n","ENSMUSG00000099312 66.7999 -9.216776 0.6228512 -14.7977 1.51541e-49\n","ENSMUSG00000098262 44.8669 -8.584013 0.6358488 -13.5001 1.56195e-41\n"," padj rowData(dds)$gene_name\n"," \n","ENSMUSG00000069045 3.02712e-196 Ddx3y\n","ENSMUSG00000056673 3.62544e-171 Kdm5d\n","ENSMUSG00000086503 1.38169e-101 Xist\n","ENSMUSG00000085715 7.23706e-77 Tsix\n","ENSMUSG00000069049 1.68506e-73 Eif2s3y\n","ENSMUSG00000068457 3.98792e-66 Uty\n","ENSMUSG00000035150 1.50525e-60 Eif2s3x\n","ENSMUSG00000098743 1.43613e-56 Gm27927\n","ENSMUSG00000099312 3.34686e-46 Gm27733\n","ENSMUSG00000098262 3.10469e-38 Gm27520\n"]}]},{"cell_type":"code","source":["%%R\n","\n","df <- assay(vst)[row.names(head(res[order(res$pvalue),], n=10)), ] |>\n"," as_tibble(rownames = NA) |>\n"," rownames_to_column() |>\n"," dplyr::rename(Gene = rowname) |>\n"," pivot_longer(cols= colnames(assay(vst)),\n"," names_to = \"Sample\",\n"," values_to = \"Normalized expression\") |>\n"," left_join(y=as_tibble(colData(dds)), by = join_by(\"Sample\" == \"sra.sample_title\")) |>\n"," left_join(y=as_tibble(rowData(dds)), by=join_by(\"Gene\" == \"gene_id\"))\n","ggplot(df, aes(x=group, y=`Normalized expression`, group=tissue, col=tissue)) +\n"," facet_wrap( ~ gene_name, scales = \"free_y\", ncol = 5) +\n"," geom_point(position = position_dodge(0.2), alpha = .8, size=2) +\n"," scale_colour_manual(values=myPalette[1:3]) +\n"," theme(axis.text.x = element_text(size=10, angle = 90, hjust = 1, vjust = 0.5))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":497},"id":"Jzj_pab4Jekm","executionInfo":{"status":"ok","timestamp":1718912175353,"user_tz":-120,"elapsed":1714,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"f0e61900-d6cd-4d35-f466-de504846ff22"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOydeXxU1dn4n3PuMnfWzCSThAQSEpYkyKoIIQTZAoIgFVEpBbWv2rpQ/Vlbpfpqf7ULreLbKtBX/bXWVinWWllEEEXZkSWAbAqBAAkQtuyTzD73nvP742IMcyczAyQzk3C+n08+n5mb59773Lkzzz3nOc+CKKXAYDAYjMQDx1sBBoPBYISGGWgGg8FIUJiBZjAYjASFGWgGg8FIUPgYnKOhoUFRlBic6Eqx2+3tfsza2tp2P+a1I0mSyWS66t0T86Lg2u6g0+n0er3tqEx7cY1fy8S8WRzH2Wy2eGvR+YiFgXY4HH6/PwYnulI6wkDX19e3+zGvHavVei0GOjEvCq7tDrrd7sbGxnZUpr24xq9lYt4sURSZgb4KmIuDwWAwEhRmoBkMBiNBYQaawWAwEpROY6Dfe++9HTt2xFuLDmHr1q27d+92Op2PPfbYrl274q1O+9AlL4rBiDGxWCSMntLS0kWLFuXk5Pj9/uzs7B//+Mc6na4t4aqqqkWLFun1erfb/fzzz1ut1liqetWUlpYuXLgwOztbfXvffffdcsstAFBWVjZw4MC8vLznnntOp9N5vd5f/epXer2+ZcdEvt4uc1Gffvrp559/Loqix+OZOXPmyJEjQ4o1NDQsWLCg5Yo2b968bds2ALhw4cK0adNSU1PfeuutzMxMAHjiiSdEUWwtTAh5+eWXOY7jef7ZZ5/lOK6zXJdOp2v9dujQoa3vndPpTKhb2TXgXnzxxY4+R2NjY5RhdmfPnuV5/he/+MXEiRMvXLiwadOmnj17vvjii2VlZZWVlXl5eZ9//nlTU1NaWtozzzwzePDgCRMmTJ069dixYyaT6fe///2YMWNEUfzjH/9ot9tTUlIini4amSulrq4uvMDZs2cFQXj22WcnTJgwYcKE1NTUVatWnT59euvWrYcOHXI4HJMmTZo1a9bp06dlWa6vr1+8eHFpaemRI0dycnLGjRvXcr1r165t+ShKSkrC/84lSTIajYl/UVd6E6/lDrpcrqAwu7KysuXLl7/00ku33nrrmDFjNm3adOONN3788cfLly8/duzYmjVrzpw5o37sgUBg4MCBLVc0bty48ePHjxkzZu/evQ888EB5eXm/fv0eeeSR8ePHm0ymw4cPtxbeu3dvQUHBgw8+WFVV5XA4evbs2Y4XBaFuVntdV0FBQeu3Doej9b0TRbH124yMjNY6cBzHTPZVkFgj6NbcfvvtDz/8sNFonD59+qhRo1566SUAuP/++1944YUDBw786Ec/ys/Pr6qqevLJJ5OSkm688caKiorNmzdPnjz5zJkzeXl58VY/HF9++eXZs2fV1y+88IL6YsqUKUaj8eGHHwYAWZaPHTs2ffr0lStXjhkz5tZbb62oqMjNzW19vYMGDWr5KARBiNvFfEu7XFR8b+Lu3bsnT57M8zwA6PX6Bx98EAAwxj179pw9e/bPf/7z0aNHp6am/upXv1qwYEHrK1J3X7Nmzfjx4yVJcjqdpaWle/futVgsc+fOHTp0aGvhzZs3jxgxAgD69u178ODB0aNHd5brCnobdO8QQq3fdvRFXSckrg+aUooxrqurS01NBQD1gczzfFFR0ZEjRwYMGAAAPXr0WLhwYW5u7hdffFFSUrJhw4aDBw+qv4dEpri4+Hff0vK9b6GhoeF3v/vdAw88kJycfM8995SXlz/55JNfffUVXH69QR9F3GmXi4r7TSSEAMCePXvmzZv3yCOPnDp1CgCSk5MBQBTF5ORkURQDgUDQFQEApXTjxo1jx44FgNGjRz/99NMvvPBCWlra2rVrtcIthPHgJeB1ad+2vnfat4xrJ3EN9MqVK4cNG2az2dTA+6qqKgBwu93bt28vLCzcsmXLP//5z/379wNASkqKy+WyWq2SJK1cubKkpCTOql8Dzc3N//M///PEE0/k5+cDQFVV1SOPPPLaa69t3Ljx7bffbn29rT+KeGsdgegvKr43sbCwcPXq1V6v9+abb16wYEFubq5qs7QEXREAHD16NDc3FyEEAKdOnVIzs4xGoyzLQcJ5eXlHjx4FgLKyst69e3ei6wp6G/QDDHobg+u6Hkg4F4c6Uw4EApmZmY899lhtbe2CBQu2b9/ucrkopX/9619nz57dv3//p59++vHHH//rX/+6cuVKn8+nzqknTpz4wQcfqIszicy2bdtOnz6tvr711ltb/+vDDz+srq5+9dVXAeC2225TFOWdd96xWq35+flTp07905/+1HK9rT+Km2666VoSBduFdrkoiOtNzMvLu+OOO5577jm9Xk8I6d+/f25urmpMgwi6ouLi4srKyu7du6v/tVqtr776qsFgoJQ+++yz//73v1sLT5069eWXX/7yyy8NBsOcOXM60XUBQOu3EydObH3vnE5n0K1kXDsoBgX7KysrY5Pq/cUXX3g8nmnTpkUp3xFezmPHjrX7Ma8dq9WalpZ21bvH8qKu6CZeyx2srq5OzFTva/xaJuY3UBTFnJyceGvR+UhcF8eV8q9//WvTpk233XZbvBVhXD3sJjIYrUk4F8dV84Mf/CDeKjCuFXYTGYzWdJ0RNIPBYHQxrnIETQhZuXLlihUrlixZAgAOh2PhwoWiKPr9/nnz5mmjrBgMBoNxpVylgXY4HPn5+S1L7ZWVlTNmzBgwYMDSpUsPHjw4fPjw1sJ2uz0okxAhZDAYIsbiGAwGj8cTfhlTr9f7/f7wmYo6nY4Q0lZoUfuSnp6uPbuiKLIsh9lLFEUACL+UyvM8z/Pha8xzHKem82p1CKd0JLQX1daJWhPlXTYajW63+9rv8pViNpu1H0s0J5IkSZbldrmhHMf5fL6oVY4K7c0SBAFjHP5EUd5QNZM7vAIhb2hsMtq7HldpoG02W+vy24MHDwYAWZZPnDgxZcoUdePOnTvVUJ7JkycHBYEhhFRzE0E5nud5PvxPl+d5QkhLnGYYmRjEqwCA9jEgSRKlNPzjQf09h5fhOA4hFPExw3GcVuYafx4hT4oxDq8MxjikMlrdZFlWMynawmg0KorSvo/YkAc0mUwRT6TX62N5Q7XU1dW9/vrrOp1Or9c//vjjQV/+kHc/mhsR8Yaq9UMiHofnee0NDX9/GW3RbouEDofjzTffnD17dovhbmxsVHN/CSFBBkL9SkW0GgghjuMiGlaMI3jSEULqocKLMRidgrVr106ePHnYsGHqhFUdHjG6JO1joJubmxcvXjx37tzWmayTJ0+ePHkyADQ0NDidztbyGGNRFIM2atHpdC6XK/yz12q1ejye8E91s9kcCAS0zgHmK2d0RnQ6Xctv58yZM6qBXrhwocvlstvt999/f5A8x3EY4/CpTBjjiDLqQCealCij0RibCWuX5yoNdFlZ2bJly6qqqubPnz9+/PiKiora2to33ngDACZMmFBYWNiuSoYjoHSRqZNMwvk0GTH7fBL/RkydOvVvf/vboUOHoFUDw4yMDI/HY7VatQ50jDGlNKIHn1Dil/0canOiiRCK5jgAoChKkIEO74RktMVVGuiCgoLnn3++5W1RUdHs2bPbSaVoqWn2r9h3cevxRkrpo2OyRvXprC0pnbJz+dEPt5zbQii5J3fmLWkdXt6sc1HprNx1ZseO8zsIJU/2+2lvS58OOlFF88mflr4KgAglP73hZ73MvTroRNdIU1PT9OnTs7KyFi9e3LdvX3XjzJkz1Rfart4ykWv9tX6Pzy6lIghhKCnQLy58vub0agA6Jn3c1KzbRSxqxTiO0+v14RcSAcBoNHq93qCJL8dxBoMhygtktNCJE1WWfXXhm3PONIuOKOStbWcyk3S9UjvlN+DTqk8OOQ6mSCmEkI9OrbSL9n7WG+KtVKLgVbx/+uZ/Ug2pybpkQumiIwvn3/QHk9D+hUc8iue1w6/aDXZKKKF04eE//WHoAgOfiN8onucXL15sMpkyMzN79YrwFGn0N6ypXHOgdr9C5aEpw+7OuUdrfHfW7Fhf9bldb1cUZU/dbh2nm9Jjaoepz7gCOmuiilcm2080chgBACAwiNzRi52ygBYFuvXiVh5dKuhs4Awnmk/EV6WE4rz7nMRJ6rgPAUic7qz7bEec6JzrrI7TtTqRdM5zriNOdO3Y7fb58+c/99xzP/zhDyMKrz/3RbnjqEVnsQhJXzd+vfViiNqHp5yn9MKlR5GIxc/OftrOGjOuls46ghY5pBAKALJYJaO6gMdskjIi7pWAIEAUvvPWKUCM/NW3Pul0HG8qX3buwy1nNhenj5qQMSFZF9xMxMAbFfqd01OhxNgxo1rtiQycPox8Z2HLxS12/SU/tYiFas9FrYzESYRS1fdMKS1MHRFDBRnh6KwjaIzQnMJMh/5LZ9IKr2l7wL7mHN7Q2tJ1Iu7tfZ/D75BJwK/4mgNNQ+03x1ujGNHgb1hctuhI/eFkXfLXDYfWVK0mNHjJN02fVmgf4ZJdCpU9smdoys2Zhu4hj3aNpOvTC1MLXbJbobJH8QyzD+um75SP/CBGpo0kcOlTlYmSJIboO1VoH+HwNQSIXyYBh79xaEqit7y4fuisI2gAGJGH1zj3K5QGaANH0Y7azaO6jehu6BEkVlnnOVbmEDh6Y3eT1ZCI1zvcXphlzSprKOMId2PyTWbBHG+NYkRF80kRifXeekVROMTtq983pfvtKdJlg2gE6K6cuwd5B51uPJ0ipgy2DcGoQ0YVGOEZ2XcP6jbkdMOpZCFlSHJHnSjGjE4fu73mSyNvUojsUTy3pIdYgs4wZPxm2PzDzd84Xc4brDd00COQcRUkosGKksqmGo/ipJQCQgC0KdB80XMxyEB/dbrptU0Hdan7FMPhd8/BA31/NDqzY0cHrVtWq6gJMuHDjArEfgUp/aLJDNYeP+hcaj5u0PaIuTxxgVBS768TsAAUKFAEWMeFSEnnEDcio2igZVBHJ+vzmC/KKBpoHhibqgCxIcOQ8erIRZWuCp/H38fSR8Ch21em6FImJ9+WmAWyr2c6sYF+d0c5TabfRQ1R2hRoCpLZeqwebLv9wmkI6ADh9yr+3teamWHowKmrNh1GEARZlsPX0FANaHgZnU6HEAovIwiCIAhamZj1vrsyMAKAAAkQSjFgkUMyDRGDXO+rW1P28brTn49OHz2229gUnT3minZuDLxhsH1Ic3NzvBVhXDGJOLCKBufZCzfs+gxTigAQUAAKgECTvLS14jy2HMG6Biw1Yl29rCgnmo93qGL0qohm3yiPH1KmQy/5qnEH3ACUAiBABBSZEO0qgkzlNVWrd1/cnaJLPlC//9f7X/STWHTnYTASgc46gub//e+bD53ZW5JEMAUAgjDihbyk/CAx5FMw76MUABAAKNhd4w0O42dEJKTfBmMc3t+iZgaHkakL1KjPDoQAKFaoInNykPyp5lOHGg4lSUmEEIET9Ly+OnCxr7UdepXxPG80BgfMYIwlSVJLHbWFWvgtfGkXQRAAQHv8IAUwxuFlGNc5ndVA41WrkqWkW9Z7d4yVgIKMYUTapKDFDVpf//uPf/mHwVkIEAClCADA4WdetismpN8mYu1T1YKHkUEUY8QhBJQCRkCBeL1uL3+ZfMAfIJS0ng3Ige/8Rddi3UL6nURR9Hq9EYu6+f3+8NeuKha+1KokSYIgaGXCP/YY1xWd1cWBb5uUobgLDzX0+8ZJMS1wpUzMDg7eJCtWKpweACF1CE0BA7p+YiTakeh9KVckU2QvopRgxPGIQwA9jFk9jNlBMulS+uDkIR7Z61W8XsU70DawhzErwV03DEZ70VkNNEj6QEPN4rlp1d2EtGpfo01Z8PVLHvmyUuLkxMmcc9X2Gj/FCIACAAU6KJnVZkwUjMh+s/5BiWbIlPYx3zC34AltpQge890N3Rt9DQ5/o8PfmCql8aizTvsYjCulsxpoun9/bYZe9BFMKSBATc16Xn/Gfaa1DGqo9xh4n54zNcuIIslLRWRt9DfES2dGayiFpaXnDx1NEc7fJ5362f7SiRY+RHiGw+/46MxKo2AUsGDgDZ9Vra1lqwiM64ZOOxg5eJBL4SmGS8v+Ph8hRECXx3hmZfmPHkGEWpsCVofi0Rl8RkGbq9bROPyOioYKCaTuLP6/FReb/TtPNCQZBADgOWQUuOPV7gGZwVWQan01shLwyh6EEKGUx/wFzwW7FLdIu0Z/48ojKzad3TjMPrwwtbCPuW+8NGkLdX2yNeqKrnZ7a3ieRwiFl1GDQcPLtBwtyAGVmJH4iU9n/dSoPTW1xjdkf7NPhykCN4cGWAdlGbNby6C+eUmewPDdjX4BA4UAhyn25msiPTqUgw0Hf771qbeO/OVP3/zPylPL20pG9yreE47jFzznY6lbfFEIgdbJOwiUUKW9Zap4FS9CGAAwIJ/sJSieFcA/PrPqQN2+FCmlvKn8z4cXs+E8o0OJxQhaTW9rvQVjrLYljLiv2k5Qu13u21e5ePF7H1/sft57IU10iva+Q6ZI4uUdUjxuIklTP62xOJX6NKOYaxt308/thtRru5orQKHKW8f+kmpIBQoSkb6s+bKftb/2CVHlrnql9CWJ08tELkwtnJF9N4877cwmajKSdIU9DDWHjxNLcq3O6PIrfdNDhGRIWGcUTB7ZgxAQSo2C0cDFrQRoU6Dpq7q9KfoUSikC0POGCufJOA7nQxKyJ2HEfoMAQCM1WlQjC6NJs9T2JGQN566OWBgC1Ry33hJlT0IIZdwvMXWqc+8BDDD4gHIjcb5116RmNxd0wEB1DeqWboT0KecQPQfkk69M9/a8piu5QpoDzTziW+rViVis9dXkQ7CB3nx+Y4pkR4AIIV/VfZVjyh1uj11LmniByo8/8NuHPVjwewNnSqZmPv24QQzxfcg0dAegGaYMWZE5wI5AUw9NuZWYISChdTIUBRKysD2D0V7EwkAHAoGgNjlqD56IDedNJpPP5ws5guYnT3x369kh1ccoL3ydd/ORlNxJFiHogEpKMvX5QBQBY5ADePodQQJmc8eG3FkEi0xluBRCAn7iS9d3C5KhQEtrS1sVhBQvhioI2fUI/PhhrNcbfD6zSbTt+oL7ughGFQcLOV34r2/94svjW4cZd4xIGZk1bkzGOImLWydJPa8f023srvpSPSf5ScAtu/MsMfWYMa43Ou1UGqE7n/r+Cx+V6wU+QMgdA1MHdg+2tvyMO+WqKrJ9B8UccTmFmXfHWEeM8GMFc98oex0BUKC3Zk7uYw5u14QADU8tPNF8XJ0o+JVAok2ZO4RAAPx+6nQBxxEAGgjQAwe0Blp57z2yZWuaLmXmQe6urRe5J1JwrziXAL0963u97X1ONJwwc6bC1CI9z5JKGB1IpzXQAL1SDe8+OMhNdRzxG0MuLCclcc8+yx05YtBLpE8fXzzaVtZ56wVO4BBPiNIUaFKoom3KWZxWvLu2VOIkmcg3Jt80zD489nrGGo4DjwdEHQAAQoAxNITI8FTeex91S1dfY5OJHj4CkybFUk0tPOaLM0YNSxkePpOQwWgXOrGBBgAeo2yrweVqc3EDCTwMGsibzYFAAGL+i5KJ/J/K91MNaZRSQsiB+n2DbYP72wYEieWYchfesriyqQICkGXM7hpliMNDFYJMJup2gxp9ZdRDbo5WDE+eRPftU4M9qKLgDnZJMRiJRte3BXHEKTtbx2NwWGgMVQmEAi1vPPZN/ddHHEfqffUxVDBuIIHHs76P0tLAZMYpycALaESIdVE8biytqQG/j3o9tKYGTZ4ce1UZjDjSuUfQCY5FsARIoCX22Sd7s0zZWrFtF7euOvORSTDJRP6kas2vhvw6RdOarwvSqxd1NIHXQ41GPHQozgjhXMaFw4W3/kJKdxttNrmwULYmXdEZzp49+84771gsFofD8cQTT1gslnZSvWuiUEUm8vUQ4tmJYCPoDgQj/PP+z9R6ah0BR4O/fnrPO7ONIQz0h5UfWEQLRphHvEWw7K/fF3tVYw9ZsAD1zEb5+VxODq2oUDZtDimGsrLwjUOEoTdBSvKVnuLgwYPDhg17/PHHc3JyysvLr1nlLguh5ONTqx76/IGn9zy17NSHPoW51xMF9rTsWHqacv46/m/VzmqRiCFjZqnaauBbMEI+JUL0YVcgEKCI+64ZDi9AfSjfzrlz/h/MQXp9A0LcuHHoiZ/AlZTiHDNmzAsvvPDVV181NjbOmjVL3ejxeOrr6wFAFMWQqVIY4/AR+mqd64gyECnSX80PSIQMjp01Ozad32jX2xVF2Ve3V8LS1Kzb460UA4AZ6CAIIStXrlyxYsWSJUsAwOFwLFy4UBRFv98/b948SfouAnfjxo2ffPLJK6+8EvGYHOLskr2tRX8EaGy3cfsa9gpYBABXwK1tO9AFEQQ8dizZvAkaGhWrFSGK8kLU4Jff/wClpQHHYY5Ttu9A2VncrO9Hf5KPP/54xowZo0aNWrly5ebNm8ePHw8Au3fvfvHFFwHg8ccfv/POO4N2QQiZTMH1QLQyPM8bDOESGlUDHbHTWMTyF7HhtOt0S7yggMV15z5jBjpBYAb6MhwOR35+fmZmpvq2srJyxowZAwYMWLp06cGDB4cPvxQA19jYuH///tb2+lqY3H2yThTXnfmMUPrDPv+ljZXukmAOKX4/Qog0NiK9hGw2rQxZ9TGkpzu9sl+RMWDp5Kkr8iK7XC7V2ppMpqamS/0qR48evWHDBgBwOp11dXVBu9hsNqfTGT6b2WKxtGPBfm2rQLs91oHwek5PKOGAAwAKUJgaXFqdES+Ygb4Mm81ma2UpBg8eDACyLJ84cWLKlCkt299555377rtv4cKF6luXy7Vjxw4AyM7OztAsdnEcRykNM5jS6XSzkmfPyp8dPrVS7ZAUflCmZsZrZbS1xILmCm63e+HChRzHcRz31FNPdXTtMRqQlfUbcI8eIMu8KMpeL9m7l+sb/GTibp/SvPoz6vUJCAKcsPw8nu6WrYZov7RTp0596623tm7d6nQ6H3/88fa+iLhxRYufClW+qPr8vOec3+/PS8oPGWU/IrVow4X1SToLIdQZaB5mH9ZhujOuDGagI+BwON58883Zs2e3GO5t27bl5eW1HuY0NTUtX74cAMaOHZubmxt0BLXSY3hXo/rf0FVHWh0HIRR+2K66R7Uy2nT5oLnCunXrRo4cOWbMmA8//HDHjh3FxZqs63YFcVhtidIcANnnF2W/DvHaUknEZJIaawniKAWRwxct6ftOO8YVRBvikp6e/vzzz7ev5omAuvg5ceLEpUuXlpeXDx06NIzw1otbPjv3qVEwyoq8r/4rHacbZAvuWZGuT58/7A+Hm79pdjX3tw7opilIwIgXzECHo7m5efHixXPnzk1O/i6EYM+ePQBw9OjR06dPf/bZZ5MmTcrIyHj99dfV/9bWBtefNJvNgUCgXWbEoii2TNVDIgiCyWRyOBzafYOG1UFzhcrKyptvvhkAevXqdfjwYdVAL1269NSpUwDws5/9LOiAGGOMcXh3rfq0aEvG88jD1W+904gkDojocqww9f0vnV4SLnuMOZzuk7YeesVPAQU4Pvvs0bNNkyL6iLs8IRc/P/jgA4/HY7VaJ0yY0Fq42l9tFIwKVRBCFl3SCdeJwswQHgwTZ8pOyfZ4PGHOqw4gommZKElSUD3o8IMPRlswA30ZZWVly5Ytq6qqmj9//vjx4ysqKmpra9944w0AmDBhQkpKyqpVq1qs1S9/+ctJ8c487ghaelrb7XZZlhFCQbWuWmhru4r6m2xLpvaOe97Z29zz4nG3zri1T2HTeTq8yjE4+7JIZ6IQwNiNJQQAhCAAScDhT3o9EHLx8/z58y6Xy+fzBc3VZBqo9dS6ZBcFauZNuI24EdWpde3hKyqqW+/KrooRCmagL6OgoKD1pLioqGj27NmtBVqPJX/729/GTrMOpnfv3sePH+/Ro0d5eXmvXr3UjS2PH+20QO3qHX7ApXb1bkvmYpN3Y8+bIOemS++98vGLjXmpl0Ui4rw+5o8/c0pGSonV23y0743TUsTWB7yWrt6dl5CLn08++aT6IuhmNXocTtnFI45S2uRvlgOy0+nUHhNxqFqpdjQ7so3ZbdVQ5ThOFMWQu7dGkiSXy6WtB91ei+rXFcxAX6cEzRUmTpy4aNGinTt3GgyGmTNnxkABb0BR47/VaqwUwOULdpRzd0xrblbK1u2UKezvdZOtcOiNWSwb8MoWP486ylIlu1fxUkoNvCFAQwSoOAPOlRUrDtUfBEo9iveXg3+VKsWurwUjDFdpoOMbA8C4doLmCgAwb968WCpg1PEIAQJEKMUIAUCKNjwD4w/tg3cV5WAEAMAfb7jnpvSs5Ou9wucVLX4WpRUdazpmFIyKoihUNgkhCk5tq95a1lhmFs2Koki8fuP5DTNzryDenNFxXKUlDRkDMG/evJ49e6oBZwxGeLKTJb3AAaUcRkBBEvDgrOBSG56Asutko4ARjxGHkUzop4c7tgegK+A64zztkd0depZYUpRWXOer9ypej+xt9DeOTA0Rn9Pgqxe+LcGBAX9ZvS22OjLa5CpH0NHEAOzfv//kyZMAUFxcHOQrbCsaTItOpwu/2oAxFkUxmiA2RkKh4/Fvvtf316uP8xgrhDw1MTfFFJxT55MpINSSCY8A3P4OXCHcU7d76e5/8ogPKP45ve/vGuHAPY09Xyp8+VjTUdkv90u6wcCHSIBMkeyBxm84zAEAocot3UbHXE1GaNrfB90SA1BZWVlaWgoAhYWFQfms6vp+xCRXNRE2vIFW827DO1US3OXiJ/4Nles/qvhoeMqwIck3agtGd1XyuxmXPjSY05upz0VpiMZmVj0vcIgolOcwBaJQWphj7SBlmgJN/zz+rt2QSgihPF16ckmeJS9JvLL6eYmJTWcblXmLNmWxhVvSR9f4ag7U76eU+hTfuPTxsVSPEYb2MdAhYwCmT58+ffp0AGhoaAj6cmCMbTZbmG+MirpkHLInYcebDt8AACAASURBVAtWq9XtdofPzW0rEjliqYTY8NnZT3fV7rRLKeXN5Xvq9jx5w1M5ppx4KxUjEAKbUWzwu9p6Cv/hzvznVx5DAJjiu29KHdGrowx0tbda5HTOgNOv+HnEi1i84LnQloF2BpyY4i7TWkHP6X+Y9191pK7R0dDd0INVHE0crvJOxD0GoMtAgX5x7nO1aSwCZOJNZY4j14+BjkheuuG9Hw3yIT1P/RLXgaG1VtHa5G8iQNQu7BzCKVKIAqdVrqqtp7fsqd4dUAL39b6/y/QnQ4B6mnsmKV1hxtCVuEoDHfcYgC4DAhT0no1fghA4nGrVu1wk/DzpGvEpPh7xPupFCFFKORC9sg8un2IRShZ8/YdUQ5pVtBJC3ju5NNPQvbuhe8dpFTOqvdXfVH/tdDv7WwdkGbPirQ7jEswWxJ/vZX/v83OfGwQDoaQ50DTQOijeGl2P+BSfgTekiMk+2c8j3k/8XhLsE2sKNPFIAAoylQFAzxnOuE53AQN91l214NDLVp2VEPpZ1dof5z9yg7V/vJViADADnQiM61aSako/7jgGChqROiJdnx5vja4L1OXllrfZlmwf9ZmxmRcEQkiz3NzT3DOoon8STvIT/6nmU2oAt54zWXXWtqr+U0pD/qu1DMY4vExs2F1TapOsPBYUUKw62/76/cxAJwjx/3IwMMJF3YqKuhWFL5bEaF+CykoYOeNzQ57fWrPly7NbC9OKxmaOM+mCqzJhDitURghhQBQ4P/FZJEvIIM5oylYkTkcVH/Eh+t2C566anbN7zYmjPowWmIFmXKcQQoIKcHcTuz084JHZOXNUZ7e2PHeDv0HPGQyiwSf7MGCMuFOOU5liCBeHOi4OX+BbNeJaGbM5RLJfh5Jjyv2qfp+ZMwGAT/Hf1mNKxF0YsYEZaAYjWsyCWaGKxEk6rCOEuGWXVeyosL9YMsw+3EVcq059RCktySgpyZgQeR9GTGAGumNxBpyfHl/76am1hfYRI9NG9mTxc50ZHvH35MxcfmYZjwRC5ZtThuVZEq6BpNZnEtGXwgE3pefUuwrubnQ0hgnujqYkaYsOQQWgEzxZLGFhBrpjWXXmo6NNZSlSytGmsl21O/7v4F8n60JE1zI6CzZdcoDIClUoELNg4VD8PchBaBN0OY5T2/qE2etSszQxXOqWamSj6XLL8zwr2N8uMAPdgbhk557a0mR9CqUUAdJzxhPNx5N1XSS14TpEocr/O/pGujGNEkoI2Xh+Q7+kfr3MveOt12W01bsnfE8fQRAEQQgvw3GcXq8PLwMAJpPJ5/Np60Ffn8W7rxE27+hAMApKfaOIfeCdGYffIWABvr2pOixe9FyMq0aMLg6zFx2IntOPSr/FI3soUJnILtlVkFQQb6UYV49FsATId9mMfhJI1Xf6wva0slL506vu4tHOlxfQ8+fjrQ7jMpiLo50JmsfNyv9BdnX2mebTBs44pvtYu2QPuZfq1ws/B1T7IYSXUZeDtDLX6AHUuh15nldrDYZXJuS+IY8fviRWUFJJvOAx/2Dfh9458Q8dJwUU/+j0Mb3NfeKt1LXhdAX+60GUloYyuvk3bKK1tXjeMyiKW8aIDfH/0ncxtMkm47uXXKqlp7TZtzv6rt7hZdRWgVoZ1g6uvRiSfOPAjEGVjRUS1XeBJG9y9CgyGEENseA5Zcs2NHMm6tvJnzpdCGagGZEJWaWIUhq+epE6go6mwlEgEAg/gqaUyrLcocWSosemsxltxohrZZ0DngdovVBCkciGzwkE80EnBIRSwtrUM2IO7leAi0eCzwcAxOPBY8eiLFbKLoFgI+g4E1DIiv3Vqw5UA8D3BqXdeWOawLGnJiNWiCL3k7nw0SpUU6PPy/OOHwcsoySRiIWB1iYRRV8mRpuSFARCCGMc/lDRyMSLzw/XrT9cl2bWAcD6I3UmHTdlYKcPDGB0JqxW7of3C4KgNxp9jY3x1oZxGbEw0G2lFV1dSlIQ6vp+eCOuWudoThd7qhq8evHSA0wv4jMNnvjq05VYv379zp07AaC6unrSpElTprAaQIxORiwMtN/vV5TLmjFjjA0GQ8RlFqPRqE1JCkKSJL/fH375SBCEkD0JTabgepKxR+BxyxOIUsr8G+1ISUlJSUmJoigvv/zy+PGsEWobyDL5cnugutpfkE/790fMxZFIMB90x6IQeqbezQM1tTF8H9XHuv5Irc2IAKDBFbilry2m+l0HrFu37pZbbmkJNCwtLV28eDEA3HvvvSUlJUHCGGOTyRR+0sZxHM/z4SMXo4kBVx19Vms86+FRQsjCRWTDJkXSNft8MOU2bu5jcdSHEQQz0B1IdZPvw68u7j3dpBA6Lj95zvAMXjNA7ptmfPmugq8veIHSARlSdysLWG5PKKXbtm373e9+17KlT58+TzzxBACkp6drA8bNZrPX65VlOcwxDQaDLMt+vz+MjGq+w88RRVHked7tdgdtT0qK0Lm1PV035eXKus+RzYYQQpKkLF+J75yOMjKu/oCMdoUZ6A5k9aGaI+edNr1AALafaOiZrB+bH6KUXXerLq97MkRKVGFcBeXl5dnZ2a2XKJKTk4cPHw4ATqdTa0CjCbimlCqKEl5GFEWIFAOuFpm7iuDu6F039Nw58vFqn9tN+veHcWNBM6KnjY1I+M4IUJ4DhwOYgU4YmIHuMAgR3lv6672fAELbh03aWHj76Xq2ABhrzpw5k5mZGW8tOoQg182WLVv8fr/RaBwwYIC6hdTVuWbfi1PtMi/ImzbzlZXiE48HHYTe0N/l9iCTGSEElILXK+XlgS500VHVb6Nr47+tEUWRlRttF5iB7iiUNZ9M/eYLhecRwM37N7o40Tzo/ngrdd2h9TJ3DbSum7Vr1zocjoyMjJtvvlnd4tu3n7NZkagDAGQ2B/79H/PjP0F6/WUH6tGdW/Ra0+P/h/I8UmTb39/mbW2ugqg9uqIpG6A14uGX+hltwQx0R0F37DA5GgKAAQEmSlZl2eBQ/g0AgMZG0tCA2bySETVa180f/vAH9UVtba36gjQ1KQSQoqgjXwK0qa4ezJrIpbw8bt4zuOqsNHCAK6sHOBxtnZTjOKvV6mhbQMVutzc3N2vrQUcz9GYEwQx0R0HPVFGe4xGmFADjm4VmUdRkyhCi/OUt8p//BDhOHD8O7r0XenT6+juMGBCN6wbfOAQ1N4GkAwDq9+HbJoewzrIs//FVumM70Umu1R/D+BLuySeAuSMSBhbz2FHgrB5IURClHKKYKLhHD60M2bxF+fhjYrd7zDbHrr3efy6NvZ6MzkhJScm0adMiCGVmcj96iFZUKIcPI7OFm3GnVoQeK6ebN3sEfY2HnHBj54pVrsqqDtGYcVUwA91hjBgBySl+XnRRrl6yHO+RpxWhJ04oonSqzlvT7Ktxyc6Vqy80dokaaYwEgFZUyH972909u65H75oLdSdff1dWgh3BtLk5gPBFh88TUAQOeRRYv7syHsoyQsMMdEeBB/SXm5o4j1Pn9xn9rmVe+77TTUEyyG53N7ms3maLq1Hv92CAdUfq4qIto+tBD33t1xtrnAFvQHEryPLl5i92VQTJ4Pw80uxSkwcRpaLiX9mgDyissGKiwAx0R0E+WXvenHY+LedCt+y65IzhJ/ccPu8MkkE3DjHXnje5HCa3M6XxYumQ8Z6AEvJoDMaVQg0Gn0/mvnUoc4i+f0hTC8lqPfrT59Pqz6fXnnXrzW/P/IWfFzBzQScMbJGwo6But4wwppQSAAAiK3oheJGQ7NzVnJHlcgcQUXyC7uZ9GxwPPRwHXQHOnj37zjvvWCwWh8PxxBNPWCyWuKjBaEe4wkLR3SzoTJQTRL97c+GUon7BhRJpIFBwuLTWmEwFweqoGXBwa8+5T3DMQicMzEBfBiFk5cqVK1asWLJkCQA4HI6FCxeKouj3++fNm6dGgLrd7oULF6odAp966iltMVUV3KeP7dNN9UgAAFHxVwmWG5LEYCG3GxDilQAiRMYcRaAT4vPbOHjw4LBhwyZOnLh06dLy8vKhQ4fGRQ1Ge2I21b77/oZF73dTPGe799qV0f8HqcHNKunRY8L2L1PTkpw+mVBdceVefRoLWE4gmIG+DIfDkZ+f3xLAVFlZOWPGjAEDBixduvTgwYNqivC6detGjhw5ZsyYDz/8cMeOHcXFxSEPhabdvvHTQyUH1wOg7f1HHxx5m7nBV3S5DO7Z03T+jIR5ALB6m470HlLdFK4KRMcxZsyYF1544auvvmpsbJw1a5a68bPPPrtw4QJC6K677gqSV9OU9UFZD5ej5jWEl1HFJEkKX58IY6zT6RKhb2znIrd3xi3//fCuymYJ4YdShBG9NIWZPB7EYYyAwwhThHie87Fl6gSCfeMvw2az2VplUg0ePBgAZFk+ceJES0mayspKNVmrV69ehw8fLi4uvnjx4quvvgoAI0eOnDRpUsvuq0dM/6rkbgzUzwmIUFEnms3m1qfzuVxOvUnnaqYAfkHXq+roYb0uSKYF1Sa29V8VjHFEmZB8/PHHM2bMGDVq1MqVKzdv3qxWeKitrT179qx6au2JQm5vjZpGEWVbhohVv9uaqcQeWek07cloWVmv1WvyKPDdM+V+07QBziivL3G6zng5zGGOUtzs2uo03BYXXRmhaB8D3YU9mA6H480335w9e7YtVAqsWhNHr9erg+ucnJzWtW/mjMhatvecRS9QCg0u301ZlqDKOP6vvxF9Hh8vAgCiBPv9AzOM4avnRKy/w3GcViailXS5XGp1bJPJ1NR0Kdpkzpw56ouW5LQWBEEwGo1OZ/CyZ2swxqIohpcBAJ1O53K5wqcC8zzv8Xi019WO3crpkSN09x631UqLR0JKSkiZZq/84d4LG47VUwJzCjNuG5DQvW/o+fOBx36CUlMVnld27oSLF7mnfhokg5KSDjz3e8f7K4aW7dw3cNTOG8cf3lc7+cbuLFUlQWgfA91VPZjNzc2LFy+eO3ducvJ3Wdq9e/c+fvx4jx49ysvLe/XqBQAWi2XGjBnqf1vbsokFVgGTKodMCSnM6Z5t5YPKp8kBP8C3wxoKCMHXVQ2DewQ7CltACIWvYCkIgiiKWpmIhmzq1KlvvfXW1q1bnU7n448Hl9Tp8tCt2wIv/hpZrW4A8uqrwrvvQlaIxKKV+6v3nGpKM0uU0g/3Xky36G7KTtyxCN23H1ksao9BJEnK6jX4xz9CmiYVtd17vz96zp+HfR8hMIocpeBXiI5PlPnKdU77GOiQHsz9+/efPHkSAIqLi43Gy4zOFVVdieidFEUx/Agx+m6EZWVly5Ytq6qqmj9//vjx4ysqKmpra9944w0AmDBhQkpKyqpVq+bOnbto0aKdO3caDIaZM2eGOy9GJQUpZrM5ZD8XAEB5eW6jWWp2ACC3wYQV4vTHZ4kmPT39+eefj8up4wXHcS3+cc/OXVxaGiCEMaapqWjDBunRR7S7fHa4Vu0eiRAySfzxWl9xfmgPu+ouD+9/53m+tQ7tD4cBvvvtUEpRqB8Cj6HRIwsYIQQeP+mRLDHrnDi0j4EO6cGsrKwsLS0FgMLCwqDWElH2JEQICYIQTU/C8A7K6N2XBQUFre1UUVHR7NmzWwv87Gc/A4B58+ZFecDw4HFj+cWv1yR3A8xJPvfqsXdbpERsnNglURSl5anpX/MJ6pbu8sp+ApgSQ3U99YSqDUspUQjHc5TSgKLoefCEFPv2K9fWf1XUAYpWJmg0c9XgoTfLjU1IEEEUqduFp98BoR4GfoUm6bHDrVAEEo9rnX6vTCRmoxOD9jHQIT2Y06dPnz59OgA0NDQ0Nze3lscY22y2oI1aVA9meO+k1Wp1u93hPbNtjWHjXl4LpafTf71/8u8rai82nOieby4ePp219I4H/JwfNCxb1aBwGCO9x/VGQ9IjXtkkBf86nhdOnPpkp8DzpzJy1ucMH6kNikgo7CnCkn8oH63ifH4xP88/cUJbgg6PIvAYASgKEEp0rDFmwtA+Bvo692BeC5bsjFEvPFrjxaMAUvWU5QjEBfn7szbvOj3mm80Y4PNb7irvN+zAWWdx78vsL9m4qc/f/7cnAUJp4fFd3x+aYTQNiZfCYbhsAN6vH/Trp04xhTZ6dEk6nVHkfTKhAASohLFObxC4EN9D1TMZzQDfYDCEn/gyoqR9DPR16MFsR3gO90kzAmt5FT8Ckn7lyLu3lXwfCQIhBAcUrybnXlmzhjqaeJ5DCFFZRpvWw4xI9eTigfZbJEmSIAhtfbuoEkgy8IQABRA4aPLILpczZHd5taZzxG+pXq93u93aetAd6G3vurC5DIMBRpEr7mP100vDRqdPzk8PHieic+eB5wEQAADP0wsXYqzk1VHd7F++99zS7aeOXQxtWAf3MDs9sl7kLHpBIXTqoLSQ1pkRF1iiCoMBAHDP0AyRu7j+aD2l9OmJuT1swSFGNKMbHCkDAEIBIaCpafFQ88o42+j9xbKjNoMOc7Bsj3/u2OzC3GC/eZpFN//OvM3ljQrgDDNXUhA6BpwRF5iBZjAAAJKNwgPFPX52+0Cn0xlyzRlnZRNKFIooAkRgSwNX5JXNmoXEhGL78QarXhB4hBCyGvh9p5u0BhoAeqboH+pmMRqNjY2acneMuMLmMgxGVFCvxydKAARR6hd0PMdtLW+It1IR8AQI/na5DwHaejzRFWYEwQx0l4JQcsJx/HjzcR/xxVuXLseJEzQQCHBigBMwkVMvVp6pDxfmnAgUdDM6PZdmA36Z3DE4Pb76MK6UhJ6gMa4Ij+xZXvHhwfqDQKlH8T4/6JfpevaDjBZ64QLdt9+bnEyHDIZQAfLUZOYoVRAAACbEKRrdgUSvzDksx1rvlpfsPIcRuq1/yvcGdwK/OaM1zEB3Hb6s3na48YhZNCuKInH6TRc2fD/3B/FWqnNADhyQf/ozMFucGJSGRnH5MkhJDpJBfXrX7z4kBrwA4OOlcymZdqOmwHeCgRAU97ZaDDqKcO9kQRLYjLmTwW5Y16HOVyuiS5niGOHt1dvjq08ngqz9DKelIYMeGU3IbldWr9bK8HdON8pej07vFg2S7NmYV+wPm+OaCNS7Ao/885slO878a8fpZ/5z5OuzEXJ3GYkGG0F3HVKltEONhzjgAEChpDg9dCcBhhby6Weo2yV3EBYEWlcfQigz85n7X+p/9pjbJx/J6CvYk3Wh0u0Sis3H6pMNvChwCKFko7DteMOA7ldcK5wRR5iB7jQccxz9uuGQ7JeHpNyUbczWChSnFV/wXThQt49S6lV84zJKYq9kQkEp/ctf/tLQ0OD3+5955pkwmWz4rjvpps0gCABAXG4ur29IsRGDsg8k20SeS6PU5Qv0SE701DiHR24pHoAQ2nq84dExIb45jISFGejOwaGGg/84/vckXZKsyBsubPg//X7ay9wrSEbHSbdnT7MakppczSPsI1J113vdpX379pnN5kceeeTUqVOyHK6XGDdnNnG6yPr1hFJh5j0weVJIsakDUzeW1UkipxA6Ni85qFhHAtIrVb/9RKOJAwAIKDTBOwwwtDAD3Tn4uuGQVbIiQBzirKL1q/q9WgNd463+7YHfWHVWSumu6h0P5f14gG1gXLRNEMrLy91u9//+7/9ijB966CF147lz53bu3AkABQUF2dnfDiczM+HXv6KP/8SQnOwXBUUJLsShkitJ7z82vNZNdBwkGyKXIA9f8VwQBI7jrqIpTPQzg1F9bOcbfasP1WCEintbWRRHp4MZ6M4BVf8QAAACFFBCpLrtqtll09kETlAUxaqzHajf314GGml72SEUcvuVyrRIRjxURBktsiynp6dPmzbto48+2rhxo9ousq6uTi1Tnpqa2rt3b1WSut2ev7zl++dSJ6LGp5/WzbxH275PRRCgt1kghLRlxFVUAx2+4rnaZDJiVXQt0c8MMELfH5bx/RHZgHkIJHrUNkMLM9Cdgwx9xsHGgxzChFCZBvpYQjhJPYoHo+/CckprS+f0vq9dzq4d5anGJfzoL8q+OQihiH1zEEIR++Zo6dmzZ319PQAYjUaf71LmzsCBA1966SUAcDqdLRXJ5bf+RlevhvQ0juPci//sNRrwmDFtHdZisfj9/vC9x9SanOELv6lF5rRV0SOWKQ85MygvL5dlWafTtW7P9u0BRY7j3DRCN0u190UYGbULQTS91dWvh3ZfxpXCDHQ7E3KwGeXoL4xMP+sN/678d0DxA6Ii1uVb87XCuebcvXW7TaKZAg2QwK3db73SIWdbaLt+CIKgNnINsxfGWK/Xh5cBAIPB4PV6w7dl0Ol0Pp9PWyIjfG3ioqKixYsXv/LKKz6fT22F0xbkn++1RHGAxUL3H4S2DXTcCTkzmD9/fkNDQ3Z29muvvRYkr379wvd6j0ZGFYumZ7xJ0/kw/P1ltEUsDLTWPLXj5DcamaubIF8d2gEjxpjn+fADSXVUEkZm26ktEicqNAAUiZzwZc3WGb3uDpIpyhxZWle6p2YPUNrX2rek50RJlFp0uJqL6eRwHPfTnwb3sQ4JnnQr2b+fUPApCpJlvdHQ0bpdCyFnBv/4xz/UF9oW7G0N1VujtmkPXyyJ4zir1drQEKGgh91udzgc2nrQNpst/I4MLbEw0KIoBk1gY9w09uo8fVeHdsDI83xbTWNbiNjC7ouqLyhQDvEA1CN7D9Yeui1japDM7trSU82nci05iqy4/M7PK9dNy/qe+q+rWIm6rsBFhb51X1wAPY/A5HasSx00nbblhY4/0c8MGJ2dWBhon88XtKISg8lva9oyke3VnTMGdDd0r/JUqa8RAIEQn0lFc4WB1yNACCEBiV+c+7zFQDMiMGbMy+Prh9YcVUTp67ybTzv0OWeabsy2xFut0EQ/M2B0dpgPunOQbepZ46/1yG6gIPFSH3MfrYyBNyiUqJmEFOhw+/CYq9lZcfqUyu59GvoUKBQhoAKF6ubQHfwYjFhyPbomOyPjM0oQpSm6FJtoBYCx3cZpZQpTRzh8DX7iCxDZ4XfcmHJTzNXsrJh1vFdWTtd7zzu8Zxu9dS5/RlKcO74zGMBG0J2FLGPWSyNeOdpcFvAG+iXdYBKCV8kBIFVK/f3wlw43H25yOQqS+nU39Ii9np0UChQBAqCIAgXAAAphTakZ8YcZ6E6DTWcbbR7T1NQURsYq2m7tOSniOjsjCKdP0fE43SLKFKnWmbk4GIkAc3EwGGDW8QqhGCG9wAkc8isKc3EwEgFmoBkMQAieva1XjdPf7JEb3IGSAvtAVpaTkQAwFweDAQAwsLv5/83p36iIEgTsxivLKWcwOghmoBmMS5gkPsuW5HQ6w4fVMxgxg7k4GAwGI0FhBprBYDASFObiYFyncBynLXWv1j4NX1GT4zhBEMLX3lKPEKaUvioTUgcGowVmoDsNFOg51zmPz2PX2REkaiGfzoOiKC2l4FqQJMnn84Wvgi8IQiAQ0O7bGrX6VfgKWZIkIYQ6dYkYRkfDDHTnoCnQtLpy1b66fUQhN6XcdFfOPRLHCtRdK20VSgxfQLG9ZOi3RDzOFaG17zzPY4zD232McUQZtQhlNM8Pg8HQ7td1fcIMdOdg/bnPjzYeTRKTFEU54ji85cLmW7uHbmx6dUTf5o6R4GjbuKj1oMO3d1EbJIaX4ThOp9OFlwEAvV7vdru19aDZl+oqYAa6c7Dpwia73q6+FrBY6wsuyn6NRN/mjsFgxIz2MdBs/NXRFKeNOtJ0mEMcAMhUMQuh89xqvTWbajY6nI4brP1zTDnRHz9km7sjR46obTjy8/OD5HmeRwiFb4Og+mGjaZUgCEL4qt8R2+UxGF2S9vnSs/FXRzM2Y+yXNdsMgpEoikdxj04P0THvgufCSwfnWyQrEPr5uXUP9H1wkG1wlMcP2eZuxYoVR44cQQi9/fbbQfIIoYguS1UsGpmIT3S1QS1zazKuN0IbaKfTuXbt2vr6+pafxKOPPhrmKCHHX2VlZVVVVQAwePDgoJZL6mpDxO7FAKDT6SKOrQRBCN9zj+M4Smk0pyOErFy5csWKFUuWLNG+VYnLdCFNSn9t5MJKd6XH7elj6StiUSuzp253kmgVsKBQxaqzHqo/GL2BDtnm7r//+7/VF9o2d9G0sMMY22y28DIAkJKS0tTUFP4uW61Wl8ulTfCz2+3hD85gdGpCG+hp06ZlZGSkpaVFeZSQ46/9+/dv2bIFAPr162e1WrV7RWyUpxrxaHoSRpRR10AiXojD4cjPz8/MzAz5ViVe0wU9bxhsHxKm3KhH9mD07YOKQmlt6Zze90V5cNbmjsFIQEIb6MzMzKVLl0Z/lJDjr1mzZs2aNQsAGhoaHA5Ha3l1bBW0Ucu1jK1aYzabQ/Yk1I6/bDZb697DQW9VtNOFkydPzpw5EwBmzZr19NNPaxXQ6XTaRvRaohmMhxkzDvYP2Vu/x8ybeZ73yb47+85oEY5YXIK1uWMwEpDQBtpqtXo8nugn79fV+Es7XcjJydmwYQMAiKJYV1cXJN/W46E1BoMBANxudxgZnU4niqK6aheSPF3elKypyyo+BArjM0tG2opblNHpdDHra85gMNqL0Aa6vLw8JyfnhhtuaHELfPHFF2GOcl2Nv7TTBYyxxXKpA7TT6QySjz4f4dplSjIn3JE3va6+TvV1sFU1BqNTE9pAP/fcc9fngKusrGzZsmVVVVXz588fP368zWZr/TY1NXXVqlVPPvlkgk8XvvNEMxiMzkxoAz1y5MglS5bs2bMHIVRUVDRnzpwYqxUvCgoKnn/++dZbgt6qFvn6mS4wGIw4EtpAz5071+Px3HLLLQDw0Ucf7dmzZ9GiRbFVjMG4VkpLS5csWdKtWzcAePjhh1NTU+OtEYNxZYQ20BUVFeqqFwA89thj48ePj6FKDEb74HK57rjjjgkTJsRbkXaGPXiuH0IbaJ/PpyiKukKoKIqiKLHViqGBEHC6IDlEfgqjLVwu1969e/fv3282tDAMFQAAIABJREFUmx966CE1WTwQCHg8HgCQZbmtms7haz23lwz6lojHCaKrPngYWkIb6AkTJhQXF48dOxYANm7cePvtt8dUKcblkHWfK/N/HxAEadKt9O67UG5uvDXqHBQVFRUVFaWkpCxfvnz9+vVq/tSWLVt+8YtfAMDTTz+txukHkZSUFPHIoii2V2B7SkpKRJkgQj54nE4nIYTjOK3FV7dEfFpElGktGVEmSOwqnkMMaMtA//rXvx47duzOnTsxxq+88sro0aNjrBajBXripLLgFcjIwBgHvtonr14jbtoA7OseBVVVVenp6QBgMBhacj5LSkr27NkDAE6nU5vCbrPZIjaNtVgsfr8/fGC7WoEkfGVOtQqoNrA9Yv56yAfPXXfdVVdX16tXrw8++CDkXtGUOojmaRGNjDa9i83Cr45gAz1r1qz333+/9ZB569atCxYsWL16dfuemFASIAEBX4/BfFcELSujRuMle4wxEkVaW4dSWQ2KyFgsltdff91oNBJCulLgTcgHz2effaa+0D512noStCaa4iocx1mtVm0qVhB2u72+vl5bD1prtRkRCTbQjz32GHR8GNnWC1v+s+vfQGB46ojJ3W9L1iV36Ok6NchqRcp3FT+oLCNL6FqjjCByc3N/85vfxFuL9qerPngYWoIN9JgxYwCgZf2BEOJ2u6Nxt0XP8ebjK04vT9WnybJc5jiCAH7Q63qJs74K0PBhqKiI7txFdSJ1urmHfwyh5qrU6aRrP/WdPccV5MOY0cBKcndduuqDh6EltA/6zTff9Pv9Dz/8cFFR0blz55599tmnnnqqvU5Z2Vyhx5fq2HGI21W7657c7/OIlWNvA0Hgn3mabtnKORy6QQM9fftqRWhAVhYtJrt2Y73k2ryZ7tvPz3saoqjed9U4A8795/Y5nI6CpIJk3RUvczEYjGgInRP897///dFHH/3oo49GjBhx7ty55cuXt+MpjbxRod+tGBBK1EYhl+H1kiNHlFOn2/G8nRhRRBNKxDmzhaFDQwucOE63bMWiAH4fSDqycROprOw4dep9dfN2/fy9o0vXnPn4NwdePNl8suPOxWBcz4QetxoMBlEU165de++993IcF00l5egZnDzkXxVLOY4DAm7ZMyv3Bwgui0mgZWWBRx9DkqGOUJg2hZv7WIcOBrsCPh/1+mh1DWCECAFLEvL5O+5s26u3J4lWkRcVRRE4cVfNjl7mXh13OgbjuiW0geY47qmnnvryyy//8pe/7Nq1K2I14SvCwBteGf6nY56j1Y6LvUy9czW/7cCjj6H0boAQ5nn503Vo4AA8dmw7KtD5UBSyZ6+/qYkbPAhCdVGgFgttbECiCAhRjqMNDcgWokNCe+GUnRy+9MhEgHbW7GSrCAxGRxDaxbF06dK+ffuuWbNGFMWqqqq//e1v7XjKqgbvv3bWLXgfna28IQlnBf2XBgII4e/ifCUdrby+HR2yHPj5M/JPnvA+Pa/h9u8pS9/TiqC6epSWBgYjBALYaMTpqaS6uuM0yjJm+ZRLUcAyCYzPKOm4czEY1zOhR9Dp6elz584FAELIpEmT2jGKw+lTfrH8aIpBSE+SSiscTp/yyOgsDn/n4kCCAJRQ+q2J9vlR98y2jnY9QFatIhs2IoQAAfj8yh9f5WbeA5cXg0XduiFC5bQ0Z1IKoWB01Evp3dqx5GhQ49fxPUscpPGLM58jhEekF93R5w4jH6IzrJpOFk3TWIPBELFpmSRJosgy3RnXF7GI4mjde/BoTYNRx/M8BwCiwO091dTox9kphtby8ptvOB97HJmMiqLobp0oTZ2C2i5OHc1Pl+d5jHH7etJjBl2/ESEABKoFQ3KAlpWhgQMvE+rRPfCD2c1/eycg6HjZ9+GwaYYqOrNbu+mgzYi7I+vOO/vcVddQZxJM4AOXL0TKHMZYp9OFz6YDAEmS3G53+MZmgiB4vV6tqy02HXsZjHgR2kD//e9/37p164oVK0aMGPHnP/957Nix12KgvV5vS6KnHPATQgkhGGNCCKE04Pe5XJePngoKhBUfkqNHrVlZzZmZbr8f/G0uebX1020Nxjhk06lO8fOm1iSgQKBlIRUdaMJDNGLbR05dfj45w1l30ZpeldRN2HP+zhvTBa4DM8L1vN4khJtaEUob3f7vJkMMBuMKCT0PboniuOuuu9o3iqNPmsHjV2SFAIBfJoW5SWnmEKNjmmTdk17wQZN56/FGmVzXfZvwD+8HBIhSoBQoPWPL/MJp0Iodr/acS+6+P2fwBWs3DoFXJr5APKsflFY65vx1/31v7Lj3bweOXYwwiGYwQvLee+8BwObNm0OWtboeiHUUh47H/zu7//qyOpeCbTpaUpCCQ42vlpae23S03igJXn/gm7NND43qwXOdo41Ta3+OSjSPN1VGuy8AwKBB797/i/5rP8ipr/qme8FbY35YV9GolUxLkoBSgEveEB2P9Qa9JHLR69COVDf7Fq+vTDWJvMAH5MCLHx9/54FBHTqcZ3Q93G73H//4x9mzZ48ZM0bNcL4OCW2gly5dumzZsg6K4rAa+HtuzrDZbG1VXal3BT77ugYjVO/0A9AdJx2j81P6dYuw1pQgaB9moigqihL+IddSqjjkfysGFP5Ln68+oQilGKhWcmi2ZdkeHgFq9slmiSvsZRMRCQQuOXZjXOzxdJ1XL/KqUwYBknh0rtHbM6UTOJQYicMjjzxSXl7+wx/+8L777nvttdfefvvte++9NxAIOJ3Ohx566NFHH62urg7a8umnn7755psrV64EgB/96Edjx4699957FyxY8Mknn4iimJubu2jRomiq+iUOoYelVqtVEIQlS5YAQE5OTm57FyA+WePedrT6bGPogo1Or+wJkGaf4vErbp9S7/LXOzsw7aJ9UTRQSgkh2u1BMpTStv57U5bFKHEBhQQIMYhcSYFdK9MzWffY2GwKkGQQRvdNnnVzt6Djx/JDsOh5udWin0zAakjEsoVIQ1vbO0Im/L6M559/vlevXu+88476dtmyZf3799+4ceO2bdt8Pl/ILVq2bNmyadOmTZs2rVu3DmP87rvvxu4C2oPQI+if/OQngiDs3r37t7/97fr16xctWtTyMV07/959fu3XtXod7/YGZhdmTuofXDkTc5xfIYI6YkSAECI03BJ/l2dsfnJFrXtHhYPD4PEp0waHylUJBG46tvv/1p9sTOuuzx5lN8UzIq1vmnFkb+vOkw49YJdX/t7gtCR9wtVa4ThO6ylCCOl0OnVCE2ZHQRDCW1L1CKF9Vq1k1BikqFWOCm1co3qi8PGOGOOIMurzI2LcJABEjJu8CkpKSl599VWHwzF58mS16KZ2i5ZNmzYdPnxY7T3idDoj1tpONNrsSbh+/Xr1qubNmze2/RL5TtV5Pv26xmoQeJ7XcfDPXeeKelst0mVqCBiSJJ5QcPoUALAaeIuUiOOvmCFw6Me3ZN0xtIdMUapERF4z7yHE/8fX6j5ZrxPFrIB/75adp578P9MGp8dDWQAAhODB4h5De1qdMmeXaL+MRHRPKYqiDeyRJMnn84X3RwmCEDIoqDUYYwBQe2u1hWqatTLRWMAwaOMa1XrQ4eMdBUHgOC68DMdx0cRN6vX/n73zDoyi2hr4uXdmtu9m0xMS0oFAEKQTuhQBIYI0EezK44His/KwfXZFQB+oPFHEpyIWpD5FOgSkPWpAlJIAgYSE1E2ym60zc78/BmLYncyGZJNskvn9tZmcuXNn786Ze8859xy1Z9wkRVH1DJpq37796dOn9+zZs3r16vfff//IkSOeR6q/NYVM2UqlctKkSYsWLarPpZsQcRNHVRZwALDZbF6HpPYUW5xMNf3CYCixuD8MoXpmQLsgo4ZJCtfFBCldHGkf7o9PeGOCEMQGqzu2MYhoZwBy4aJr+w6HSs1TtEOl6Xv+UPqODCFUpqnACPWIDRjfs61/amcZ/wdjXN1wsXbt2hMnTowYMWLZsmW5ublWq9XziMFgKCwsBACO444cOQIAAwYM+PXXX4W36aJFi44dO9ZUt1M3xGfQI0eOHDNmTHZ29vPPP79p06aHHnrIV9eLClQ7XLxGiC4g4OBIuMF9MY4RmtY7MkTHWDmaIq7hHYPUima5x6TxMJs5TBECTo4HAAVQGpvVyRFa/tpkmi0xMTEIoUGDBv3f//0fAHTs2HHGjBnC8uWFF17Q6XSeR3r37m00GidOnBgUFNSpUydCSP/+/R988MHBgwerVKqYmJg5c+Y09W3dGuIK+qWXXkpPT9+zZ49Kpfriiy/69+/vq+tFGBQPpkZ9dSBXqSA2p+uZYXEaMeWrV9ETu0cEBwebTCbpPWathMzCykOXrvGAEoMV/RMD3e2fiQm03cYyCoQAA1G67Na2MaJfrIxMc0GlUv3555/CZ6GEyP79+6sLdOrUye0IRVG//vqrWzvz5s2bN29eQ/a0ARFX0F9++eWjjz7qQ9NzdYZ1DO6bGOjCKhWxq5jmEd3ctGSX2N78JStYq6QovPes0+LgRt3sWUUBAb8//2b7917iAB+M73F4+OAClrE6OVlHy8g0a8QV9MqVKydMmGA0NlTKSr2KDgzUl5Q0m+C5puXIpbIAFYMxAgC9ilp56Oooj9AXrvNtLz2xTEcTwig4jgOLUyFvDJGRaeaIK2iVSpWQkJCSklIV1L1jxw5fXZJbs6Y0fe+PvbVlPVKGxqQm6hM9Zfhdu/J/Wr+oP1uQEDQgqve42HG+unpzRNjrXulgASEFFle73drqlzpYjBmGJ2ab695ekQ2399K5bPmpo4d3pYainilTOwwPV4mEi3BL/52Znv7DRIOpbeS4+OGD27SanWAmk+n5eetCzHsHBYVHxz3Zaaae8Sjy63SWz/9gmyVr82CdLixsVscH2uhimqKvt4D9o08u7Un/cWKAqW34pPajB4YPFBHavv30N6vXDaeK4o0j4weMbTu20bvZ0kCi4Yq7d+9mbk4gN2DAgDpfw2QyVSVLcj38qOXPkx88n3QtXIkAOApPiJs0NvqmgXT+3+v2Xzb+c0FnuwoDAAISqgl/v/tC0caNRmNlZaV0XJRerxeNi2qIoEjPovc1Xb06QmRVTdEyx69UvP7fLIpCCIDlSVqX0BkD3fNoA4DFwR2+bLaxKNqAu0Tpq9upVSpVfXLGVr8px+ix+Xzxmy+3pwgQAI7CTyY/0SOkV3V5V9q4osrC115NYhmMAAhAZ2Pn5zq/INp4bTwNNY1yfUbQYrF4DkpgYKDFYpH+ORkMBqfTKTqg7OnT3EOP/PuRtr930wsPFgXUGz3filJFVb+w9a60XwYpNo8Kv741H8jfk2f2CelX/5sCsV+gEGZnNpslzmIYRqvVlpWVif7XcdfYQlfJWy8nuYQgIgLdQm9/KvmmBGrciy/bd2597t2ODtX1HQyRyoh3e74v/JeiqMDAwDreUitGfJLVo0ePo0ePfvXVV19//fXJkye7devmm6tdu0aOH980NqIgXEFxBHMEc7Du8hp3sQ0bV0+LEbQzABBAhdaCK5bWm7Y/v8werGO0CkqrpIK1DMuJbwHQKamRKaH394/rGq1voP1o3Jo1cPXqunva0DzBHKE4gnj035yfq8uwZ8+Sy1f+PSOapTEAEABAcLrs9wbpkJ9B5r2EXOyp2/VV0x4OcUtPf1RdxrlgEV1WtmtYKBBhkAgQ+PbCqsbua+05fRblXl32t7auqjUZghPFJ9ykuE2bvnygrfPGYwsE8u3Xiu3ubwuZW0JcQU+dOjUrK6tfv369e/c+ePDg9Om+KWjEHc8AQCVBDLrx88U8QQRZWetfMhWVAJAbcfN+eYROmU75pA/NkVIrq1dSYQZlmEEVoKb3XTA1VU/QuXOASJmBRjfmu5gnOZU3vzsPHgQAs4H5q9IkAQBkdknN4FoGpKzMRt+cXpWAmbVUl0E5OQSBg6b++n4QODn/9cdwB38DIGYdc3PpUGSpfl/XriGAojDmprkDgZOm443TyZaKuII2GAyffPLJo48+OmPGjG+//VZ6cVTF7t27X3hBfBl7nQEDAUjcFRt/4yfMUYggoqH/yp9JGbQQEHDb72YEN8YaARAyILLuNpbmTttAlf1G2iOOJ8OSgxvoQl5HkAwZAgRFFtj5G6ZwnsKJhqTqMvT48QDQ5tpNuREYzIiYYlse0dFqFmgHX12VRWqjqotQPXoCIRrbX8lgEYBoSRo/gUpLI4Aiqw8oAQbROrqa0SwiggeU/Kf5JiWOoE9ovzpft7hO1Ply/om4ghY2awqfy8rK2rYVsXi6UVZWlpGRIZ1YgDJoqQceuHNbYYdzFheDWBoTCv7R8R9uYvSc2Wmb80MLHejGErB3aG8j3YBVUP2cAUnGAe0CSyxOk9XVMVKX1kUkF0f9qdUI9u+PB/af+n1udJ7NRSMXjXRUyMNJj9wkFBhIjRj+96UX9ZUsAAgv2tFRYxqiz/6G4ovPWa32rs2FBAABQQTUWP1sx2ery+AnZ0H7Dg9/eYW+8dLFwMzt4seBuhEReMiQ2R9f0FhZAIKAAIK7Y+5xk6Lmzp20Pj+42HFjZkX6hve7SYnL3DriTsLBgwefPn26e/fuLMtmZGTcdtttBoMBAH755ZeaGlqyZMn06dOXLFny1ltvCUeys7OFbZcJCQnVXY6kpMS+Kz23U3xlBN0pMFmBxdL6WCwVW3ecDKJy27LDowaEqkNruq5Op7Pb7dX3pnui0WhYlnV6lGUJCAiQOKtuNISTUKCSxYBpNXKIZtAWYBhGp9OZTO42kNo4CT1H0Gq1Cl+sm9OMu3y5aN+RjA5tomKMKWHJWPQ1n5tbuuGXPR3CcSI9LOYOiQc1KCiorKysbk7C4OC6LyYawkkowG5L//3c+aP9ArvGJPYO7S4qw//55+mDJw/epk6JCx8Qllr9X37oJAQAyM0t2rDp1wSDvr3uzjjxAeUqKk1btv2mx5YELi1xaPVJVR2chHWbDje7dEjSiIfZvfzyy0K2l1qyb9++9u3bu3016enpO3fuBIB33333ppBqrVb38IMRNC2lVbVa7YPT20rLAMCNmoTSqbOEojBMzYUNmwXBOoVCoaioaBBjpegIPvvss0ePHsUYHz58+OauBId1754i3WJwcHDXru1qd/XaPLrCFKEO7N69+9dff124UDwKqCGg7xwy4J4xAyTfuLhTp97du/f3pjclaOz7io6O+MfsZ43GmtK4AwBl0IZMuWdGSEhpaam8AdgniCvo1NRUvf4vi2FeXl6bNlKltY8ePQoA586du3LlytatW0eOHAkADz/88MMPPwwAJpPJ7c2MMQ4MDJR6XQMAQHBwcEVFRd3mVtVpzDC7ZoroCC5btkz4r+dcxvuE68YoSzzPAg0aZlcbu01zpKXel4wb4gq6Z8+en3/+uVBmZtWqVa+99lpWVpZEK08//bTw4dVXXxWebZnmRUsdwa+//vqBBx5YsmRJ1ZHff/991apVADBmzJjevXu7yWOMNRqN9NtCSK8svSAT8kFLL0MpisIYV58J1R7P+5o4caLJZIqLixOtf4QQUii8pAhHCHk1GdVGBsSWRFU7IeqLw0HOZ4KCQUlJ0LiF3JoEcQW9YcOG2bNnd+3a9cqVKwqF4sCBA7Vsrsp8WR3POhEIIUKI1+IRgoy0WG1kqi7qVab+1HQVn9xF7b+0W7p6dWoaQc8jXjvjw1GuqRvSiNptgoODBb0cEhLiaUBjGIZlWWkFTVEUx3HSxjeMMSHEq4EObk7tK+C1JpPofX3yySc8zzMMU15e7iavUChomq5y+4tC07RKpbJYLBIyGGOdTldRUSHdvYCAgIqKCjerI8a4zkaqKsjVPNe06UijAULQoIH0U0+Bznv0y8qVK7/66iuVSmWz2d56662aUr9lZGSkp6dXzVT8BHEnIQDs379/ypQpOp3u559/bt++fSN3S0am/ixevFj4cOLEiWnTprWYlUFLvS83PA1r7IeLycGD1yfOdgc1eSKePs1Nxu29dezYsX/+85+bNm1SKpVFRUWffPLJnDlz/v73vxuNxoqKiv/85z/ffvvtrl272rVrl52dfenSpfnz5y9ZsiQoKIgQsnTp0rfffrtr16533nnn3XffvWXLlsavZyiuoGfMmHH+/Pkvv/yypKRk5syZEydOfOWVVxq5ZzIyvuLVV18VXRk0d1rqfQl4KmjnkGEo4nriF0II7tGdnusetu+moN97773Y2Nhp06ZVP5KUlDR58uTFixcHBga6XK7Lly+/9dZba9asyc3NtdvtsbGx991336JFixITE8eMGTN+/PjExMSpU6f6MOty7RG3kXXs2HH37t2JiYnCTkLPRZOMTDOipWqxlnpfNYHvTkNVtmyHE0dFSYoDAAjlmKsfuXz5cmxsLADEx8fn5OQAQEzMX5mqsrOzv/vuu4cffnj//v1lZWUKhWLs2LGHDx9uEu0MNSnoJ554YsWKFa+++ioA/PHHH2+//Xbj9kpGRkbGHWrKZL6wEMoroKwM9+qBx3lPcjlq1KjPP/9csL8XFBQ8/vjj8fHxFy9eBICLFy/GxcXBDd8GQojn+bi4uMcff/yrr75aunTppEmTzGbzzz//PHr06HXr1jXsvdWAuInj8ccfF6p6Hz16dMGCBX/88YcPq3rLyMjIeEV8o4rdzp87jxQMat9eNIrDM/Ly22+/Xb58uUajAYB33303JiZm1qxZRqPRarWuWLFi5cqVAPD444///vvv06dPf+edd7799lu1Wm0ymZYvX/7mm29OmTKlb9++I0eOXLduXeMn5BNX0MOGDROqeqenpwNA1Ye6UVJSUht3duMTHu77utcFBQU+b7P+aDSauoVzCfjnTUH9RtBsNksHNjQV9fxZ+udg0TR9q9s+5Z2EUFOYnW+repvNZs9t1v5AQyho/7TXI4Tqo6D986agfiNos9n8877q+bP0z5tSKBT12ZffahG3QVev6t29e/eJEyc2crdkZGRkZBq7qreMjIyMTC0RV9AAMGTIkAaq6i0jIyMjUxsaqq6oTB347rvvDh482NCnNDm//fbbkSNHmroXMl6Qh8kfqHEG3dBs2bJl+/btCoXCZrNNmTKlXz/xygsmk2nBggVKpdJut7/22mt79uzZt28fAFy7di0tLa1///4ffvihUqnUaDTPP/98WVmZhPC4WkRNNgKHDx8+duzYrFmz8vLyPvzww5dffrk2sTsHDhz44osvhJyCc+bMaQj3ps9ZunRpbm7u2bNnExMTGYZ5+umnhW4PHChWELpZsXfv3osXLwrJGq9evbp8+fL7778/IyNj0qRJTd21OnLs2LHt27fPmzePEPLiiy/OnDnTc5iysrKa9T02R9wV9FdffeUpRAh55JFHPI/XmbNnz+7atev999+nadpms33//ff9+vX7+eefT58+HRYWlpeXFx8ff/Xq1dtuuy08PPzee++9/fbbv/zyyxMnTowaNWrUqFEcx73++usjR45ctWpVWlpaamqq8F9CiISwD/tffwoKChYvXvzSSy8FBgYWFBQsXLgwJiamsLAwPj5e9HugaXry5MmjR4+uOr36KU17LzXxxBNPAMDcuXPnzZuXk5Pz0Ucf6XS64ODgiIgItVqdk5OTmJjYq1evl156aeHChc09W/ePP/6Yn5//1Vdf/fjjj1qt9oMPPkhLS2tGSWx69OiRkZGxY8eOsrKy1NTU+Pj4//73v2q1OiwsbPXq1cLAFRUV5efn9+jRw29/ci0PdwV96NAhAMjLyzt9+nS/fv04jtu3b1+/fv18q6CPHDkyatQoISWjWq1+9NFHAQBjLOyaf+655wYNGhQaGvraa68tWLAAAFiWPX/+/Pjx44XTN23aNHToUJVKpVQqq/KdZ2dnT5gwQULYh/2vJyUlJf/85z/ff//9oKAgANi8efP48eMHDBgwf/58qOF76Nu3rzD1NhgMs2fPdjvF/zl27NjgwYPvvPPOS5cu/f777wDw4IMPvvLKKydPnhR2RTV1B+vLwIEDCwsLEUJ79uwZNWpUTk5OM9LOAg8//PCLL76o0Whef/31qoPVBy4nJ8efJwQtEncb9LJly5YtW6bT6c6cOfPtt99+//33Z86cka5XUjeEjI5Hjx6dO3fuzJkzL1++DACCwlIoFEFBQQqFQkjQbjKZ3n777UceeUT4LyFk9+7dggPznnvuOXny5IIFC4qLi4V0txLC/sPVq1fHjx8vbGECgJKSktDQUACIjIwUjnh+D4MGDXr++edfeeWVsLCwzZs3e57i50yePDkzM/Mf//jH8ePXyzzTNJ2amnrmzJnOnTs3bd/qRlVKUp7nq/KgDhs2bNeuXadOnerRo0fTda2O2Gw2hFBFRUX10haeAyfTmIg7CS9fvlyVWE+n0wna04f06dPnl19+sdvtPXv2XLBgQXx8fE0lUcxm86JFi+bMmdOhQwfhyLlz5+Lj44VHory8fMqUKXPnzkUIdejQQVrYf+jSpcv48eODgoK+++47AAgMDCwtLQWA3Nzcmk65fPmysNlHq9WyLFubU/yK3NzcmTNnLl68ePfu3cKNWK3WAwcO9OnTZ+/evU3du1smJibm7NmzwucTJ04kJCQISXmMRqNKpdqwYcOwYcOatod14IMPPpgxY8b06dM/+eSTqoNuA9cQc7VbhXdPf3RrrF+/fuvWrb7rTsMi7iRMTEwcNmxYamoqQujAgQMJCQm+vWr79u3HjRv34osvqtVqnudTUlLi4+PPnTvnKblmzZrCwsJ//etfADB69Oj+/ftnZ2dH3chixTDMwoUL9Xp9dHR0u3bt/vOf/0gI+xuPPPLIW2+9lZ6ePmrUqAULFhw4cKCysrKmn57RaPzXv/6l0WgIIfPmzRPcodKn+BVFRUVff/210Wjs0KGDsNZZvnz5tGnTUlJShM1QXmva+hVxcXE9evR4+umnVSqVVqt94YUX8vPzv/76645lmDouAAAgAElEQVQdO44YMWL16tXSJeL8kHXr1nXo0CEpKQkADh48WPXWrD5wiYmJb731VseOHZtq0WNn+TXHrm05XQQEJvWMuLtrmEQBZYEtW7bs2LFj0aJFAJCRkbFo0aJvv/22UTrrG8RzcXAc9+uvv546dYoQkpKSkpaWJtiL60Z2drZ/bvVuCCvh+fPnfd5m/TEajWFhYXU+3T9vCuo3goWFhV6rYtaBHTt22Gy2tLS0OrdQz5+lfw6WQqEQUsfVHs9cHGuPX9txpkRJYwCwONiHUqMHtnOPgHLLxeGpoAcMGCDUhdm7d29cXNz58+dXrFjx/fffV/+T47jqSf1tNtuMGTMQQnFxcfPmzXv88ceNRqPD4fjuu+9WrFixf//+6Ojoixcvdu7cOSsra8CAAQ6Ho3prq1atCgkJmTp16ttvv92zZ0+NRvPBBx8EBAS0adPGqw9J3MTBsuy1a9fsdvsrr7wSExPjs3piMjItmu+//z49Pb0q2EbGt6w7USBoZwDQKqjMwlrlCFq7dq0Q0CWEFQlgjJOTk+fPnz969Oi1a9e6/bl8+fJ77733iy++6Nev35o1a5YtW/bggw+uW7eua9eueXl5L7/88jfffMMwzNmzZzHGHTt2fOedd4qKiiZOnPjxxx+vXr3arTW3/mzfvn3SpEnffPPN9OnTvXa+xnzQx48f37x5MwDs3Lnzb3/7W22+CBmZVs5999339ttv12e5KSPB4HZBVZ95AiqmVkVjJ06cuGXLli1btixdurT6cSFtf0RERH5+vtufbkn9c3JyhKT+Dz30kNFoXLFixdNPP3369GmbzSacAgAqlSoiIkKlUjkcDs/Gq/PMM8+cOHFi0KBBu3fv9tp5cQV96dKlTz/9VDALzp071+dOQhkZGZlbpXd8QGmlk+WIk+VNla5BHvaNW+LSpUsAcPnyZcFNVf1Pt6T+8fHxWVlZAPDxxx+//fbbU6ZMWbx4cdu2bSWKC1dvTalUClpbcOlnZmbOnz9/z549P/74Y/WAGVEaI92ojIyMTP25va3hzXHtM3IqaIz6xBtD9Yr6tHbp0qUnn3zywoUL33///Q8//FD9T47jZs2atWvXLiGpv9lsfvzxx3/88ceYmJjRo0e/995769evT0lJWbx48dChQ702Xlxc/MQTT1y4cKGwsJAQcvXq1TfeeCMsLKxHjx5e92eIOwnffffd/fv3//HHH5MmTdq0adNDDz00b968On8RFRUVbq8ahJBWq5Wu8Q4AOp3OarVKvKYAQKPROBwOaSu5SqXiOM4zks9oNEp3oA54+p3UajXLsjXFEQoIQY3Ca7YmGIYRNl5KyFAUpVKpPF+oSqVSrVZL9VsSz5uiKEqpVEonvK/9KHuNRalplOszgjabzfML12q1drtd+ufU0ANaz5+l52AxDENRlPRkrTYDijHWaDReB1Sv11ssFrcBpSjqVjOSN2jCfmG3x/333y/6Zz3xYWuNkW6U4zi3XzzGmKIor2VWBBlpBY0x5nleuimEECGkcaq6iF7F69WF51lahqZphJDXO8UYe8rU0yrq2WBNF6pO7UeZ47j6j/KtwnGcZ4O++jnVckC9ytQB0dGv8y+nOhRF1XlAm0UwqB9Sq3SjRUVFwr41Ga9otVq3IzRNC6pK4ixhr7PnudURHg9pGYyxMG91O+5vW3VkZJqWv//97xJ/+rbx+iCuoGNjY5csWVKVzmLy5Mn1qUnYqvA0L2CMXS6X9AJTUKnStn6VSqVQKKRlhFWzp4xfpSKRkZGpJeJRHHq9fsmSJa+88or0wrM+sDxrcXkxZsnUAQfnsLGNUQvVwTlsnJRBvJXj5JwEvKzrrazVwUvZqX2FlbU6eX/cLCYjjfgM2mg0bt++fe7cuWPGjBHyRfiWnVd3bDy0AQHqHtx9dPRdIUrZfuIDeMKvv7R2Z/5OINA7pPfdMeO0tG/2T7tZSDjCrc9etzNvBxDoG9Y3re04LS1ieBHOqo11BSEkLYZucIsdbxqK7cWLz3x4tuwMARgZNWpCjEhJTxtn++n86oOFB3ieHxw+OK3tOBo3SPS0lbWuyVx94NoBnueHRN4xNjqtgS4k0xDUOFQ0TX/44Yc//PDD4MGDfVud/nzFuU25v4RqQlmWzTJnbc3dOj3RN87TFgwBkp6/O8eS43Q62gd06BXS21Pmf8WH9hfsD1YFcxz3Z9kfako9PnaCT67uZiHZm7/nQMH+EHUIz/N/lP2hVxomJogkcRdUqvdAIoSUSqW0EwkhpFAopO34/sOKrOVZFRcohIGQTTk/h6vC+4cNcJPZnrd1/7V9wiJyz7X0IGXw4IghDdGZHfnbT5WcClIFcRz3v+JDIcqQAeHiBROcnNPBO5RY2RDdkKkb4gr6oYceEj5MnTo1JSXlxRdf9OElr1ReUdPXQ74w4CMlh6fE38vgZp8RuEHZX7BvQ84GjBBP+OOlx2lEdwvu7iaTU5mDECqxl/A8r6KUu6/t9pWCdgsFu2i6oKSUhBCe5ymgtl7ZclfkGM+zMMZqtVo6LhAANBqN3W6XNqYJof6ekW3SLtMmgSPc+fJzDGZ4wgMAjahjxUc9FfTm3M0c4WhMAyEWrvJEybEGUtA783aEqK9HnqmwKqcyR7TPv2T/vDNvOyHQL6x/WvTdVU+oTNPirqCnTp36ww8/bNy4cePGjQ10SR2l4/i/InV4wstrLq/8XnbK5CghhCCECcCJ0mOeCtrBOQptBTRmCCFWztrB0KGBOqOldTzhKKAAgAD0Ce3bQBdqjiBAPAEnJxh8EQagkMjPO0wVds1+jSc8AKEAW7iGchv0De2baclEgACAI6yWEXmlHSo6uL9gX7AqhOO4k6UntbRmTHTdkz3J+BD3n86sWbMA4Omnn264S94e3O27S6swxsCDlbc+kPiQ8Otxw+Ky7L+wL68sr426TZ+wvrTYr7z1cKHiAhHsuYQAQGZ5lqcMhTAQIMADIYB4Da1poM6khvXblrfVoDQQnlS6LL3F7C0A4ODs+67+VlBWkGRIita0baDO+BsYYRpjlhcC/wkHEKkRST0aqAjMqbwiyABAhLKhikz2CU39X/H/9Ao9y3GVrKV/mMiehiuWK2rq+pRZgZltV7fJCtpPcNd6CxcuXLhwoafc8OHDfXVJFaX6sM/ii84L10zXEvSJ0ZpoTxkH71h3Ze0FSxYi6HjJsTxb3uS4Kb7qQHOEEASEkKo3GRax2CopVRtddKXTzFGcltEFML7fJykQrAxe2OeDc5VnzZXm5IDkYKXI3i0ba/3nsRcMygDgycYrG6Yl3N8rpFcD9cev4AlPAQVAeCCAEEZQZC/0FLNwFgAggBAgAGLnveRkqDMJ+oS3er1z3nze5XB2DrxNJ+Y31tIajucwxgBAAPq2viXR+vXrNRqNv1UuBU8FLTp3Likp8e1VFViRGtmvRFFjsxcqsv4o+8Og1LMsq6JUB4sOjIwaZWAMvu1Gc6HY4iwpUyI1BgRAgMIoTGzClaRP2p63nSccAJhd5p5BDagQdYxuUNRgiXzKx0uO62idmlazLGtUKFZe+LqVKGiEEA+EAIUAMCAAXjT2JMeSU2WnRgiXOkobrkuh6tA2hjZV1Ts9SQ3vvzN/hx4FAMdbWEvvkD4N15n6QICcKj15pvwMjahuQd0TDUleT9myZcucOXNSUlIAoKKi4qWXXnKba2ZkZKSnpzeozaA+uCvoqt5nZGQIe+EdDscbb7xx7733Nma3XLyrut0DATgbJVzUP9mfVaa09XapNwGwBAAIdVe0iFOu0F6oo7UssDzPK7CiaYOUK9lKqpprASPM8mxrcDYcu2x2uShEOYEgjhAVpUoxitQfidZG51bmUpgGQnggTeuUC1WGzu+94GzlWYvVkmzoGKry07DXw0X/+yl7tY7WEUT2F+57Mvmp2ujocePGCQn79+3b99lnn/Xs2fPxxx8PCgoihCxdunTRokWXLl3KzMxMTU21Wq2//fZbfHz8kSNHvv/+e6fTWT03f5MEEYk/ME899dRvv/2Wl5eXnJx86tSpl19+2U2A5/kNGzasX79eqHxqtVqXLFki7EV+5plnhLVSfYjTxds5q45oAYAj3O1B3UTX0a0Es92ltLWnK0ucykxCwFmW3CEg2VOsxFHMEa6StRACmEaHig5OS/CeEbyBiNXFbsuzqRgVAHCE6xPSpzVoZwDIyKnQlk62Ba8FQiMggShFdELaJ6zvtcvrnbyLEKLAzLDIEY3f1eoYFAF3BA5tiBIzPiSrIkvP6AEAATIwxgxTRm0U9MaNG7OysgoKCoKCgpYsWbJs2bKJEyfed999ixYt2rRp0/jx43Nzc4VgUIxx+/btX3311TfffHP//v0JCQkvv/xynz597r///rNnzwrT8EZGXJMeOXLkxIkTqampe/bs2bt3b15enptAeXl5hw4dqgqvbdu2rV+/fnPnzo2NjT148GD9uxWgCHi607OdglNKHaW3BXa5K2qsqCOxldA+XGthTjvUJwnwPPDa8ON/mE57itlYm5m1UIimEWXlbBHqpiz43SEgeWzbtGJbUZnT1CEg+c42o5qwM40JzxPaEaUvmqEtv0tdOi6OjBENIR0ReecD7R8a0GZgakjqY+1ndPeIybm5TX7dunUPPPCA8Cch5LPPPps/f/6bb77pNYqxJVF9pxICIKRW+5zHjRu3YcOG9957LzQ0NCkpKTs7+7vvvnv44Yf379/v+UKKjIwEAI1GY7PZ1Gq1W27+xkd8UiPk7hGiU2+77bbTp93VQWBgYGDgX9mys7Oze/bsCQAJCQl//vmnkP1u/vz5a9asAYDVq1eLlp2VTgwYEhLSE3r9rctMr/cQEBDgVUapVDavsqTV6RVn3F5UkVmhQgB6FW1UG/8o/yMl0H3hrKLUWlpjZa0AoKbU+Vb312ojM7TNsHEdx+cX5TdcPIkf0j5ce/hSuQFrMZdQbnN1uk08xyYCNKTNHSNi75QwDVfhNh86ceKEXq+fOXPm5cuXGydHo5/QRtPmZGmGhtYQIBbWnBzQsfbnDhky5K233jpz5kxcXNzo0aPHjRuXl5en1+u3bdtWUwz+4sWLp0yZMnz48LS0tIZLeiGNuIJu167dRx991KtXr/Hjx8fFxd2Sk1Co2QwATz/99OzZswGAZVm3FjDGRqOxtNSLYyQoKKisrEz6qwkICLBardLJefV6vWi6ouDgYOkO+AkIQXyImlNqEUI8zxEAEEvyEKAwBCgCjEojy7E0ots3WBx07aEx3aq0MwAMah/IEZJd6gSAxGBl/8R6Vf0QcJsPZWZmWq3WpUuXYowfe+wx4aDFYuF5nqIozw3xtdlzf0v78msj4ybmk236A8MHIUC5lTkA0CGgY+fA227p9FdfffXVV1/9/PPPZ82atX79epPJtHz58vbt27/xxhtdu3b1DOEYOHBg9dz8DZH0wiviCvqzzz4rLi4ODQ1duXJlXl7eunXrpFtJTEzMysqKjo7OzMysmiyrVCrBsmMymUSTw9YmRSwhxKuYVxlyA6+X81sS9AkZphMGhQEAzK6KTmJ+pz4hqVuubglQGACg3FXes3VETfgbGKFhycG1SU9YZ1iWDQ8PT0tL27hx4+7duwXNMnHixJKSkoSEhNWrV98kzLMbL2zYkLWOAHqw04MjYu+UsBbWZspSG5nqrxMBnxSephB1q/sthXKxwueqFMo//vhjlUBYWNipU6fcznr++eeFDxMniuRRaUzEFXRZWdnWrVvLysoIIRqNZv369W5hKGfPnl27dm1ubu4777wzdOjQESNGfPTRR4cOHdJoNFOmtOqA5Qaid0gfBaO4YM5yudgUY0pnMQUdrAp+v/dCITy5Q0CHMFVD7X3wWxrad+0nxMbGCqtPrVZbVbRl69atwge3QiTb87alF+wWdgn+cOZ73kZ6hvT0bPNwyf+ybdn7r/6W1nbckIg7RD26FEUZjUav6+mQkJDS0lK3ORlFUZ5aW8Yr4go6LS2tS5cuEkn6k5OT3UI75s6d6+OuyVQDI9wvov+QmDsqKiokxAwKwx1BQ00mU6N1zK8Q9V0PHjx4zZo1Bw8erGdhoCbEbT6Umpr68ccfL1y40OFwPPvss9LnFtmLaEybXWbCExWlvmjJ8lTQJ0qOr7m02qAMCFIG78jfjhEeGjmswe5G5hYQV9AdOnT47LPPGrkrMo2J22SzvLx8yZIlCoXC6XTOnTu3mSb4r43v+sSJE8uXLweAiRMnDho0yK0FjLFWq5W2hglTcqGolYQMeKs0JpS/qY2L23M+VPuNFeXOirzKXIwoIKSELxH1TGSaM7XMdRe6mlJfs12rZeMyDY34Dyg5OXn79u1dunSpis2uZSlGmQaCELhSYuWRI1hJGMoH/ha3yWZ2dvaECRM6d+68atWqU6dO9e4tnl6j+VLlu46KipowYQIAxMTEePqNtVqt0+lszKKxnn0QYqh8Bcs7CEEIISIUUwQRlzuFKAfrsPN2nnAqSs5j50eIK+hz5869++67QUFBVUeys7MbqUcyHrg4snxfzr5ME0KI58miyclRxvom7XWbbHbt2hUAWJa9cOHCXXfdJRy0Wq1CFJdoYADLsyxhJfLENnnCflHfdVhYmLBd1mKxeCpHjUbjcrm8Kl+WZaWVrzB3lpYR7shT5larX0uTZb4Qrgm3szZCQMNoGDHjcpgy9JotX/hcAWYqqIUY61sA4go6Pz/fZDI1l/zoDU2Tu542/1607VSBnrVblFqewDeHrr44SiSuvKTY/Gv6uQJVQPu2AWO7hOJbVGfl5eXLli2bNm1aleJ+9tlnjx49ijE+fPhwdUme8GvO//TzxY0I0B1th92bPFUilq5uTn9PDAbvmVial++6zOoiiFcBNGihmGFthh8tORKoCuI4zs7Zo8Rykx0rPUZhmgBBhADgzAqRXImNj7xqh5oUdFJSUrMOSvMtTe56YtesXfnrV0AgKzx+Rep9h8XeCOWbd/CvvzmcYhjW9ckdj57NHzRXTInXhNls/vjjj2fPnl192bRs2TLhg1tgwMHCA9tytgqBAYfyDoEL0tre7dkmxjgwMNCr0z84ONgzENMNo9FYWVnpObF1e4abi++a5fjvDufvPFtKYdQz1nBvz8hgXUMVrBgeOcIJjgPX9vOEDAkfkhraz1Om3FlBISzszgOAG3lQZZqeGk0csbGxnTp1qppEb9mypRF75V94dT1lZ2c/+uijAHDPPfc8+eSTbqcL5Zqka38Ii3dR15zz6PGxP39OCACCTnnn5m94+/7HlrlNS/nCosrXX8cul8JmdtLMU7s+nxOWoLu3u5K+Pnyeqs1tsnnp0qXi4uJPP/0UAIYPH96nj1Q+syuVlxVYUeGs4AmvwqodedtFFXTrhOPJz6cK1xwvQASm9IwYI7aU2ZdVti+rLFinQAidya/8+VThw/2iGqg/Glpzf7sH72031Wq11VTOKkITkWO9IqRc54FP0ntPcCHTOIgr6Jdeesm3noqWiuB6ioqKEqwfOp3Oc3e/Vqv1arJUq9XgUVlKwLnsU0KACA85AgXHtq3Id7sKtzudsVXyCBGEGM6lYF0JhZeu5JeE6hVV/azykgm4TTZTU1OnTZtW29tGcNV6lUY0ACkjZd2CuolKFdoLvz7+lamy9LagLkMi7mgl2VR2ni1Ze/waEAQI/XQ0X6OghnV0N/JcKbWpGOzkCABPY9h+prjhFLSAhtFyuMY1ysTYiSdLMxycAxFgKMU9sSIVJmWaBHEFfenSJWFKKOOJp+uJYZioqOsPmJs1AACE2n3SgQGCQUlUhlhtcF23EWEROiBK5SbJXaxuNEQApG15gYZBVWK+NVjdaIwAAAGCkIjN5Zo1/+Xj8zCmEaCTpSevWC4/lPSID/vgt5w/8Pvo/buVnOtsRNKRmNsPXDB5KmiDmi6yuGwOFhAQAoPbNfEOjhBl6Ad9/nW+8pzFaulgSA5RycZff0FcQa9cuXLChAlGY0OV5GheNK3rCY+5i9+797pSRIRDuN9d7gUvUFwcwQiRv7J0lIZE0L6IxhPvEkJRmigH7+B4TkWpzpWf9ZTZkrcZY5pCFBCCMb33WvqDSQ+3+Ek0uXz5vhWvFysNPKZ6XzgSUFl+2ihepMNidwFcH6xKpw+2QdcTg8IwOHCIn6cbbYWIK2iVSpWQkJCSklIVjb9jx45G7JV/0cSup6Ag0GiJzYp4AgRROk200d1UjQYOIvGJJPsSDwQTuBIYrR7Yj8YNpQ1jNLHHS47rFXqO45y8686oOz1lLE6LkBBSmPYDQg7WoaKb5f6X2sP/tq9SqdU5rYgQO6O898iG0/1E8qyeumqm8fW3FQLIyJXaHSrTmhFX0HPnzpVt0H4CKShAYWGIwojnkUrFlZSAqRTCwqrLILXq7GsLyud/GGYqyA+KXD/kvtIrFp6QW420qyV9wvqWc+Wbc34FgAHhA4dGiNSr7BjY6XjpcUCACOEJRGgiW7x2BgAwmcJMBSymAIHRVuGkFVF6keeI4wEBEl6g/F8mIxkZd8QVdL9+/VauXHn06FGEUGpq6vTpTVaYQwbHxXF2GwoMRBgjAHA6kVh86DVG/9+7ZylpjDGmOI6qdFU6OL2qQYqYIEBjY9ImJ08pNZXWVCfFqDCqKZWNs/EASkphdpU3RE/8DqcLUUio7UsQpgnXT8y+3C1afy7f4mB5AOAJGZgkZxGSEUf86Zo9e7bNZhs4cCAAbNy48ejRox999JEPr5ptvvTFhc/LrGUdjMkj24wS4nvcYHn2yLXDuaW5bTRtkvTtfHj15gW6rTM9fRr39TdEoSB2B/OvD0Fsa0y0UWV3cUr6emFmjicNpJ2rwAhLVLEqdhQHqUKUtMLJOilEmZym1lCTEAUYcHg4Mlsps7lCY9BifmgHkX06I1RmOLBaAXyZPnhHx4H3dI9o/K7KNAtqjOLYtWuX8HnWrFlDhw714SXzrHnvnHqL8AQh+KPsjzxr/ox2M9xkOML9J+s/p0wnCAFCyMjoUXe3HefDPjQv8IMPoNGjFZUWVVKSuYYKGiltdKNTQn7+vVhBY5uTfS2tiUNZw1ThTt6pQkoKUYQQnvAtXjsDAKR0gjVrlW3CMYSH8AQGDUAengBSVMTMfHwoZuwOF4fwbUp7dGCTZj5hWX7/fldBoSM5mXROQS0lKWvLQPyZcTgcHMcJu1Q4jvNJsu0qtuVtJTzBmAJCaIQOFex/LOkxfHOo1p9lpw8VHWAwDQQIkF9zNw2NHKajm2vNqvqDQkOottFIoYAa0o0iBJN7Ro7qEuFCCi1yCFPpJqRrYNeL5gsHiw8gghyc47mU55u2P40D6tMHkpP59HSCgOqQjEeJhHCQAweJuYJCtAYAEaJL37Tl0PRxA25h26cPITzPLV5C0tM5pYpz2Mno0fQTs5ukJzKiiCvo4cOH9+/fX6g+sHv37rFjx/rwkjbWWvUZAQJADs7hVnY+qyIL3dh7igC5eGde5dX2AU1fw8nPCdIqdDqdySSV66dxwAhPjp8ytn1aXvHVNtqomvawtTBI+h44n4mTkzFChOP4n3+hnvPI13zhAgEs7DwiCClczq0nrjaQgib5+WTTr5Vl5bhTChoxFDw9/5mZ/PadKNDocLC8Sqdct4GacA+KbMpywzLVEVfQb7zxxpAhQw4dOoQxXrhwoWfa3PpwW1DXoyVHMVAAwBMSp49z084AEKoJJ4QHRAEAASAAQcrmUT9QpjptdG2UjlahmgVIZiYAIdeucRUVKCSE/+8v1LPPuCVDIm3aALme9gIT4qSVvRKDamqwXphMrvumVWgCTA5Q/bz92m8nO7z2rOFmzwQpKwPOxZ09RwMiQMpV+uJzeZ1kBe03uCtoi8UifOjVq1evXr2qDvqwJHb/sP5XLJf3Fu5BgOL0cQ8kPOAp0z2w+3f4WyfnBARA+D6hfYNVsoKW8XeIzcbnX0MMAwxDTCbcoYNnqjqqf3+X/lObk2AMPKZOxHeLT2oQhcgfOWpX68pciKYRS6vj03/dNHrSfYNumqrjoBAoLhG2OPEIG2zlL2VYvhjSEN2RqQvuCrpz55uK3SGEWJbNzc314V5hBOj+pAcevf2xq0W5gYogLLZRWENr3uz29lHzkYLyggh1xKDwQS1+E5pMCwAplQgI4XmMgHA8n50NhLjr6LbRig8Wap+fy/Jwuf+IyGlTU9o1zAza6XRw6K9YeIx2nS50U9Bc9kVCrm9opAhPEDKWFthdvIqRXYV+gbuCrp6YnxDyzTffvPHGG2+++WZ9ruGZMRljrFPowjRSVU3DteF3BAzN1eSEqyJ0ihpTmCOEMMbSqatrIyMj4wP0eoiLwy4nEKDUaq64WDTZM+7dS713t0qlasMwZrO5gfqCunVTWs1OWkURnsdURsfUHilt3GUqKghCLKYwITxCFM9pHFYHKytof6HGyKcTJ0488cQTkZGR6enpMTEx9boGTbtNwIXsmtKbFX++vHFr7lYaaAfveKTDY73DxEOREEI0TUvX2hC0s7w3ss545krFGAvl+yTOEiqGSMsIYhqNRnqJhjFWqVRuCfn8EDxwAL/iSxIcTDEMKS9v4oiIsDCqd0/d3v1K1uGiFVkBUQOS3KfqJDkZKIpxuQABxQNL0bmBbfQqeSrjL4goaJPJ9Morr+zZs2fx4sVCcaB64lnkDWOs0Wg8Cw5VcdmSvTVna6AqkGVZNaVecebzZF2yAos8nyqVyul0StcoYhjG5XJ5Xs6HhvWWTWVlpdsRhmEoivI8Xh2MsVKplJYBAJVKZbVapRP2Mwxjt9s9R1lI0+o/oNhY6ovPydZtDMfRPXo4+kql1W4gqt6I7N7f2PPn6KT4skonD+ihI2tCEp+Dm9eRnN5QwTAcxxMgCCEWU5P6xupreC5q+cYFAK9vXJla4q6gv/jii3fffXfWrFmLFy9uwilnkb2YQX9dncGKUkdphFrecPZEg/kAACAASURBVCXj7+DERJg9S63VAoCzppdTSSm3aZPDbCadO0P/fiBZ/PtWqXoj8jk5xOHkc88aAFlV2kqA/FMXEtrflHiaz7uKgoMqrS7O7nQxDMVzka7ymt6pQi1zr29ctVrt+calKMrf3qbNAvdfxowZMxISEn744YdVq1ZVP56RkdGIvYJwdbiTc1b96eJdQcqGcaTIyDQupLzcNWEiCg5ilUp261Y4c5b6+98a5EqMghQVchQDACqXHQhZm8/ObH+TCE5MtJkry1QBWKFBAJryko8z+RXDG7ZMokztcVfQ+fn5TdIPN9pq294ZNXJ7/jYM2Mk7Hmn3qKh9Q0amztA0LWpb92rspihKoVBI+5yF1aeoNcC5/wAXYEQqNUII9AZu9U/62X9HDTC7JKzLoQtgLGaCABFiU2qOn86DwbE3CYWGnn70H0nLPuAphuZcKyf8w6VUOzhe1dQ7UWUE3BV0RIS/mBFGRo0a0e7OS4WXwpXhOkY2Fsv4GJZlPd0SCoVC1NhdHYqinE6nhAcFbqhmUWsAX17OI0A8jzFGCBGErCYTVDMI+MoUgPR6l1qTr9DThGcxHWQpjY4SSZunu3PYi3xsFGepDAi286R/pF7Wzv6DX+evCVWH0gZa2n0k44+Ul3M/reFKSi1BgWTUSNS2bVN3yI/AXbqA2QxCgWCXCw8fBgEBDXKhvn0Yq0VFa1yY0tktv/ZKO1Ms8lJJaaO7u2ebH49eo6xc7zhDWtfQhuiMTN3wawUt0ywhhPv3Mv7IEVAo7ACuVd8pNq5vIB3ULImOohcuINu28dt2qKZO4SY1WIVWjWbLOyvs23fqKs25kfGXYjuiSvGVwdguYXd1jQRKiVxW2frsV8gK2sd4mh1pmva6TUbCZFkFRVEURUnLCKtmTxnpOHHfQgoLuZ27UEgwAABNI52eP/U7Hjig0Trg/+Ae3aFHd+0brzMNuVEFAG5Ljpx/KTVIq8AYWyqd03u7b1SpQkljrVZRVmatSUCmSZAVtI/xNDtijEWjsKsjYbKsQnBeScswDEPTtKeMStV45aYQxtW35RMgcorhpqJjhPaZ4XEncisJoFgjc0eyHArVzJAVtIyvCQnBQ4fyu3cjnudpBmxW6HJbU/ep9XJ7W0PfdmENPVWXaSBkBS1zi5SW8uvWO0tNKC6WjLwTeRqXEQKVEmwOgoCwLqp/P6RsRRlHZWR8iKygZW4Fh4P796fc8QysVNgP/49cuEC98Lz7RriyMvLLJhQVCQAUTbMZp1DGSdy7V9N0WEamOSMbB2VuAXLuPLf/IFIwAABKFZ++h7982V3GUlk94QOhMHjbHCwjIyOKPIOWuRXIzTHpCCHePScOiowAhwOsNsK6XDRDzJWoU8fG66GMTAtCVtCtFJ7nN2zYsH79+pUrVwKA1WpdsmSJEMn3zDPPeKbwFkDt2yNbJWFoIITQNB44AOJi3YUoCj/4gPOzL8BhRwgOJfUJcak6i7UmIyMjjWziaKWUl5d36NChTZvrgbHbtm3r16/f3LlzY2NjDx48WONpajWaMBEKi/icXEdefp42GHmkPCSVlc5vvi2j1RaVrkxl6JB3buUX2x2svB1URuaWkWfQrZTAwMDAwL8yM2RnZ/fs2RMAEhIS/vzzz/79+wPA+vXrc3NzEUKPPfaYIMZlZ5t/+SVbF0YZEEJg+PH7vakjRw9Nqd4yV1Rks9sNTpZHCAGheTbMVHSlgr+9rXhZnJaUsF9GxrfIM2gZdyT0IMnPtyOawggjQIA4RrF9ZwbvVi6HYWiHg0cIAAggIIjmnTSWdxDLyNwy8gxaBgAgMTExKysrOjo6MzMzIeF6XdF77rlH+FBcXCx8IKGhYLODSkEAEBCadZYYw0zlluol7IjdzhsMdEUFQQgRUqHWmbUBbQ24pj2QLamiioyMb/FLBU0Iv/8AOXXKEhEBgwdBcHBTd6gFcvbs2bVr1+bm5r7zzjtDhw4dMWLERx99dOjQIY1GM2XKlJrOQpGRlTNnGT75mGMUCta5dsTDt3du61ZgFIWHM6NHFu4+WOlkCaBAa0XKyL7yDFpGpg74o4LmflzNffU1MuhtBLiPPqJ/+gmFhjR1p1oaycnJL7/8cvUjc+fOrc2JYb275vUfoN27+3/JfQ23dxze3SOBOEJXJz94ONs19NSOY10G/9Rl4J8XHSP6cTqlXIpURubW8I2Cvnr16tdff20wGMrLy+fMmWMwGOreFiHcss9QRAQAIJoGYyDZtw/dM94n/ZSpL2YLN+Nv4WFhKDFuhDOfXzKPGbPVU6qA1m7rf8++oZNommZZVmFnSyxOnVI2R9QRt5jI8vLyJUuWKBQKp9M5d+7cxsyEJdPI+MZJeOrUqV69ej355JNxcXGZmZn1aYqwXPXcmARTYJVTIPoL/PnzoNECxgCAKApUanLpkqdYG6PKyd2wKRNwsHyYXg7AqDtuMZHZ2dkTJkyYN29eYmLiqVOnmrZvMg2Kb2bQgwcPfuWVV44fP15WVjZ16lTh4FdffbVz504AePfddyMjI91OQQgZjUbR1iyTJtk3/hdcLg5jxPOGgQPpGiQBgKIonU4nHaRFURTDMPJEo/4glap6cSYgBMS+1Sij8t5ekd8dzlcriNXheuqOWLVCtm/UHbeYyK5duwIAy7IXLly46667hIN79+51Op1arbZzZ/ddQTRNCwW5JS5B0zRCSFpG2L4kLSOgUCjcHsnGzEjekvCNgv75558nTJgwYMCADRs27NmzZ+jQoQAwZMiQTp06AYBarXbz4COEDAZDTW59F0bEZiOVFiAAGrWdYVDNyRx0Op3dbmdZVqJ7Go2GZVmn0+l2PEAu83GrtG+HBg0g/zsCahWxVqKhQ2sqZzW6c2i/pCAnUqmJTadqGleHLy1vfkZ5efmyZcumTZtWpbg3b95cXl4eGRkpxLNXRyjjID1BQQgJwebSMl7bEfBU4nLhurrhmyensrJSp9MBgE6nq6ioEA7GxcXFxcUBgMlkcguQwhgTQsRLc/I8u/oniGqDAGiaZisrHb/9Rk2ZXNOlCSEsy0pX+eR5nuM4aRmZ2oAYhn7qKX7zZriap+nU0T5oINScjD9QwwQGGkpKmuxrFyxvI0aMWLVqVWZmZo8ePZqqJ77FbDZ//PHHs2fPDgr6KwH/e++9J3yoiomsQqVSec0HzTCMVqstLy+XkKEoymg0SssAQEhIiNlsdtPIXqfwMqL4RkGPGTPmiy+++O233ywWy5NPPun9BAldSQgBQFYrsdl4hgGGAfnd61fotHjyJIZhVFqtvaysqXsjhajlrbCwULDbxsbGetawRwgxDFNTKhIBjDFN09LqRqhw5tWqUEu15RYTeenSpeLi4k8//RQAhg8f3qdPH68tyDRTfKOgw8PD3WK2aoJkZ/Pf/+jatq0ACH7nHdwv1V2ConCXrvxve4GieQDidOGOyT7ppK9owQvnWpJrsqefz2cBR+qoYR2DRWOceUL+yDVbc2yBDJcUpmn8TkINlrerV6+uW7cOACZOnCis8KqDEPK0n7qBMWYYRrrIpPBfacNrbSwPAm4xkampqdOmTfN6lkwLoHGNgzzveugRCAtD4eEURbleeZVZ+Q2KurmQJSH8iRMoJIQ4nYiiCKMgl7JR166N2k9JWurCuZYUW5zPrj7rYHmEQMVQV8vsj/aPdpPhCVl5KG9vZqlawVhsrnu6hY+7PazxuypqeevWrdu///1vALBYLJ6r9cDAwMrKSmlrmMFgcDqdPikyKWp5CAmRo/5lrtOoCppcuwYKBRKmHgiBTgdnzsDNCpqwHKIwBAUhAIqmic1K/KyWmufC2eFwXLx4EQCCgoI8V6wYY2FRLNGm4H6RlhEmXNIywsTNU8aHPvQdZ0ocLEdTGAG4OP7X34se6BvFUDe1f7HItudcqUFN0zRFI7Lm2LU7koMMje4qvGXLm4yMn9GozwzSG4Dj/vqb5cDgnuEMMTROG8vvPwBCHkuzBflZyVHPhXNBQcG8efMAYOzYsY8++qibPMbYq6lRMHrWRonr9eI54aRluOpfe/3IL7NXN9E6WWJzcQx1U8/LbCxN/SXDUKi00tX4Crr2ljcZGf+kcZ8ZvY6edh+3bj2o1bzdgfunom7dPKWohx4CQrhfNnEA1NwXsD/ZN0Bs4RwTE7Nx40bhv54+dL1e73K5fLIiVigUVUt1URiG0el0JpNJ9FyJE2tPYrg2/ZwJ0wgACCEMjTz3cMcEqewuTqO4rqMdHB8ZIHvwZWRumUYPUE0bi86f5/b85urWA905ivZI9w4AEBxkfejRoxGdK7SBlUFRw82OML0fPd6tfOF8R/ugVYfyMEIURizPT+4RgT3sJ2F6xd8GtV2WfkXB8A4X+9JdiUpaTmwrI3PLNK6CJoT/YoX5TGaRPpzKygmY88zZf/+nW/cENyn+1O/8rDnJWEERPqNjn+d6Tvz8ka7+sxWtlS+c9Sp6+YOdD12qsHO4rQHf3lY8iGVAUmBqYhBhNMhpoeRUdjIydaJxnYSFheyuPcVIQ1MIAXaoNLvX7OnQOVZzs/J1PflUkTqQByAAHc8e7RmWdL4gqWsNikCmERAsMNX+hImhgQzDOBwOibOEGDKbzUvjckUVGZmaaFwnoVLJcRy6YdXAhBCFoqDCGR/yV54z4nIRjFly/YG1U4y2MN/qkveqNCWexnEhEFjaaI4xViqV0jIgJ+yXkamZxrUMGo2OkaOVTjsihGadKof1TERisO4mMzRiGMLzcGM+pWCd+YawaxVSMzUZGRmZFkljOwmDnptzXh1WmvGHxRiyN6nvlEFJntFX2a8tCHnxOYdCiXl+f2LvE3Fd28s1oWVkZFofja2gSXlFT6qcvXi4YvioO/oaQjuJbJqKG9R9xvT5bUuvWlXaHGMky/F942pMNyojIyPTUmlcEwch3PLlJH0P1SYi9OypgOefhuISTyk1Q/3j7k5ZkUn5wW0wgr8PiYkNkU2NMjIyrY7GjeIoKuJ3paOQYAAAjEGv53//Hd8xxFOyV7zx+xldiUKHWRuFpPz7MjIyMi2VRp1BI4YBcnM9DtGNKgAAQFM4wqh2S/IgIyMj03poXBNHYCAeMwasViCEOJ3IbEa3+9c2bhkZGRn/obGdhPQTs/i4WHLhgiomxjlsGOh0EsKVDlZy+4KMjIxMS6bRc3EolXjCPRhjfWBgSYmIh1DgQpH11Y2ZCoZyubjn7ozvHiNvI5SRkWl1+GMKG5Ynr27MDNMrQnTKED3z4fbsYot7vVcZGRmZFo8/Kui8MntV8jMESKOgskukcnXKyMjItEga3cRRCwLUDFfN9szyvN4j47CMjIwonmUfKIqqTS2e2tT0EW1ftDW3wrvSdXhlaqIxFLRbWcycUuuvJ/O3/XFy7O2Rd98eEaxzz/Ws1cL4bm1+PVWgAd7h4gd1CL09IdQz6bBAbfKc0TQtlDWp543IyPg/nr9zhJDX37/wX2kZQcnW5jmiKMotPaEPi661KhpDQdvt9qqSSxYHN+fb08FaJsyg2nu2sLjcOnNQW898wfd0DUkMUZbYsZ5mu7XV26zWmhqvKc9ZdTDGojVN5FxoVcilylsMnjlghUJo0rlheZ73mj+WoiiNRiMtAwB6vd7pdLqlJ5SnR3WjsU0cFworNQwlTIdpjI5cKru7a1h0oHvleYSga7Q+ODjYZDJJJ6KU8QmtsFQ5RVFuazsAQAgpFAqvE0mm5g1WVY2Dx9rRDSFlq7SMTCun0eOgKezkSGGxDSHQKimMUPXqojJNhWepcgB49tlnMzIyEEI7duzwPAUhFBwcLN1sLWUCAwO9yvh8Us/zvOfCixDCsizLshInKpVKlmWlF22Codbrwg4hJC0j08ppbAUdolOYKp00hTFCVicPQIK1XiYjzYu6WQAFC53XiRtCqG5WQq8WQM9S5QDw0ksvCevZsrIyN3mapjUajXQFW4yxwWDwPNcNo9FYUVEhvU4yGAxWq9VTb3rV7BIQQkSLnfM8L10EnRBS07nVZcBbMXWe5722I9PKaWwFfdVkC9ErOI7wSLg2yiuzxwa3HFuw5+JX0M7Si2JBsUrLCH72usl49aF7lioHgJCQ68lgPUuVY4x9oqQEOI6TVtCEEK96U0am5dHYClqrpBFAoJahaZpl2TKrS+M31WB9gqcrkmEYURdldYQ5r7QMACCEpGUYhlEoFJ4yXg2drbxUuYyMf9LYCjoxVN073nj8coUakUonNzQ5OFQvVwJtelp5qXIZGf+kCZyEj/SLSo7QWVgcpCK94wIauQMyMjIyzYUm2EmooPEdycGBksmSZGRkZGTkEDcZGRkZP0VW0DIyMjJ+iqygZWRkZPwUWUHLyMjI+CmygpaRkZHxU2QFLSMjI+OnyApaRkZGxk+RFbSMjIyMnyIraBkZGRk/RVbQMjIyMn6KPxaNlfE3PJPhCVVBpZPkCZWWvCbSQwgplUq3EnZuYIy9FjqRkWl5yApaxjuilUcUCoXXiiGEEK8VQ4QiJl7zQXstdNJ6kAtIth58o6AJIZ9//rnJZHI6nS+88IJcjLWF4ZkpX07Y34S0wgKSrRbfKOgTJ07o9fqZM2devnxZnubIyDQoogUklyxZUllZGRIS8uCDD7rJC/YooWJOTWCMvcoINitpGQAw2U2FXGG4OlxNyxO1+uIbBZ2ZmWm1WpcuXYoxfuyxx4SDW7ZsOX78OAA88sgjbrXjajnSCCGtVuvVOqlWq5VKpYQMTdMYY6GOp0zroaUu7EQLSEZGRtpsNqPRWLfljoC0DELIaztbcjb/N3sDhSgH5/rHbf9ICepcda7Xq8t44hudxbJseHh4Wlraxo0bd+/ePXLkSAAwGo1RUVEAgDF2G1RhtLz+YoRfg7SChlpU+aRp2ofVOVvqY9/yaKkLO9ECklOmTBE+eBaQJIQwDGOz2STaZBiGpmlpGYqi1Gq1hMxlS/Z/L27UqwxOl0OlUC8+9a8Pey2mMS2cq9FoanFzMjfhGwUdGxtbWloKAFqtVqgDDQB9+/bt27cvAJhMJrdBFaa90r8GANBoNHa7Xdo6qVQqHQ6HtCeKpmnRqoBarVa6A6K01Me+5SG6sNu5c+c///lPAHj++eer7APVCQjwXuVHoVB4Xf8BQG1e3tKLP1H8toBkgb3ARVxXLVcBgBCiodVlLlOIMrSp+9WM8Y2CTk1N/fjjjxcuXOhwOJ599lmftOm3eD72paWlq1atAoCuXbv26tXLTV4wsEiHiAl1uKVfGBRFURQlLYMxFuxCbsdb5wJTdGE3aNCgXbt2Cf/1rOljNBotFov0e1ev1zudzqqJiCjCbNFqtUrIqFQqhmHMZrPb8eDgYImzwI8LSNo4u9VVSVMMEAIIKl0WLeX9NSYjgW8UNEVRTz/9tE+a8n9EH3sZP0R0YccwjPA6tFgsNZVI92pV84kMuYHXdpoLKkqppjV2zo4QIoTTMNpKziK7CuuD7De7ZTwf+6D/b+/cA6OozgX+nXnsO8luXuRBwvv9pgbDO2Ar2KrYa7Eo0F5RsFRoqQoCt7Zar/UKUkWpSq83BZRqxQKlyEMQUXmEh0p5i4CABAiQ926yj5k594+BuMluZifJ7Mzu2fP7K2w+ds8vO+fMzJnvOyc1dfbs2fJvQ2cAGYYJO8ESjHzN6/F4FGIsFovJZFKOkWcSQ2MiVosQSULd2MUCmeZMM2t2WVx+0c8jU3Wgysm7Iv83SvPQAbrF0G4fLyTUjV0s0Cmp89jssTuu7GCBqRWqH+4+XX5CSGk19M/XYmi3p1Ca44ft77y9+/hzZd9kWbIdPJ2Abit0gKZQKFqSZcsypZiUk68oKqGr2VEoFEqMQq+gKRSKKur8Yk15HS9IJo5e2OkEHaApALQ8khKJj06Ur9hbaubYer8wb1ynAXl0CT09oAM0BYCWR1IUKa3yrdxbmu4wsSzrMDOLPvzmrz/vR6+jdYAO0BSAZqqiP/vss2vXriGEfvCDHzSJpwv2JxQXK+stpu/++CaWKavx5aXS26yoQwdoCkAz5ZEnTpw4e/YsQuiHP/xhk3i5plwuyWsOub5cOUaG53nlARohJFfMRzahRIFUOy8IomSt89u+ksAr4gyXo5fRjUoI6ABNAWimKnrGjBnyD6HlkTzP2+320HUkgmEYxuVyKccAgMlkcrvdyllZTqezrq4udEmsVqw0RGkFXTPsw3uadvteA8mOJSa5w9GDFclFWWOMbhf50EuSKIJ37xEWLa777+eED7dBbC+5MHTo0LNnzy5evLikpGTMGNrxKI1ACLp0uJJuTclMsuc4LRnWlHXn/4Ehpg9pMqBX0NFC2rtXePoZlJrqZ1m8ZStT/ysmhpdVouWRFGV8ktfC82aev/EMGSEJSyyiTwWiC72Cjha4ZB+TmnrjSZnLJR06bHSLKJRWggOBrsfK3VVlUnkFSFJAEka1G01HZx2gA3TUaPLYK7anOCgUBaTX3sh/5b1J2+qu+csrqkoHOfuPzx1vdKMSAjrFES3QkCGwZSu4XAAgVVWx/foa3SIKpVWUV0j/+hekpw/+BgougFBxjX2mC9OZLoSkB3SAjhbMiOGwcL5Usp8zmfgB/QT65C3+wRcu4F27600mVFgI7XONbo5e1NVhhvluSx4WgeJOMRQNoQN0FGGKipiiIntSUiAQEBUX7KcocNVbtu742p0XdxamFxZljcm2ZRvSDHzyZGDmoyjV5WU46bU3uD8tRgMHGtISvcnJZkeNxP8+DBwHGGO3h+nTJ2xgjVf48Nj1OumaCYm390pLtUdOgacoQwdoPfAIHoQRg+iMfyMwhn9frKk647Fz4uC8JJYJs3FiQAr84dAfbKzLxqScrDmx99qeRbe8aGEN2CBG2roNMtKBYRHLMu0yxW3buZgcoEPXUeF5Xt6mWeF/yaWhzcWIjzziX706sH6DacLdpjvGc3ntQ2MkjN/ddebwxVqz2e8VazYevrR6RqGFv/EgMTF3xWw7dICOLqV1pZ+c33nw6gFBEqZ0mTok/VajWxRDvHvg8vaT1yxJ13y4esCFjrNGDA7txR9+fdJdz9bjAMbYbmatZsvFuotdk7pq3hi/IG0/UX6t/ioH0pjurhxn0xIY7PNCwykWIRBjdL3jsJurcRynvOmavFlaszGZGeg3c0y/nn2FrbxaWZZfez10Mf7SKt/e0xXW9CNVybsBM3xGYOvX7LjON85hLMvKG+lSWoQeA3Toagxy7pnyBtVymM1mi7hKg7xZn0KMmn21owEG/MKR59OsaS6zS5Kkd8++k2vLzbWFufpIQCo8/k1Hr9qz9/isJzBwX4gfrT1deW+324JjJIz/VnLNlC8FRJFhJbcPI07kkWYHbfBl3Xufl332dYXDwvsFcfORsmUP9HHZGt2hM9274093gcMOALjOg/LzIl4VKgegm7TBIAyh/UV+JeIOtgox+Jtv3O+8s4Y7+GU/m+hwMDw7p89vmpwmJUkC8zWvYw8IDgQYYev6K3+5reMrcjYeSXvj6okeA7TX6xVFMfgVhmHMZrPy/qcAYLFY6urqlIuAeZ73er2hRcBNPi7stq3RWFQz+Gx0yV0eCKBz7nqMId1hspttl32Xu6SGufqTTx7K6wrJN6rKMSzLhl2fKAaXGarxioz1ktdyXApYGIQQ4nZcX3dXl5Em5rtzbZ1f8tU7GW865zgPAADYJHbT6gzHsmzDH8obED88fi3dYUYI8SyTbOVPlHnH9kpq9B/um+h1u/1vFosIWX4+lZ86BTV/WcBxHET6QuXrhjjYz1cQAv857ZPCjL13OEQOAa4HES05svj1YcuDo7JTzHZHVY3AAb7RYc0sX+WvTDOnG9FoQqBTHBoTfKrY/EWFXxI4BgFAhcefDKKNsYU9l8j9OeJpRj7TKMRgjE0mU2hMDM4AZiaZPWKNHWPEuxHrlQQrC3x1oDrDnNEQw7NIgHrWegULdkAixkwNf8ktuJ0mZ9sbIIpiwznbG5CwBJIkIYQwxpKEvT5ffX190/8zZTL3wP0pycl+QfB6vRAacBN5Xacw7xCEPDSHxkS8s9QZfPlygDMd6M+LLLpR3Y2xD3tFLAbXqlTVCVcreatdlAQeEDAAAVFI5lOMajYZ0AFaY4LvFTYdqUhpN8LvKAEwIVZ0iN27J/docjMhI98Ahv1VA5IkYYyVY+RxITQmBm8wL1f7RcHK8G65Wgqx3jrJ7+QbjbwMQmZbDRZ5SbQAAEJgsYhX6q9oMkAHY+GZsb3SDnxTZWVZjMHtE/rmJIWNRAwDibaont0u+gMSIwLiAGMAhDEAQk0G6NPX6ny12UxVd7PzFGAWMf6epgk8QxM52kRCDNDXvdfPVp6xYEvHpE4I9LuWHNXVdfzKIF7MEbgrot82uNMtnHbzp/HOxQoPw9UDZhEjYACEADDrFtwuk6shhkEg1PIc9iGR8bMmjMEvBlLNLoW3bTX33ZKVbGHXH7o6tmf6qG7OjCSlpxoJBXK5GIbp8XXtpfYmfLP7cIgNnowCgGQL26P0627/rr2WnXOsY3t3IKf36EFGtJcoyB8vvij//O1v3rIw5oAoFKQPmdjpPt3G6P55yXvOVDkhG6SsGo9/xG10Mu47MtzlhZd3nswT2IAkMqyIWIkJBKRGkzOVp84tX/nMx0Vpu4sckt9UY7ek+IdlWtpFoz12E3vv4KyHb+vldruV55ESDfzVKb66cvwWbtfw1IB8QcygBzpNaRKWtnnDvO2vAwA+hBgsPnr/C8mWmHvyEXcQPkBLWFpx+q+ZtkyMsZmRPi8/0MfVt48zfJq95gzt7Kz1CvvO1Vo45tdj8zOT43Xx4tBZUXlCXHm2VDlXp9eOjadLr5xASQCIEyXMIRNrtttsdut38WjbpvNm25hPKnqdcl9qZzuSNqT31DtjbYqWeJDHgxDY/eiPC74+PCi51o6y24+9ZUSjylgsSSnLl4mBgIQYAMxJu4S5mQAAIABJREFUwh0XDtjN9Aq6rRA+QHsEd/A0GcfwFb5y3T5995mqv+27nGIziZL0zMbTSyb2zIrPMTo034bneZZllfNwlHJ1AgH/uvXfc4jbx9kYCSQWWcEimjiraAuO9//tnSyPByNIOgvdzpanDegwuKczOIBubqsDuH8/Kb+D9O23JswUHKxmBf9TUwYMEDHPfncnirxe5PMCZ5InqSWGvaX2264ZNPG5rcTx4w584YK0dl39mvdxebNjrp1ziFhoeETmE33ZVv0KhV//+LzTynEsMnGMy8rvPVOl20fHOjwPde6MSmHqu5dEFjESHlRufbLfgqbFlhYTMAghJF+N96+9FHvZKOSDeP70L+eVtuvICYGr6bnv3DO7PCO3rMbXKIjnwWTmELAMYhBiMO7Uu0PwCE5pHfF6BY2//DLw2FxISalDSHruj9zqt1FuTmgYg5hf9f7NqyeWmllzQPSPy72ja3I3XRt68xBlGOTx0d2ybxIIILMZvN4BhwIvHqrymhnHgzNYe0iCc2UVYAwIEEIYITDRlABjYAf0e+H+3yVbeJZlBUEQPP5ka+Ohg+fZe+6Wtmxl3W4EAHabecKdxrSVLOJ1gBY/3I4yMwAhxLKIy8CbNqHpD4eN7JrU9fWi5Rerv7WANZlP1rORP+qf+enXlTYWAMDtE3o3k7mViHAcxhiZeJAAIWQVRAj3XA4NGoSPHAU5j1uUmL50yVZj6J5pG9Ix5fMLtRYePF7xzv6ZyZamQwfz4x/jo0fxsZNgNrF334W6djGkqYQRrwO0tHkLyrr5NJ9lpepqhckaM2vOT+qgvBZBNJgwMFPEeOuxcgnj/xyaMzhf19NDTCMIyGIFhKC2FrAEzlSUlhoaxT39u8AT8/Dp04CB+94g5sm5ujeUAgDAMuih4e0Hd3B7RC7NLIZNEhfX/xMLAurVg+O4wEc7+Nt/kCir/UWTeB2g2QcmSZu3gLyps8fD9OxpdIvCYDOxU27Nmfn9HmELzRManmd+9EN84ABkpHMmU6C8HPXqFRqFOnTg//4OPn8+OSvLl5xMs98MhGOZws4up9NZHvaRj9crbduGMjPlfyGHHZ84SQfothO3A/T994PHI27YKCLgp0yGO+gGPHEG+7MpkiRJ27eLGPOzZ6HB4VOyEMOgTp04p9MXaeUWipGYzRC8Zo5fgNSo1BMlGvE6QEOSg/3NHPYXj6Skp9f5/fTaKu5A2dnsgieZ2Y+mt29fWVOjvCQWJdZBiJs/T3jxT8iRJIEX11QzI0ca3SYSiNsBWsZqRTwPfr/R7aC0EuRwQOyttEdpBcz48aYuXaQjR5Py8uoHDpB4mnKjAXE+QFMolNihWzemWzdrenp9RQXQWyItiOMBWtqx49xfVvztB+hiJ0e3rC6Pdv+lhQtZWvfIkUsvvLK5V92/B6fn5XR9tM9DNk7H6qZvvqlZ9c4HrsoTg9I65HW/q/0Pw7Tw1Kmq+b9b3T+wrzDVmp79q76P5FoSZTdSfPqMcOzI3izhan5ajqND56TOYcMkkDad23iy/GSuOe+2nNs4JioHrbhlW/nbq/88nPmmd0bfnL5Tuz3AQtNLe/GLLy4tfm3tCN+Jno4sV95jfWYlm2lmTiNELB4sO3ix4ttcS26nZr5QinrYp59+Otqf4fV6myx3iRCyWq3Kq+UCgM1mC/2/MtKy1wPP/fGZeRll2YzI+q/Wl22/tH183h1McG3ktm3+R2Yum2I9PNjiN9Vf81366MrOsdljGpZAjMYePHUNGx4f+Nw/ecrKIbXbBwsV0tVTtae/rPhyeLsRweOL+MUXwgNTXv158oGCJD8vesTqHZc+6uXqnR5ujXOO41iW9fl8ob9qgGVZk8kUmjHCcZzypjNqpSJ9UDDK3zLe/pF3wfw17c5tNp86W368xH2IZdjOSWGSZxcfXbT94rZST+mx6iPHqo6PaDeiYbmrtnyDfr9fEG6UDol/+pO4eMkfZrnOdmTqmdrznm92Xfl0XG6jJ8/ixo3i7DnP/9p5tjMnsoHqQPn2y9uK2o0xc2HK9+W/tvKjEfkL9YdM0LXxsAz9spr7oGDUfKHy9gIK3VbE4rtn39ly4YMz1af3XNvDM3zDGB1xU0RKWOK11Dvw/nufDcvw2L67xvFJ3n+c+0dwjH/J0nozc7aLAyQMGBCAT/S8fXalPi30v/Znt910oMDJC5iRgBPEy/WXt1/6MDhGeuppAPRVtyRAN2sOERSfelOfFhpL4L//+5v+mYe78vYAw9d4HfX4Xxf+5RWbDhCnak5+VX2CQzyDGA64szVn/l3xb80bI67/195CZ3maCTAGDIChwlf5WdlnwTHSK8uuuvjyNB5uXjCIILx5NiG+LJWcqj51uPKQnXfwjCmZT95wYb1PUrqeoEQkXgdoVFF1oUPT6YIy76VG//Z6LuRbG60tiqHSVxn1xsl46spSTehmZ0YYA8D1xks1SbU1AnejYQ0trBcSIJ8sEADE1liBkbcWQAhEkWXY2kBtk8Cy+muNtoNBqNx7Tfv2VFVdzLY2WjkCQWndt8EvYJ//bM+k4Ns5jKHKq9/aW034+OOP586Nrcodt1DLBK14ziKu1t/0C6W0iHgdoCEnZ8Rn17+78AQADMNSG2f25OV1/7ouqEchYKBv6gB9Gog6depwuQ7fHKExYjCS+jZe6ZTr1o0TsNkfvAEKzrV30KeFoejX53meuf0H7a+KPnneRZLAbAlIgVRz03rC3s7eEr7xLUuAAUu9orBaLMrOKjhYCQgwYADAIAHArelDG8VktRtwoKLRK4AHpul0ODWhqqrq0KFDsbafYXtbnk+6MQGCAQewP82SZmyT4h0tB2g9T+ncnxZnV5u/d6i64dqzt6vXLZm3BMeYXvtzID1j0pqLlnoJGIQRdEvq+aPcH2nSgIiy/O+fQj16P/LmhQCPBB4JPBrdruh76QXBMezy1yVX2qT3LnKBG4+87Vzy430f16SFLUXnPs9NnZLdof99H1Ret4nVmfYKrv7xvnOD14aVSTOn/bTDpIDgD4gBQRL+o8O9ubaWPURVc1jyLzzfvso84rPrgBiMECBmVHZRp6ROjWJe/zObnH7b9utw86ogx97+P/Lva1FjtGLlypVTp04NfuXee+8dO3bstGnT0kKw2+1mszn09WCSk5M5jlOOcTqdCCGFgL55fR/qO/1a/bVasabSX/nssOfS09LlXyUl0YVoWoNmD8R17t5M795Ju3fO/OqrUwG2IrP2e6m9wiRIJCU5dnz4/fPnu1z3VOYzfVz5WqVwqJK12ayrVxWUld3C8FeSA2lsSpgWcpzlk4+Kzp/vdfbyiS72vq7sdIthu67IfX7p0qUNr/z2t789cuQIwzDvv/9+k2B5MX6XK0K1mFKMywUvLh53/fr4ZEcN9qaYU5rb6WaSa9J9/e4rdZdm27JbmsKh9rAcONC2e+d/Hj9+t8N1NcXT1ZFvYkOeqaamOnZuu//s2cIqf2mOZ5Crm1EpHLt27erevXt6eqNDZdmyZZIk8TxfVdV0VVuz2cxxnPLi3TzPW63WmpoahRiGYZKTk0PfP5j+jgErxq26VH7JwTkQoIZghmFSUugGsi1GswE6tHuXlJR89dVXADB+/HiHwxEcLHdvNU91LRaL0oanAwcOt1r9fr/SVqo9e95iNkuSpGG1YRPZ0tLS+fPnA8Dtt99+//33Nwp1OlmWzcBYqVLO6UwdNKgXgHI1HcMwCCGnU2m/VIQQwzChMRHr9ML2+RkzZsi9ura26Uwix3FWqzX09SYNTkpKUo4BsznFYuNrRbffrRCVlJSUzqbXe5rmDyj/NSDcYXny5Mm1a9cCwNixYwc2WSxiyJAMs7lzIKD05+rff4jJJIqi8u698jbtTQ77JrAsyzCMckxYDh48CABfffXVhQsXtm7dOm7cOADIzr6x0Pn169ebxKvcbjhijEzEGI7hHKxDEmketAZoM0CH7d5VVVWlpaUAIEkS27haTH7sw0YqIUMIsSwbcUdqJtIuy/L5IOLHqSRUNjU1dfbs2QDQrl270OsUm80mCIJykpN8iaec5GQymTiOC02iCobjOIvFEnYDFOU0u7B9Pj8/X/5taJ9HCGGMG9LUwiJ/L8oxMoIgKJ9C5LFDzVsFE/awtFqtubm5AGCz2cJufy5JkvIYpCZGPtiUY+TDUs2Y2IQ5c+bIPzz11FPyN0UhFW0G6LDde/z48ePHjweAyspKt7vR9RHDMCaTqcmLocgbJil3XafTWV9fr3x1nJSUFHY9udZNyITKWq3WIUOGyL8Ne/0iiqJyC9WkzbIsy7KsmvuA0JiIJyci+3zYw7JDhw4///nPAcDtdoem9FosFp/Pp/xH5nk+4vKE8slJOdNfPvxCY9Rvuvjss8+qjKTEKSji9WmLeOqpp0IPmurq6iaDLMbY4/FEvLlzu912ux0pbnNUX19vMpmUByCfz8eyrHzXGUzEKVRlwspWVjZN4/P5fHKlgMJbySMCr7h8gXwJaTYr7WooSZLP5wudOzKbzW0pfwiVEkXR7/crT1Lp8C2r/AbDflN1dXWhVT9qDiev1ytvyagQo+YLFQRBFMXQL7SNh2Xol9XcBwUT7S+UzkG3EmwE165dGzp0aMSwkSNHXr58WTnmgQce2Ldvn3LMggUL1qxZ04L2acrcuXPXrl2rHPPqq68uXbpUOWb9+vVPPPGEcsznn39+3333tax9rWL//v3333+/ckxZWdnw4cMjvtWwYcPKysqUYyZNmnTw4MEWtK+1TJw48csvv1SOeeyxx/75z38qxyxdunTZsmXKMf/4xz/mzZvXsva1ivfee2/BggXKMSUlJVOmTFGOKS0tHTVqVMSPu/XWW8vLy1vQPkrzxG0eNIVCoZCOMYslWSyWCRMmRAy76667It6Yjx07NvPmPg7NUVBQ0KGDYdUfhYWFnTp1Uo7p06cPjjTX1LFjx4gT0Onp6bfddlvL2tcqMjMzI36QxWK5++67I77VhAkTIubzjB07NiMjowXtay3f//7309Ii1FYUFhZ27NhROaZv377KkzYAEPGo0IouXbooT7YAQGZm5pgxY5Rj7Hb7XXfdFfHj7rnnHuXpFIp6NJ6DplAoFIpW0CkOCoVCiVGMGaAxxhHqF1SHaRUTPfS00M1Uw8YQ6ZWwUurDKGowYIA+ePDgrFmz5s2bBwArVqzYu3dvq8O0iokeelroZqphY4j0Slgp9WEUlRgwQK9bt27JkiVysufEiRPXrVvX6jCtYqKHnha6mWrYGCK9ElZKfRhFJQYM0HI5svyzQtGUmjCtYqKHnha6mWrYGCK9ElZKfRhFJQak2WVlZRUXF1dVVW3dunX//v1duoTZ5UhlmFYx0UNPC91MNWwMkV4JK6U+jKISA9LsMMYlJSUnT57kOK5Hjx4FBQVhM0bVhGkVEz30tNDNVMPGEOmVsFJ6eiUIug7QxcXFYV+fNm1aS8O0iokeelroZqphY4j0Slgp9WGUFqHrFEePHj20CtMqJnroaaGbqYaNIdIrYaXUh1FaRnSW+GgBW7Zs0SpMq5jooaeFbqYaNoZIr4SVUh9GaQ4DHhIeO3bs/fffl1PZBUEQBCHsAsRqwrSKiR56WuhmqmFjiPRKWCk9vRIE9umnn9b5IxcvXvzQQw+dOHFi1qxZCKGhQ4c27NzR0jCtYqKHnha6mWrYGCK9ElZKT68EwYA8aIvF0rlzZ4RQTk7OT37yk+3bt7c6TKuY6KGnhW6mGjaGSK+ElVIfRlGJAVMcVqv1008/TU9PLy4uzszMLC8vb3WYVjHRQ08L3Uw1bAyRXgkrpT6MohID8qD9fn9VVZXT6dy6dWtlZWVRUVHYmyA1YVrFRA89LXQz1bAxRHolrJSeXgmCAQP0kSNHdu7cWVdX1/DR8+fPb12YVjHRQ08L3Uw1bAyRXgkrpT6MohIDpjhWrlw5efLkpKSktodpFRM99LTQzVTDxhDplbBS6sMoKjFggO7YseOgQYM0CdMqJnroaaGbqYaNIdIrYaXUh1FUYsAUx+bNm7dt29a+fXuGuZFDMmfOnNaFaRUTPfS00M1Uw8YQ6ZWwUurDKCox4Ap6586dEydOdDgcbQ/TKiZ66Gmhm6mGjSHSK2Gl1IdRVGLAAJ2fnz906FBNwrSKiR56WuhmqmFjiPRKWCn1YRSVGDDF8fzzz3s8nry8vIaboOnTp7cuTKuY6KGnhW6mGjaGSK+ElVIfRlGJAVfQRUVFapaIVROmVUz00NNCN1MNG0OkV8JKqQ+jqMSAK2gAwBi73e6IuTgqw2IcNRZxZ0qkFBDqRaRUghDfu3oH8+23386YMaPtMdoSjQ2eDTeN0q7VRHolrJT6MIoSUV7ONAwLFy6sr69fsGCBfNKeO3duW8IaEAShoqKi7THaosYi7kyjIYUJ9UpYKfVhFAXie1dvAMAYy4vPsiwrb/augJoYbdFwv+TYMdV212oivaiU+jCKAvG9q/fBgwf/+te/SpL0+uuvr1ixokePHqEpPh988MHGjRsDgUDDK2+++aaGOspotV9yTJlquAk0kV4JKwVGdzcC0f+iXZKkPXv2FBcXr1q1at++fZIktTpMza3Zf/3Xf3k8Hm0V1KPGIu5MtZLChHolrBQ2uruRh64D9CuvvIIx/t///V9NwjDGv/vd7zDG8kGDMQ570CxdurSl7dQENRZxZ6qtFCbUK2GlsHHdjVR0neI4d+7c3LlzS0tLv/766+DXX3jhhVaEgbpbs/r6+nnz5nXq1Kkhc/6RRx7RQCYSaizizlRbKSDUK2GlwLjuRiq65kGLolhdXb1ixYqf/exnwa+np6e3IgwAMMYlJSUnT57kOK5Hjx4FBQWhSfJ79+5t8mJhYWFbTVSgxiLuTLWVAkK9ElYKjOtupGJMoUrbKS4uDvv6tGnTQl/E8ZyET6opkV5UCuLHKy4wIIsjmG+//fbZZ5/9y1/+0tKwHj16qPwIlU+fdUCNbNyZtk4KCPVKcCmIpe5GCMZMfd+kjRnvly9fXrdunfzzypUry8rKQmNaUTERJdpSsxCzpm0sxCDSK2GlcCx1NzIwoFAFtMt4f+mll7KysuSf+/fv/9JLL4XGqK+YiBItko0XU02kgFCvhJWCGOhuhGHAFIeGGe+iKDY8ghg4cODbb78d+j4qnz5HCa1qFmLKVMNCDCK9ElYKjO5u5GHAAL1u3bolS5b84Q9/AICJEyc+88wzYQfovXv3LlmyxGazKbxVbm7ua6+91rNnT0mSDh8+HPZo+MUvflFSUoIQunr16rhx4woKCrQSUYMa2bgz1UoKCPVKWCkwuruRhwEDtMqboMzMzIjd+9e//vWuXbvOnDnDsuywYcOGDBkS/NtXX3119uzZ//d///fwww8b9aRCjWzcmWolBYR6JaAUxEZ3I4/YXYtDOeN99erVkydPXrFihfxPQRCOHz9+/Pjx4NSfFlVMRIm21yzEoKkmhRhEeiWsFMRGdyMPA/KgsRYZ7/v37x8yZMju3bub/K/hw4c3/NyiiokooUY27kzbLgWEeiWsFMRGdyMPXQdonTPe5TN/6Ic293HaomfNgm6mOhdiEOlFpBQY3d1IRdcpDs0z3pWfPnfr1q2lH6oh2tYsxIip5oUYRHoloBQY3d2IRffMay0z3n/5y1/W1NQof9yaNWsEQZB/9ng8b7zxRuub3nK0qlmIKVMNCzGI9EpYKWx0dyMPAwpVNMx4z8rKivj0WRTFJ5988tixY59++unChQt1TszUqmYhpkw1LMQg0ithpcDo7kYeBmRxaJLxvnz5cgDgef7xxx/v3r07y7Ly66FrG/70pz8tLCx88sknHQ7Hiy++6HQ6NfZRpO01CzFoqkkhBpFeCS4FRnc38jAgi+Oll14ym80NGe9Wq3XmzJmhYVjx6XNJSUnYNw9d23DdunW7d++eOnVqZWXlhg0b7rnnnlGjRmmoo4wa2bgzbbsUEOqV4FJgdHcjEP1nVURR/OSTT4qLi1euXLl3715RFJsEtGhLDkmSlKfG3n333UAgIP/sdrtfe+21VrW6lSjLxqmphlKYUK/ElMJGdzfy0PUKWmUizuOPP84wTGlpaV5eXvDroRnvKlMFMMY1NTUAkJKSooGGOtTIxp2ptlJAqFciS4FB3Y1UdJ2DVpmIs2jRorAZ76GoWWfg888/X758udlsliRJFMVHH320X79+bZBQixrZuDPVVgoI9UpYKTCuu5GKrgO0XL/fpAAplHfffXfy5MlOp3PDhg3Br4dmvKt5+vzee++9+OKLycnJAFBZWblo0aLnn3++de1vEWpk485UWykg1CthpcC47kYqBmRxaJjxrmadAZPJJB8uAOByuThOV2WtahZiylTDQgwivRJWCozubuRhwJ9v06ZNixYtUigqlc/8ly9f/vGPfyzn9NTV1b311lvB1wLr168fNWqUmrUNs7KyXn755b59+0qSdPTo0ZycnCg4NYuybJyatl0KCPVKcCkwuruRhzGr2anPeH/wwQfLy8vXrl175513Bv+2pqZm4cKFaWlpo0ePnjhxosPhaO59Zs6cWVJScvr0aYTQsGHDbr31Vg0cVKO+ZiGOTNsuBYR6JbgUGN3dyEPXLA45472ysvLKlSsRM94B4Pz588oZ76dPn961a9f+/ftzc3NHjx49ZMgQk8nUJObIkSM7d+6sq6trMJ0/f75mSs3TItl4MdVWCgj1SlgpMK67kYquA3T0Mt5Pnz69Zs2aQ4cO/f3vf2/yqyeeeGLy5MnBt3hdu3ZtVfNbRpRqFow1jV4hBpFeiSYFxnU3UtF1iqPhyMAq1jb0+/3/8z//Iz9kKCgoWLVqVdiD5tSpU7t27Tpw4ECHDh3mzJkTGtCxY8dBgwZp0fyWoV42jkw1lwJCvRJTCozrbqRiQKm3Jhnv8g3Xnj17srKyRo8ePXTo0OYm2jZv3rxt27b27ds37BbR3LEVDdpesxCDppoUYhDpleBSYHR3I4/Y3TRWOeN9+fLlo0aNWrRoUcTVWHbu3BnxyUb0aHvNQgyaalKIQaRXgkuB0d2NPGJ301jljPfFixer/Lj8/HwDt7Bse81CDJpqUohBpFeCS4HR3Y08YnfTWK0y3mtqan7729/m5eU13HNNnz69dW/VCvSsWdDNVOdCDCK9iJQCo7sbeeg6QBuS8V5UVBR2U9poo3/Ngg6mhhRiEOlFpBQY191IRdeHhKtWrdqzZ4+c8T5s2DDliSpJkhoy3rt163brrbdq8sVv3bp13LhxbX+fiKiXjSNTw6WAUC8ipUDH7kYqBmRx6JzxfuzYsffff7+2thYABEEQBGHZsmVtaX+L0LNmQTdTnQsxiPQiUgqM7m7kYcAA3YA+Ge9z586dOXPmqlWrZsyYsWfPnuzs7IjL6UUDHWoW9DfVpxCDSC8ipSBmuhsxGLPWlJ4Z7xaLpXPnzgihnJycn/zkJ88884zOR4xuNQt6mupZiEGkF5FSEAPdjTB0HaCbZLxPmjRJIeO9S5cujz32WNsz3q1W66effpqenl5cXJyZmVleXt7K1rcQ9bJxZKq/FBDqRaQUGNfdSEXXKY65c+eOGjVq5MiRajLen3zyyXvuuSf4yUZLt2ZYuHDhH//4R7/fX1VV5XQ6t27dWllZWVRUlJ+f3+Kmtxz1snFkqqcUEOpFpBQY3d2IJeq7HraWZcuWtfEdpk+frklLog2Rpm2XwoR6ESmFY9KLAGJ3v4O2Z7y73e6333479PUpU6Zo0D7tINJUk4IFIr2IlIKY9CKA2B2g257xzrJsWlqaVu2JHkSaalKwQKQXkVIQk14EELsDdJOK/q1bt7b0HaxW6x133KFdi6IFkaZtlwJCvYiUgpj0IoDYHaBDM95bWpLU3CofsQaRpm2XAkK9iJSCmPQiAPbpp582ug3hWbx48UMPPXTixIlZs2YhhIYOHdrSx8EjRoyIUtu0hUjTtksBoV5ESkFMehEAY3QDmqVJxvv27duNblG0INKUSCkg1ItIKTKI3SmOxMl4J9KUSCkg1ItIKUIwOs8vDAsWLMAY+3y+srIyn8+3YcOGlStXnj9/3uh2aQ+RpkRKYUK9iJQiiVi8gr5+/ToAmEymzMxMALjrrruMblG0INKUSCkg1ItIKZKIxQE6cTLeiTQlUgoI9SJSiiRicYBOnIx3Ik2JlAJCvYiUIolYHKATJ+OdSFMipYBQLyKlSCIW0+wSJ+OdSFMipYBQLyKlSMLIHVUoFAqFokAsXkFTKBQKBegATaFQKDELHaApFAolRqEDNIVCocQosZhmR4kXRFGcPn368ePHs7OzU1JSRo8e3bFjx8WLF3u93ilTpkybNu33v//9Rx99xPN89+7dX3311R07drzxxhvr168HgIcffrioqCgzM/O5557r0qWLx+Opq6tbvXp1cnKy0VoUSqxAB2hK6/nggw/OnTu3d+/eysrKXr16FRUV8TxfUlJy5swZl8v18ccfb9myZc+ePSzLTpo06a233srNzW3yDgzDHD16dNOmTXa7/dFHHy0uLm71ftIUCnnQKQ5K6zl8+PDIkSMRQqmpqWPHjpVf7NOnj8vlAoB9+/aNGTOGZVkAGD169IEDB8K+yeDBg+12u/zD0aNH9Wo7hRIH0AGa0nokSWrYy04eiAHAbDaHDUYIBW98JwiC/IMoiqHvRqFQgA7QlLbQs2fP/fv3A0BVVdXHH3/c5LdDhw7duXOnJEkAsGPHjsLCwuTk5KtXrwKAKIoNF9RffvlldXU1AHzyyScDBgzQVYBCiW3oHDSl9UyYMOGdd94ZNmxYfn7+yJEjOa7R4TR69Og77rhDnuXo1auXvECa0+m89957U1NTe/fuLVex9uvX71e/+lVpaandbn/wwQeNMaFQYhJa6k1pPdevX//www8feOABjPGIESNefvnlgoKCFr3D9u3bX3755Y0bN0aphRRKXEOnOChVInEQAAAARklEQVStJyUlZdOmTbfccsuwYcOKiopaOjpTKBRl6BU0hUKhxCj0CppCoVBiFDpAUygUSoxCB2gKhUKJUegATaFQKDHK/wPGpJmlgQaFVgAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## Effect of Tamoxifen treatment in males"],"metadata":{"id":"zdu0f3B3Jssz"}},{"cell_type":"code","source":["%%R\n","\n","res <- results(dds, contrast=c(\"group\", \"Tamoxifen.male\", \"Vehicle.male\"))\n","summary(res)\n","res <- cbind(res, rowData(dds)$gene_name)\n","head(res[order(res$pvalue),], n=10)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Pa8LHZ5pJmB9","executionInfo":{"status":"ok","timestamp":1718912199690,"user_tz":-120,"elapsed":2324,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"4a567a7e-bbba-4400-bd72-786df6499609"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","out of 25314 with nonzero total read count\n","adjusted p-value < 0.1\n","LFC > 0 (up) : 18, 0.071%\n","LFC < 0 (down) : 32, 0.13%\n","outliers [1] : 45, 0.18%\n","low counts [2] : 7839, 31%\n","(mean count < 53)\n","[1] see 'cooksCutoff' argument of ?results\n","[2] see 'independentFiltering' argument of ?results\n","\n","DataFrame with 10 rows and 7 columns\n"," baseMean log2FoldChange lfcSE stat pvalue\n"," \n","ENSMUSG00000066687 1775.0417 -0.979866 0.1059546 -9.24798 2.28771e-20\n","ENSMUSG00000022602 8859.8087 0.580085 0.0765352 7.57932 3.47379e-14\n","ENSMUSG00000021250 1608.6033 0.524210 0.0791697 6.62135 3.55943e-11\n","ENSMUSG00000025316 1183.0364 -0.371149 0.0604447 -6.14031 8.23621e-10\n","ENSMUSG00000025324 412.8755 -0.503888 0.0911208 -5.52989 3.20438e-08\n","ENSMUSG00000032193 1258.5556 0.405530 0.0736310 5.50761 3.63748e-08\n","ENSMUSG00000025952 34.6641 17.659165 3.2301709 5.46694 4.57859e-08\n","ENSMUSG00000021311 1365.3794 -0.302927 0.0607354 -4.98766 6.11158e-07\n","ENSMUSG00000037112 1931.8700 -0.342715 0.0710251 -4.82526 1.39820e-06\n","ENSMUSG00000008090 545.7222 0.333664 0.0693645 4.81030 1.50700e-06\n"," padj rowData(dds)$gene_name\n"," \n","ENSMUSG00000066687 3.98747e-16 Zbtb16\n","ENSMUSG00000022602 3.02741e-10 Arc\n","ENSMUSG00000021250 2.06803e-07 Fos\n","ENSMUSG00000025316 3.58893e-06 Banp\n","ENSMUSG00000025324 1.05669e-04 Atp10a\n","ENSMUSG00000032193 1.05669e-04 Ldlr\n","ENSMUSG00000025952 NA Crygc\n","ENSMUSG00000021311 1.52178e-03 Mtr\n","ENSMUSG00000037112 2.91856e-03 Sik2\n","ENSMUSG00000008090 2.91856e-03 Fgfrl1\n"]}]},{"cell_type":"code","source":["%%R\n","\n","df <- assay(vst)[row.names(head(res[order(res$pvalue),], n=10)), ] |>\n"," as_tibble(rownames = NA) |>\n"," rownames_to_column() |>\n"," dplyr::rename(Gene = rowname) |>\n"," pivot_longer(cols= colnames(assay(vst)),\n"," names_to = \"Sample\",\n"," values_to = \"Normalized expression\") |>\n"," left_join(y=as_tibble(colData(dds)), by = join_by(\"Sample\" == \"sra.sample_title\")) |>\n"," left_join(y=as_tibble(rowData(dds)), by=join_by(\"Gene\" == \"gene_id\"))\n","ggplot(df, aes(x=group, y=`Normalized expression`, group=tissue, col=tissue)) +\n"," facet_wrap( ~ gene_name, scales = \"free_y\", ncol = 5) +\n"," geom_point(position = position_dodge(0.2), alpha = .8, size=2) +\n"," scale_colour_manual(values=myPalette[1:3]) +\n"," theme(axis.text.x = element_text(size=10, angle = 90, hjust = 1, vjust = 0.5))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":497},"id":"3EcFDDRwJrlF","executionInfo":{"status":"ok","timestamp":1718912315986,"user_tz":-120,"elapsed":1789,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"81b9f149-c97b-40d8-bf4a-fdfa46b8c789"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOydeWBU1dnwn3POXWafLJOFJBBISEB2gQBh3wIoIgiIStVaqfhpsVX6vnaz2tLSty5dgBZbK7ZqcUVAaNkUAWUNi+xbAgSSsGSfyexz7znfHxfjMDOZMCHJTML9/ZXcnHvucyd3nnvOsyLGGKioqKioxB442gKoqKioqIRGVdAqKioqMYqqoFVUVFRiFFVBq6ioqMQoXLQuXFtbK8tytK7egFar1ev1LTtnVVVVy07YPCwWS2tfogPfaYe5NYfD4XK5WkSYW4EQEh8fH20p2h9RU9BWq9Xr9Ubr6g3Ex8e3uIKuqalp2QmbRxso6A58px3m1pxOZ21tbYsIcysIgqAq6GagmjhUVFRUYhRVQauoqKjEKKqCVlFRUYlRVAWtoqISDrvd/tRTT+3bt0/5dd26dZ999ll0Rbp9iJqTsHm89dZbAPD4449HW5Bbwv8uiouLDx8+PHv2bP8Bsix//PHHH3744Zo1awDA4XC8/PLLhBCO4376058SQqIidvMoLCxcunRpt27dfD5fcnLywoULoy1Ri7Fly5ZNmzYJguDxeObNm9enT59oS9RMCgsLlyxZ0qVLF+XXxYsXY/zt0q2srKxv375Dhw71PyXgEVVpJdqTgr58+XJiYmJNTY3dbjcYDOvXrz906FBGRsbs2bNfe+01hFBKSsoPfvCDaIvZBAF38eGHH165cqW0tLS+vj41NbWsrOz555/3er29evXKyMhQTvnvf/87evToiRMnvvfee7t27erbt+9rr71mMBi8Xu8LL7wQ+/p6xIgRTz31FGNs/vz5lFKr1eov/4YNG44dO5aamnrmzJlf/vKXW7duPXLkSMNHYTAYoi1+aM6ePbt58+aXX36Z5/m6uro1a9ZcuHBBeSAPHz78+9//Xq/X/+EPfxg8ePD69evT09NtNltBQUHv3r1j81kdOXLkU089pfx85cqVP/zhDw0y7969+/Tp0y+99BLGOCMjIykpCQCsVqv/I6rSSrQnE8eGDRvGjh07duzYLVu2AADGuHPnzvPmzVu3bt2kSZMWLVrUvXt3n88XbTGbIOAuRo0aNXbs2Ozs7C5dusyfP3/IkCE7duxISEjo169fwynnzp3Lzc0FgJycnKKiIpvN9vDDD//sZz/jOO7SpUtRu5ObZs+ePYsWLXrqqaeGDRuGMQ6QX/k/Pv7447179z5+/DhCyP+jiLbsjbJ///677rqL53kAiIuL+973vtfwQI4dO3bHjh2U0tLS0nPnzs2cOfO5555jjCGE2sWzunHjRn+Z77777kGDBg0ZMkS5O2VMwCOq0kq0mxW01+vds2fP5cuXAaCqqmrmzJkAkJycDACVlZXK/mvy5MnRFbJJQt6FQkpKCgAkJCScO3cuzAyiKIqiuGrVqq1bt164cCEWYsmbJD8/X1mdvfLKK0eOHElJSQmQPyEhAQBEUVR+vcmPIrqELAOpPJATJkz47W9/m5aWNmjQoGvXrikHu3btCjH8rH755ZcXLlwAAL1er9fr/WVuQDmo0pa0mxX09u3b586d++KLL7744ovDhw8/duwYACCEACA1NbW8vBwAVq9eHQtJU2EIvgvGmPJVv3LlCgBcu3YtODchNzf3zJkzAHD69Ons7OxVq1aNHTt2wYIFycnJ7atarNlstlqtTcof5qOIHYYMGfKf//zH7XYDQE1NzauvvgrfPJBxcXEajWbt2rUTJkwwmUzV1dUAcPHiRYjhZ3X06NGvvPLKK6+88tJLLwXI3IBydyptCfnVr34VlQvX1dVFlOq9bNmy7373u4IgAEB8fPxHH32UmpoKALm5uV26dPn3v/+9fft2SumIESMiEqM1Ur2VhzskwXcxcuTIFStWSJJkt9sPHTp06tSpRx55pKioaOnSpWfPnj1x4gTHcePGjfvggw+2b9/u8XjmzJnjdrs//vjjU6dOJSUl7d+/f/To0SGvlZiY2LL3FUyYO22gvLx81apVhw4d2rp1qyzLDz74oMfj8Ze/U6dOAJCbm3vixAmj0eh2u8+fP9/wUSifVXha406bvLXExERCyOuvv75t27Zdu3bNnTtXOUUxRhFC9u/f/+CDD6akpLz55punTp2qr6/v0aPH8OHDI3pWb/3WnE6n8hYJQ3l5+ZUrV/Ly8pRfA2QWRfHixYtmsxm+WSvwPO92u/0f0czMzPCXIITExcXd4r3chqBoLcFKSkpiYXseHx+vOD1akLNnz0Z6yrp167RabUFBQQuKoWiKVqUZd9okzfgoWuNOb/HWPv/8c5fLNW3atIqKCofD0a1bt2XLlhUUFPTs2TOieW791iorKyNN9b5FmUMiCEKAwUTlZmg3NmgVlfbC+++/f+LEiYa96dKlS5OTkwkhPXr0iKpcEdAeZe6QqCvomFhBtwbtdAXdDGJwBd1SRGUF3RqoK+jmoa6gVW4XKKVr165ds2bNu+++CwBOp3PJkiWEEELIc88955+aoaISI6gPpcrtgtVq7dGjR1pamvLrli1bhg8f/vzzz2dmZu7Zsye6sqmohCRqK2jFd+8Pz/OSJIUxufA8Hya2HyFECJEkqbEBGGOEUEDoSGtEDilhvP6X0Ol0DoejsfGEEEEQwgRd8TyPMfZ4PI0NEEWRUtr2iQ8Bd9oGN6LVar1eb/NaPcTHx/uXJC4pKRk8eDAAZGVlnTx5csSIEbW1tS+//DIA5OXl3Xvvvf7nKutrSmljkzc5gBBCKQ3zeHMcF+bpbTZGozEgEubWP2S9Xu90Ohu7F4yxRqNxOp3+B2M/3zU2iZqCdjqdAU9AQkKCw+Fo7LHAGCckJNTX1zc2Ic/zer0+zACtVksIsdvtAQdvJpArIgIefYwxx3HhtSfGOMwAjuOCp/VHo9EwxtpeQQdfsbVvRK/Xy7Lc4neqPAOiKA4ZMgQAunbtGvAW4XmeEHIrrxadTufz+cJoPZ7nvV5vgNZTMhVvheCPSxTFW/yQlXdJY28jjuMIIQGnh3l1qYRBtUGr3KZkZ2cXFxdnZGQUFRVlZWUBgE6na8jtDGh5pey0wgQUcxwny3KYARqNxuv1htF6BoPB7XYHKOiYLUWi0jaoCvo24ma8ZFu3bt27dy8AVFRUTJ482WKxvPvuu0pO0Pz581s84qUtOX369CeffFJWVrZ48eLx48cXFBQsXbp07969Op1uzpw50ZZORSUE7UZBs1itLNMGMJ8PWsKEF9JLNmbMmFWrVu3Zs0dJbJswYcKECRNkWX755ZfHjx+/Z8+e6dOnT5w48davfjPIlNFWi/vs2bPnL37xC/8jzz//fCtdq3lIVCKo3dtqb+evaovTDhQ0u3ZN/tc7bNOmqwD4Zz/Fk1oy3S7GoTt3Sb94QSJEmDqV3T8LfVOxt3k06SVr+NOWLVtGjRql0WgcDsfBgwcPHz5sNBrnzZunGJFfeuklj8eTkZHxxBNPfCsqY8fLbM7L7iyLNtkkhhSAEIIQMhqNwX9yeqSVey5tOHKUATw8PHPm4HQcyn9LCNHpdB3PoLmvcu97hSsRwLCk/Cnpd8cJ7TIrml286HznPbp5Sw2lp37w08EPTeGwWr7jlmgHClp+619sz14QBCyK0quvcZ0z8B13RDaF0ylv/cJjtXG9e8GA/tBear6Ulskv/QpSUxEhvsL94HLin/8MtU64rr+nlDG2c+fO3/72twCQn5+fn5+fmJi4evXqrVu3KjXYBg0aJElSfHx8g0XVJ9M3dpTsLa7lOWJ3e388JWdoVugWzo15ET8uLPvqbFWSSQMAn+wvi9dxo3NDlKFQQn0CXG2iGPp90F44X3/+o5IPk3XJkiSdqDvJGHso6zvRFipiGKXeR797GZtl0QwA3Zb9fgWOf/KhYdGWq30T8wra5aLr1oHDCQgkABBFdvgIRKSg3W75j3+ihft9ouh97z10/2zyvcdaSdiWhZ46BXr99UBAguUdX+Hvz4PU1JaaP9hLplBUVNSlSxflumVlZUosnU6nawgCawhBa/Ck7btQt7e4xqDhMMY84V7ZcPbf8/oHvweVUMiQnrRPDpYnGQQAYIzpBHyitHZIlxBFrEK62tq7J63EfkFLtMrPHCL7KvfO7jqHx7cav9HWXLvmBk7GCAAQgFvQ1uw/Ypsx2KSNeSUTw8T8ZycI4HBCw0bJ44GvD8FDD978BOzgIXnPXsRxzOVCOr38zr/Jgw+AVnuTp1dXVy9fvlwURa1Wu2DBAkVtFRYWtoHrjBkMIPvt5WUJbk0ThfeSFRcXr1u3buHChaWlpQ12apPJtHz5cr1eTyl99tlnG5u52u7jyfX/EQJECHL5ZJ0QgTl1dE78qSvXQ8VlSvWamH8yWw4tp5XZt/9oBqw9WqKR0YRkuUGjYEadGl2F3asq6Fsh1j87WlPDEGDGGELAABgwb2TB/KzeBjYbc7oYQkAp0uvBbr95Bb1x48YpU6bk5eWtXLny6NGj/fv3BwCHw3HzrrMLVc6TVbIRe9PjItuJk8GDYPgwuq8QRJE5nOQ7c9GtKejwXrLu3bsrDQMnTJjQcLBbt26LFi1qcubOCRqPxEQeAIAxJsksIu0MAHmZ5l3FdWY9ppTWOaXR3UNbSDok/eL7v39+JcdxwMAlOWd1vR+jdpjia9BXT5+tX7vWI4iCLB3J6HM2PTczQRNtsdo3sa6gscWCADGMlLUkQhj1jtAATRmz24EXEAIgmLldYDbf/NmiKDbktpSWljYo6GDX2Q9/+MPjx4/zPL9p06aG09/56vzqA+Uih9w++t1R3WbmdQ55FYRQyMq/bPFv3Rs3yVev8X16i6NGNmY9RwgJgqDT6W7+vlqWPmnGu/pY1h2p5Dns8kqLZ0Rc4mdgpnnR9JwzlV4MbGCGPtHQ3jb4t4Ce0//foFfOes5UWCuyDFk5plavctUYbh/deLzS6rlGqTSqe1xOcmSl0jMXPrVOn249cqpSa/66+6AnJ3TnSTt808QSsa6gASE0eBDbfwAQIAaMw2h4ZCX5AQBZkqCqEhBCJjPDiFVXo6BE88aYOnXqihUrlAYuDQ0+QrrOfvnLX3q9XoRQXV2dMqy0xrVq36U4PU8IETl5xfZzA9M1cbpA1cPzvFartdlsIQVgve4QOndm3brWWa2NCanX6yVJCshz8w/YaG0QgtmDUu/ql0qJqGGu5n0tuyZq+3ZNliQpplqNtA16Tl+QOqm6ujq6LXI+OnBlz7k6nYaXZHnb6epXZ/VINUew7cMEz3h6Rrl1qgf4xzlfgv42esu2EjGvoN1uuHAB5XQHez3WaCRM4NQp6N0rghm6dUU+L0UIMUAYMZ8PRdJazWazzZgxo3PnzsuWLcvJyVEOhnSdNViiG1xn16xujrte0JUxxmF2zeo2ioHKC2PMGAuZBCy//Y78zrteUWQuN/ndb3B+fkghlb5ZzatQ0YLE6Xi9XltX12g+tEosI1H22cmqRIMAABgho0iOltdHpKAVMhO1JpOppqamFWS87YgNBe310rNFPosFOgWFKPA8oxTxPMQnYI7D9TYW4UYeGU3g8SIAwJjW1aIxYyCSSDWO45YtW2YwGNLS0rKyshRP2n333XczrrMM4p381erxR7ce6zPiaM6gfUk5ET3u7MRJeeV7KCkJYQxmJv/s5+izzxAfG/8ylQ4HC1q9k2ZFMUsyrXV4GWs34ayxTAx82y9f9s55AADXYoRGj8Y/+wnybxJICPfE96V3VyKjgfkkVmclI4ZHNv+JE5BsQYKIKEWCQI+fYFVV6KbjLiwWy+LFixt+bfCk3YzrLP7Df08sP1RhSEgvOdXrxO7RL//ZIEbgOmOll9A3zkyEEOUFVFkB38RXdDzq3dKpyhqCWFYCryY4tB71bgmxEJk+PMFT+yVvP11j0BJKmdUt9U2P2Cm9/UzNmzvLeIIHZ5qm9kvqmniz3niVkERfQUt//DM43cARBoj+dwNLTuJ++Iz/ADz3IS4zE06c1KenuUYMj8jFBwBMp2MyRYQgngcAJsvQNs40r5eu/48+JTnTAAwQMuDEinMAAyKYoVMn8HgaAk6QzwftuRRGeM5XOX/6yVmMEQDrk2b80YRM4+0Uadd6YIwbEnnq3dK7u0u/LKphlN3dL/k7wzK4G70FDw7tbPfQomtOo0H4wYSszhZTY9MKghBsLr9Y7fzn7rJkk4gxLqpw/GJt7UdP5SkZoWpH8OYRfR8r3fElAIDHwzxuwIgVHggcgRAeOYJ76kn9Y9+FyB1feNBAqK8HtxvJMrPZyANzUEu38W7kwhiAAQBGIPIEM8YirGuK+/XD06dDTY2vzuq7chVeeAFuufhkzPKv3Ze9MpVkKslsf0ndB/uvRFuiDoLinFBYffDy15fqLAbBYhS2nar67ESFfCPrv76y71ytT6ZV9Z5ff3qmut4thwIAQh4/V2HXCURR3AghHuMK6/UZOl52ftvQkouUgGJpCtu2bduwYcOrr77a+GkyyPJ1e5UkgcvZ6MhGYPX1dOV78rnzLDcXZs8MVOI6Hf+fdWzzFlJn1fTp5f2mt3yrw3Hk0UfkVZ9ggwG8XmatJcMjNM4g5Pv+E+vie5cUlV21ZHTnutxf700ytnD16hbE6ZXrJZfAWMgyGuE5ftnWYPEkBJ++ag8/XuUmYYw1+LHXH7maZLi+8tUK+HyFXerx7ZeFMvbRgcsWg4Ax4gEbNeTAhdqxPRJCThtS5+p55JOZpiEcnlIdD8rV1YL9zaMlFXRAsTQAqKurO3z4sEYTNlid8EySEFP2QRhFmsosy/L//IQW7gNCnF9sxXv2cH9bDjeuVZHRiGbP0mi1hBCvve2++eSRh1FaGpw8qe3UCcaMBkuISOfwfHaqquiKzcJjl4BPXbFvOF753fz01hD11ll/tPKjA1d4ggd1MU3rn9QlITLjIwIEDEBR0YwZRdW+0fKMzU04Xn79+ZdkZrox4tMnM/8XK8bg8kUWF9QnzZCXaTpwqV4jQL3LN3dImshFf4/ermnJr0FAsTQAePvttx955JElS5Y0HPnggw++/PJLAPjFL36RnJwMAPb7Z3k2baY1NQCAkiyaQQP1jVuZzUF/8h08WLdvHxJ4xhjCHP36sPbg18KUScHnKi2vAmZo3Z0Xx+HJk/BdUwwJCe4bC8DfFIx1eu+tITs/9xFO43OvKXhsi/PO2FTQJy7b13x91WIQMMZnKhy7Vte+9/3+Ec3wwKDUTw5d9cqMAfAE3ds/pelzVCJkTG7CjqJak4ajADanb1zuDatjkcNjchMOX6pXFrt2t9yrU2ROQo7geSMz8i47XZQka2mkeS4qwbTiOmXnzp25ubkNyR0KAwYMUI4IgnC9aM6okbB5M+6eTRCSKivRxIkhi+kghHieD/6TVHIJAJjHA4AYMEDYffECDTWDIAgY44AZlCTA2IQdPZq9b9s10QAAdk4zY+Nb7kUroi1UaC5Wu7T89T0sBiAYOb2R1eKYNSjVoCHFVR5gkJ9lGpjZqHtKpdnkpuj/dH/PomofQdA7RTQEuWHvH9RJ4MhnJ6soYwsnds2MPAYDbd7S/9BBXU6O+74ZLST1bU0rqqcDBw4AwJkzZy5durR582Yl3a5nz549e/YEgNra2uuZb8OGkj/9ke3bpzGZvcOH+TIyIFTnN6XfR3BTONY5HRhVtsgAiFEqp2eE7B2HMQ5uK4dbp3pni8CuXKG8gCgo3nKJ4/S22mgLdQP6b9ytqQkuiVZoMEYIYYQpg8Q4Y7AlmuM4jLG+ESft/cMMgiBQSsN3/tVoNC3eRvL2IckodOuUIMtyyHRNs5Z7dFjaD6f0cjgcjXXncvtoSaWdk2UNF/j/lX72C7pxE3C4njJYvUZ4921Q/1O3Rksq6IBiaQ0ZHL/85S8V7dwYqG8f1LePPiFBslojToeTZGQys3obUACMkNkIHSWVA2VmIo+HcjrleyDIvq013ONRFuoGGlqV903VDOhsPHTRxvPE7vL9YGxnlzOEs1fp2xumwTnGOHyqt7KLCtAd2psufaVyi+wvsf758xKNwHl80pOju4zK8TNp1tbSjRtlXpBkhhBwZ4quvvVe6v97LGqydghaUpcFF0tT+M1vftOCVwkkPY1xHMrORj4Ja0SpugbfWtuR2AHdcceuYXcN2fGpD3Oi5P3DxCfjTDFaG4wn6ImRGSdz3G4ZpxshPS5G5VS5FexuackXF5MMAsdzkoT/sbO0Z6q+IayIlZQwQDK97mmkCA7uPnn3k2o+4S3R7hebKC6Om/c939K/IJ+XiiJ57LGOlGu3I++uVYkDzM7aK+YUL6/hbLFb5oIjeFCmWa/XN9SKUulgXLV5CWLVTp/N7TKJHE+gvM7doKBRr17AaEMoDmLsTGbfPLsn2di++91El9i1wN4sXq/85ps4IwNlZnKdO8vvf8Dq66MtU4uh47HNYC5P6Ua1OkLUbCyVaGLS8g4PdXglHmOnT660+wz+0ZCieO3HP+dlLyf7BMlbeOe4g137xetUG/Qt0e5X0KykBDRaEHiEBMAY6fVwtggGDYyiSN/q0Xq7/MEH3n+/V37XPWjiWHFwaKlQ47mwI7onFFe6HB4ZAehEMqW3JYySjq7+ZnV1tKKSZnWDGA6MUWmS45ftpadsWo7mZRr1N8bhOL0ST5DLxwAxyphBJB7phijVjEdm/7PLoCv7jtcmZ1QB93h+ekOfHZXm0f6/SxoNUL+aAJRC+LyY1qchMcf9l+X1G7Zc40zk8x2mNWtr//pm/5H9gscTQpTghOA/Tb0zo9opbz5RgQCNzEmYOzxTE6pCBYn26lr+fCtd/DtJo3F7fWTB07j9h1jxN2bVK/8jvvFUeyUcKMwAhFCTMZ08z0e3HvTG45UfHbhq0vJeib6xw/fGI338y3vxBGt4Eq/jZUAEmEdiAXW/MULfG9PtzB2d3JRL0sgZ8aor4lZp9woaZWSgCePZrl2g0zGnC40eCbk50RXpehCCz+f5eNU1zsQRhAC7dabt/96Y3jdLHxQdzPM8x3GNhS7MzUuZMySDAeaZB5jP5QoR/MRxXHDwQ2PRbC0Oq6+XF//Obk48aqbnc4yGI2/3yEnq3yfivgoq0YUxWLn3ssUoEIIxAsbIoUvW0TnfJrN0Mgu9OhkOXrS6JUopDM0yZycFPmMYob7pRrUedEvR7hU0YMz96BnaIxeVlmmys9xjRqPYqCjEAEmU+VXNpMBzV62e7KSIa+kZNRwhxG6PVQ/h5csSEb620LWztXoHYEq2V779I6ulh7lHtCVrPgGRfBzHIYQaCw2u8dTsuLB9x+XteYl5w5Lys03dg8coNTEam6HholFcQXtlivyeV4Kx3X1DzKtPZodKbSKPeR5jgBPl9S6fzJP2r0NimA7x4Wo0eMZ0nue1er2nkRCC4+X1h8quMkA9k8Qh3eLawB6AeM4ze45m1VqPoAFKdY76Yxm9Zwf1u+oAoJQU2eMt6hlnrGcAQCj1efUHKg82Q0FfdpRftF3UUm2WKRtB+zBfMmD/LVt/rv5coiaxqL5of1XhS3cuihditOmt0yufvVhHEOti5gIMxCKHR3WPP1ZuJwSAgd0j9Ui9YYFcXufR8dio4ZQdm8Mjl1S5+mUY2/YObi86hIJuipNX7C9vvqAVCADaflLyyNR/49Z6mJ58fEMV0Z0vcgm6L7vnWzLT4juigoa4uPKH5/G1qzDVIGB2ndlHeIQjXgnuqti5+uInItF4ZU9+8vD7usxsF82taz21X1d/Ha+JBwAESMvpztnODbYMbqXLVVdXL1++XBRFrVa7YMECxfdQWFj47rvvpqamAsD8+fOTGqkbXl7n+d9VpwWOIGCDM82P5qcFFN2eOTCFAfuyqI4x9tSYLgG7PZ2AZb8FvsyYPpIGFCrNoH0oaIdX3nGmsl6qStSw0TnxQoQlsnYW1zg9cq3ThwAQwL7z1rZR0Besvm3Z+XzucAqIQ6y8xnWt3pNqasmwUEYpO3NGIoRlZ0P0Kjpmfu+BpR/U04TDAFoP5kw6KdOQGdEMXur9uORDizaJMSZiYW/F3v4JA7obQ9gKYg2RCAy+VVsMmIZrRefYxo0bp0yZkpeXt3LlyqNHjza0mZ8+ffrEiRPDn7v60FWHR3Z5JQC0s7g2ycjPGezXPVmW4b33Z61YMRuhDYOn1gx4GOCGfUCKURybm7jrXK0eY6eXDu1m7mZRczhbl3agoCXK3t5dfqy8XicKdre3pNr1+Ij0iCoOH7xY75GpotQZwLHyNgqUdnkpRqDhsbIldPtklzey4nmMUjh6VLLVwx09Q7RT8XjkP/6Zbt9Rz3PU4RDe+BvkRMdBqhXIqw88/u8zmw7bN+mRZ0bXmcOTI3MSWn1Wgr59GnlMaj210B52z3rOMDJ55MGaAxqi9VKvU3LmtOZ7RRRF+zclc0tLSxsU9MGDBw8fPmw0GufNm8dxXGlp6RdffAEA/fv3b2h2vONsDUcAAQYAryQfKXd8d9S3Gta76hPXu+/54iwI0ITj2zZ/qDvbdX7/zjdUf5w/Lrtv55oKh5yow8O7J4Rs366UjQzIv1dj+JtHO1DQxRWOg5dsHEY2l48g2FlUe0+/5FRTBAHwjDH/p6PW6W1xIUPS1aJ1+mRlG8gYuCWWHhfJ8plS+c9L6ZYtVNQwpwP98Bky7Z4b/r55C92zB8XHYUKQwSCtWs397Cdh57uho4LT6VyyZAkhhBDy3HPPKYFiAZtlvV4fPCYkepFfMGimXv9I8zIJ4/l4r+ypcVTaZIeB0zOANF2npk+LDaZ3uS87sXuJrcSIDUMt+SJpxRX01KlTV6xYcezYMQBoKBWZn5+fn5+fmJi4evXqrVu3Tp482eVylZeXA0BOTk5DsXyGAOh12z4DhBHyr6PvO3XGrdEpGsEjajvXlF+sdg3sesNekxAYc0eyRqPxeDyN+TMVXaxW6G8R2oGC9viYwyN5fBQjJDOm4bA7wjriGQnaCptXeZowQFZblak1abiX7un+67pWfMAAACAASURBVP8UEywNzzL/uG+3xowzNNSzTr8+zD77DMXFAcZIr5P/8CcyqQDEb1U8K7+MGn7FmG7eAmEVdEBHhS1btgwfPnzMmDGrVq3as2fPiBEjIGizvHbt2uAxLY8sw9/f6M5XH+0hYsB2ZheIYOLbTcVRDnMjO43KTx4epsxTS2Gz2WbMmNG5c+dly5Y1LI3LyspSUlIAQKfTKbUAc3Nzf/7znwOAw+FoWHFPyE3YWVzn8skMQCOQ/hkGu1//CooAmNKMmzEAHwMzR+2hGlxoNBqHw9FYLXWO43ieDziRENJE4w6VULQDBc0R5PRIGGOZAUIRFxoGgO+PSF9wySbJFBDiMHp0WNsV68hN0b//xJ0JCQlVIQv2V1WXvbrsyumLVoO5+sFHC8b3TdD7eRErK26o1shzrLoa+VcayUhnbg/S6wAAKMVTwpUMhKCOCiUlJYMHDwaArKyskydPNiho/81yyDFnz56VZVmr1cbFxfnPr+TLhEnHwBhjjIMHyF9sq/1qy8XvmjvXMB+ivEbrTYq74Lgw0DIoYCRCiBAS3WyO6MJx3LJlywwGQ1paWlZWVnFx8bp16+67777ly5fr9XpKaUMVyWBmDuq061xdnE5gwPIyzVN631CrnUwcn/bp+qvEgDEyOq2eB8bkdY1rbCqVtqEdKGiPV+Y54vFRpQerhsd2j5wciXXSqOFG58YXXqhHQCmDlnXTNRvmk+w/+nHiiePxCGEA+qs9q3T//u6Eb43IODtbcjqRYstjDLxelJzsPwOZMpmdOkU/38p4gTrsZNbMZgvTUGE5YLMccsyLL77ocrlycnJefvll/wEIIYSQ0djo/6axAfayMkHUAgbEkMCAWW2QHG/UG4NHYox1Ot3trKAtFsvixYsbfu3evfvChQsBYNGiRU2em2oS3nqs7xUHYKDpRkLwDXZh1K+f5rGHO322zUfBNfzuex+bhLFqOI4yUVPQwW3bEUKiKAbvm1y03iPRhkfF7aOCIAZvl8IkTK87Wl5c4eoUJwKAJNMtp2rmj+2m/CmaBfuPHRNOHPMRDgBkACJLjk2fe8Zkf9vGLSeHe3K+9NfXmcAzj4df+ufAMhc8T368EN95p8brQWPGeAyRNSjKzs4uLi7OyMgoKirKyspSDgZslkOO+eCDD5QfArYFPM+Hr2an1IMO3jVTk0lX6847Q451w4IP5Dij3WtPxZ1qawMbFMTFxQXXkg/o2qMSBpHDfdINIQv208+30o9W8XFxGo7oNq5DPbvB5BCt41TakqgpaEmSAnSxkmoVXLD/mtWFEWrQ5hjBxcr6zPgQAcWMsZCZWpX1bo4AYwwhhBFsOVHxvREZ12eLnoKmtTX+LygEyOC2Cze6xfHsWfzkSRqnk+vc2eEN8m16PPKfltBt25wcT1/7Y5NRHAEdFQoKCpYuXbp3716dTjdnzpyQm2WEkP+Ylrr3AFDBRPjTn6d9LicN0F41SuaRI0bd+YCWqCFcbQo7fJiZzcpCCMXHyUeOcKqCjjZRU9CU0mBdLMty8MHuyVoAJnKEAQNAXknOsmiCh2GMGWMhG7IkGXivj2oEzBiTZDapd1LDsChulsmgwRLPEd/19k6IsS7TJgYHIyGjEScnI0IgSEHTzVvo7t0oPh4TgoxNR3EEd1R4/vnnG35ubLPsP6aVQHo9//kWcuDA3ZThfn3djRtJVFoPhhACQIwBY8CYGhgXC8SEDVqibMfZmnJbhVlEY3PjzdobpOqbZhydm/jl2WoABIxN7ZvUyRxoRC68UPfnrRcBYHLvpBkDkgNmmHhH4uU6T2GJFSE0qIvx7j4R7IhDJm6FDFCLGIMe5/aAY0cRAANggmbMyJ4RTaBEcSBJYrIEHN9kFEdMw/M4P180GiVJgtaPhbg9YSdP0U2bnIBQj1w2qSCgag0ePFhevYa63RQhJIr4ie9HS06VBmJCQf9tx6Wvimo9EqUM3ttX/s/H+vrHaSAECydm3tUnqdZLkjVybkpgkNz5SterW0q8EsUAqw9drbF7nyvo6j9AJ5D5ozNm5nWmDBI1NGR0fWOETNwKGaAWKay4mJ44jjUaxgAjxHxe2F8IY8ZEMEVaJ3b1KnM4ACFsMOBRo5ohhsptAjt/3vfEfHC5ZACkN6Dycm7+EzcMuHoV9AYQRYwQ43i4di3EJDYbO3Xam54OGeltJfhtTfQVtM3l23yimqDrvXLcPrqruLag1w2LXKWGYWPBap+fqvL4ZAbX28Z+cab6B+O6BEQcY4QyE0N7qMITMnErZPDZokWLioqKeJ5/4403lPHM4/Gs+sR35qzNYDDOmE5urIPqsdl8CAG6Xq8fMBIrq3RxIQKblBV6XNCfPCaTjQFDGBDQ+noNz5lCnd4WSJK840soK3N36wrDhqm9nGMQuuoT5nQjgoEBc7nYirfgie/7dwxkJRchMQEBYEIopfRSacBChp085fl/T9s5zVWvVHHnMOPzC7M7x2hNqA5D9BX0NZsPAZMZXN/pAyqucBb0imCGcqtbMSQjJeODMbnlDMshE7f8aQg+mz17tt1uRwg1dK32/XW59J8NoNdhBI7339d+9IF/FDPr0gWJIpMpYASMAWVSzx4hO16LoogxDna7e4uKUVonJEmIMRBFz7Yd/qebzWZoGxijy1+nW7ZQjU6WvGzoMO5/f6z2VYk16PkSRCWgikZm4ANGKfLL90OiSKmMMAEAoBSJgW9Z35pPSwUzwRjxyHLs4Kd/fv/RxfONoTpIqLQU0f9wDZrr3j/lVwQg8pGZdM1aXjn/ulpuUe9GyMStkMFnvXpdf6soy3zm80nvfwApKcAYIhzEmb27duMZ07+dOjUVz54lr/kUMEGIorun0F69aKgoFCWzIzhAhVkSqceDtFpMCFCKJ08KX264lWBXr0rr/8MSE3b34dYO1TB2YtbRj0fd+UBkteisVrrjSzeleOCd0FH6sscWHGHwzYqZIQCGbszGxvdMlT/9FOLjABNWU0PuvitgAnnzFhDNyjdV5oVOzpqSalffdNWj24pEX0HrBCLyxCcxmTKMkMChHkFW5vD0zzDuO1/n9smAEKNMKxCBazEVHTJx6+mnn24y+AwBML8NJGNKAu0N4IXP4fx8dOmStnu2c8CdEKGzEU2eRE6elHfvYQJPrTby01YPtwiN3YEI2deTbBiIE+yMyfIG/W6hKjM/afjNzlBT471vFpjjmMjTv/yV/OLneNzYVhT4tgTnZNNdO6/3iUYMNDpGKfJ75FBOd/79lWzPXp1OJw0eJAXtF30TJ+Ev9wAQAOB97oq4lH68WnCjdYm+gjZruUm9Eveeq2MIIwC3T+4bYQnwod3iVuwsSzQICCGfjz6cnxZRrbvwNJa41XTwGc+TWffJn32OtFqgFFnrcF5ewBCEMYwYzo8dI+r1rshrDCG9Hv/keXToay0C1KePWxdxr5YWAWV2AbfrogX0HsYAgFKdaCqpv3DzClr+7HOIT0AaERGCkpLkXy9SFXSLgwfn4f9uYowiBkgjonFjUdCCAHXqhGbep4mLczgcELQbM8y9HzZvdCCBAD3YcxiZNFEtN9raRF9BA8B3hqYn6gW7hAmTJ/RMMEVo1TKI5Pezeny0/5rdS/t00hXcESt5ZWTe42A2Q/ll0WSEcWNbw/GNeB4NHSJENzpNELg33sBfL2fSVcQAZWQwQlAk9g1UX4+462sxhBAFBMx/+6HSAqDh+fjhufJb/wSO50aPYg9/J+Qw5nBQQkJu5nD3bO1nm89+ebiW6DWZGY9mmYmaC97KxISC1gtk1sDUhIQEq9UaMtMkPLVO308/OZOg53mO23SikiMwY0BKa8gZMVoteeRhjLGpsWJJHQWUmzMg+fsHiv4RJ8bJsmzzWfvH94/g9F692KrVSKdlAIAQmTFd1c4tD0Lk0UfIQw/qMaYGQ4jCex6P/Prf5XXrqhHi7r0XPfkEBBVO4HWawVOGWSyWmpqaxqrZqbQgMaGgb5FDF60mLeEJxggMIll18Oq9/ZNb0MqhcjP0iuv9TO8fnrCd8Hg8ETdDyRuMu3SmhftlhIDn+NGhA7pPX3WUna0XMc3LNGoi9CSrXIfnkcEAoZZB9JPVdNt2lJxMCJG3b8fxcfjRR9peQBV/OoKC9kgM39BgFMkUsOq9aHNyzT3uTBvYjIL97POt7Mpl1CPXq8UVRmbctsEy8M6AMZtOVH24/4pBK/h88tFSw7yRGaqOvhnQjVX5lSMY4+CC+rSsHOmu25SRVgtXr4Uouu/x0AsXJLsdx8U1Fi2lhO0HnBvNqmTtmY6goHulGT7Yf0XkCQD4ZDahZ0JAu2KVViKgsnOz60H7ysqQVncyk6woILwEMpyaduXzSZ2nNAygjL27tzzZKGKMeEyOltUfLrOPvLXGkuXl5W+//bbJZLJarc8884zJ1G76A0QEQogPSOnGOPggAMg6HaMMCEYIUUnCohgwRi4udj38KGi1VZTy90wVnv0RCpqksfnVyh7NoyMo6K6J2mcndt1/0bazqHZK78R7+yc3fY5KSxC4NMPosqPc5XGn6lIRhPhCKl/dEGu3jAyPz/tmgZBgpwgQaA0byv7bK7FPpvF651mPVyYYAwBCiDFGCLJ75FtsqnT06NG8vLyCgoKVK1cWFRUNGhTYHKBjQCl1u93+RziOk2U54CAAsLun0FWrwGxGmLDaWph6d8AY6d2VNDkJYcJxnGfLZ3L37viuKRAEx3EajSbgXEKIXt9GnYw6Eh1BQQPAwC6modmJP5nWp3kN8do19W7pdFUtAdY1nmvjrYPH42n42e6zf1q25nDNYUrpgIQ77+sy08AH1qdWdtb+Z11n/LjaMwd43xmQmcwkbDYJBJXaLqUKqcrfCcCI7Ljj5fUyA8SYwyNlJYoN84RpERCGMWPGvPDCC4cOHaqrq3vwwQcBwOl0btq0CQC6du2am5vrP5jjuPBNm5TdQ5gBGGNBEMK/VDQaTRTLK6KsLH7Vx/KePVqdTho4UI6/sWwAY3TzFpR63f2ONRp28VIUpLzNaEkFHdCT1Gq1LlmyRBAEr9f7/PPPqx3JWoOL1a6frz1r0PBUZgM6G7+bn2aIUurt9mvbztSdNgtmWZbPWM9sv7rtns7TbvZkUbQs+F/vvh/WmpETvIxW6nz6RPGGcMlBXcxbTlT6ZMYAxvVIyEq61aDv9evXz5w5c+TIkWvXrt2xY8f48eM9Hk9hYSEAMMZ69+7tP1jRv8FmgQaUzUGYyynGn/Cm2DDWoTbCkkim3aONi3M4HHJAHDRCZPIkeviwEmDDPB6c1m66+rZfWvKBCOhJWlJSMnPmzD59+ih14IYMGdKC11JR2HKyyqIXOI4wxk5crt92tnZav6SoSGKtr+S8MoAECPGYs3qtEZ1OCC9jcDEvBgQMJOYz8DfsiP/0+YWMeA0hhFF2/LL95BV7r06RdZAJwOFwGAwGADAYDDabDQDi4+N///vfK38NCIvUarUcx9XX1zc2m8EQuk1JA3FxcU6nM0wuvlKWK2AFLYox0Z5NAd87Td68GRn0lDI8ahRWy/m3Pi2poAN6kiqF3yRJOnfu3N13360c3L59u1J4aPbs2QHl2RBCOp2useBKZXkSxoylOKDCDOA4DiEUMKC9+y62n61JMlwvasNzqLI+yHrQJtAvtgm710t36LDMUHKSbDLquMhWuDXeai2nTRZSPLIXA6ZMLnWUJmuub6jtHplgpaMhYohpeHyx2nWLCnrq1KlvvvnmV199ZbfbFyxYcCtT3S50zSQz76MffSxjxA/Jg1h6eXRUWndLZbVa//a3v82dO9dfcau0IAV3WA6UWCUqA4Aks4z4KNiRWH29/Jvfjs5O/WoY0XqB2arcgndMaiSFrQH0nEFmlMMcQYRS6pS8eu5b/asTsETZN9WwQJJoor5Ra8NNkpKSEtBfRiU89B8r6Jo1zOEEBNKvfs0lJqABA6ItVAenFRV0fX39smXLnn766YSEb8Ohxo4dO3bsWACora0NKK0piqLT6Wwsk1BpCBuyGqcCz/OEkDADlI6lAQO02vZdTGBIN/P6IxUSZQCsa6J2eHY0XoSXL4MoJtjZ/70jl3TC1OHKfehJUUyMaA4t0U5Jv+uLq1s1ROOVPf3i+/unumCEFozr8rcvSw0ieCU5r6v5zi4dKirujPX06svHd5TuKEifNCF1gjbC/UfbIL3/AaIUeB4hRJ1O6dP1vKqgW5mWVNABPUkvXLhQVVX1+uuvA8DEiROHDh3agteKZUJaUW7RONPYgENlFekJGsYQIPDJbH+p857+qbcge3NAKSlKv0TRB3eUgVTh4DtlNGOeKel39U7uXWIr0YO+X3x/Dt/wcA7Pjs+y6C47QEdYbrLYkTJFy53lfzvzeqIuMUFM2FOxxyN7ZmXOjrZQQTCGPG4Qrps1ECKoqjK6Et0OtKSCDuhJmp+fP3fu3Bacv70QsEgPv/a/YvXsKKrzUZRuIqNy4kO24wq59lfYePRKkkEgHGaMYUYvXLM6HMaGs275Vm6OuDjyw2ekZX8BnY55vWTuXPRNjexI6ZXQO9fUozFXW6pZ7JkZ53A4olL2uvUosp3VcXolclzA/FdXv5zeZQaHoh3REQBCoNWB1wsEA2Mg+1Cv3k2fpXJrxNhDcJtRbff9+KPThGCEEGNypd37wODIQpfG5SYcLa/HwADAJ7MkY3R6TeEZ0/nBg3FpqSE3pz4xMuNGA4zBlTo3Bqq7zdL0OcT51wpnwEKm+UQd7mc/kf7wJ0AIcYR5vXjGvdGWqOOjKuhosvt8rcMrYyQDQsDYxweuzrozhYukp+2YHgkbj1f6KACDOzrpx/VopnK8dVBGOtetK9HroVm5QjV1jp0fbL1UWn0uNavfoO6PDEvjbptSlr3j+3xc8pEoCAyYS3JNTp9MUCy+o/C90/jUFHrosD7J4hk5gqXERs3IDo2qoKPJuQonBUYpKO26JMokClwk382vS+uTjIJSfLnK7j1WXp+fFaW+sbeC3cFNvTuP0wzGRONxrrA/80XcmEm9YqWud2sTL8S/0P+XR+yHq+01XfVdB1sCGzvEDmjIEDJkiMFi8dbUMLXcaOujKuho4pWpUpgefRNCFumi8dPD15IMAiGEMSYQOHPV0R4VNP3ssxpOTzUaBODhNXlF+87V3C4uZYUkTfKDGXOrq6ujmOqtEoOoCjqadDKLBAEgoBQwRjxBNMLv56ju8aevXnceUsZ0Qrjld0AuvtPpXLJkCSGEEPLcc88pWcgBCfpHjx599913U1NTAWD+/PlJSa2SpsgqK7U60SEDIAAEfU/uq9OrT6aKiqqgo0q/dOOWE1UMUL1bMmk5SabasBo2mMFd4/acqzPrMaW01iGN7B4uDjogF3/Lli3Dhw8fM2bMqlWr9uzZM2LECAhK0Hc4HNOnT584cWKz7/GmyMoygs9KeYIRpvLuHsPG9bxd7BuRUl1dvXz5clEUtVrtggULlCDOkO9alQ6AqqCjSb8M04w7U9YerrAYBZdX/r+ZPSKdYXCm6Zf3dD9T6eUw3JmhTTaGy74NyMUvKSkZPHgwAGRlZZ08eVJR0AEJ+rt27Tp48ODhw4eNRuO8efOUaj4LFy50u91du3Z97rnn/OdXSomazebGBFAqCoUYcN8Mx6XSrivf88nIM3z0rGd/oE0N7e1UqlbeznaAjRs3TpkyJS8vT3mDKv+vkO9alQ6AqqCjCUIwa2DqXf1SKRY1zBVR/EYD3ZN1d2anSJIUplJPkwjCt/F5/gn6+fn5+fn5iYmJq1ev3rp16+TJkwFg2rRpsiybTKbgmr/BhYADroIxDjmAPPWk4cE5IqWQnOwNVa1YQa/Xe73egHTTMEXmOh5KTSXl59LSUkVBB79ra2tri4qKACAlJSWg6I2yvg7zoYXvuqDAcVxjr0mlpGpwl4Cm7kwlBKqCjj5mLa/Xa+vq2rrOUXZ2dnFxcUZGRlFRUdY3qSUBCfplZWUpKSkAoNPpJElSxowbN075IaDkG8/zgiCEKPf8DY3Wg1bQ6USjUZKkMDNotVqfzxeQqNK8etDtlKlTp65YsUKpOGaxhDAEKe/aCxcuLFu2DAAeeuihSZNuKDun6MrwjW+arEyt0zWajK601ApIfFU7zDYPVUHfRgTk4hcUFCxdunTv3r06nW7OnDnFxcXr1q1LTU31T9BPTk5evny5Xq+nlD777LPRvgMVsNlsM2bM6Ny587Jly3JycpSDwe/agQMHKq5gh8MR0MXiZiqjhk/XtFgsNputMZ3LcZzJZAq4KCHEf5emcpOoCrp9I8l0y8nqCsc1SZb7pemGdAsXYxeQiw8Azz//fMPP3bt3X7hwIQAEJOgvWrSoRUVuJjJlu87VltmqtISN6m62GG7TbzvHccuWLTMYDGlpaVlZWcpr9emnn/Z/10ZbRpUWQ1XQ7ZuNJ6rWH7lm1IqMsZ1FVRqe9MvomPv9bR9vc27dkSBwx7oN+PhAl9e/09usvR2fXovFsnjx4oZfG16r/u9alQ7D7fiIR0TI3s+FhYVtEB18M3xYeMXyTf0Nk8gdLrV1SAXt27Ov759/4zKYAcHgQ9vQtB8cLu08JveWunqrqMQ+qoJugpC9n9soOvgbyh1lxbZiJKG+8f005IaS/KNy409d+abKHYKOWr+Cfvllvc6MMUYANmNc33OHvFJkDQFUVNojUVPQIcNuwvQ8VgLywwxQ2nqGGaAE4QYMaLLlVXDvZwBwOBzB0cHvvPNOWVkZIeRHP/pR8CWU9neNCYYxbmzAgYr9/zjxhl7QSZT++/w7S0b9xb9bdp8uiftLbGYdAUB1TnlM705hLtR+IQB6Lef0ysqHKfmkAWkd8DZVVAKImoIOjqMM3/ZY+WaGCd5ssu9yyAFNKujg3s8AEDI62GKxMMYwxgFRusolGusU00BjA14/vtyitSBAPGIY0N4re8alj2/46/ieiRoOnbzi4DAMz47vnqRr8kLtEdyzR8KOL7GosbqkRNnVt2BoepzaJF6l4xM1BR2cbqDT6TweT5iWV3q9PkwSBM/zPM+HGaAsnwMGNFnVPrj3MzQSHdzQGDcgOhgQlHnKrlVf7WLI1HMhuqLwPM9xXMiwJ8ooMAAGDBilFDNc5agKGDkoQzf2juuJKv5/CtOipd2Bp93DuVzxf/t7IsLcDxckTFcrEavcFqg26CYI6P2sRDXdd999Nxkd7KXej0s+OlZ3lDFwS67nev+4q6HrzV8dIzw8efhp2ymMCAC4qbursdst3lG7BGPy4APkwQeaDNFVUelIqAq6CQJ6PxuNRiWq6SajgwsrC4/XHjeKRkmStFizq2JnRAoaAArSJlPM9l/bJzN6T+dpvePUPkMqKrcLqoJuXWo8VQK+bvVGCBVW7pub9Z2IGholiAmP95z3UO5cySUF9FG9PZGoFG0RVFTaCPUL37qkaFO9skfgBQCgjA2xDG1euzkDb7B77C0tXTvjrO3MXwv/ggANtuSNTRmboe/cetcKsOCHaayuwPM8ISRMSSClwEX4dOfbvFCfSjCqgm5dBiUOvuS8WFhZCAx5qHtcp/FNn9NRqayU6+txt6zmNUS1eq3LTi7T4DiCUJG1qLBy3x+H/Ln1Wl8H9FDXarUcxzXWmh0AEELhC1woHuww1nOtVutwOAIUdNu1ZleJSVQF3bpwmHug20P39phxrepqJ10ajztUYcyAFaUS0B1ymen+57/cb7wpC7zD5db/6TW+kYLFykI15Dp09dkDdhdxMh8Dphc4jUa0ga1zay6iVVSijqqg24J0Q7roDldKv50SsKJUtvnBy0x66pS84i2wJALGyMwczz7HfbYFhYpYxxiHLGxNGVu9v0rMYJgCA+TwSIz4wHtdAHWZqdJRUatoq7Q66FIpaK6/nxBCIIhwrSKiGVw+ir2pvKs7w15AFLA7U8hLENVaHCodHFVBq7Q6LDUVPN5vf/V4UXJk5aX0ApFkxDn6Yl8CJbXMkzo6eXRLi6miEnOoJg6VVgf368um3+v+z7rtwwyb88ShmoL+jjN9hL4RTfLivekvn/obMB4krcFYdca7bRB9WI07bBKli6P/kRYJONHpdI0FnChFbzpSImsUUZ9vldYHIfLU//t8mFDoOpqkMRZh14GiN3/U69muhgiyIqlwTSswiTkAkJs591XsK+g0uZOuU+tJ3TEIji1pkYATp9MZpqMKz/MBrghCiOoqaAaqglZpCxiwL7xfWwwWAECUGjjDqbpTESnoKk+lh3p5zAEwAOSmLqfkbDV525pqd/WOou1Vtqqu+q4DLYOaFyyv0vFQFbRKWxCkcRhPIos4NHFmDRZ8ICNgDEDEGr6j2DesXuuvj7yUoEsACQor91Z5qyanTYm2UCoxgeokVGkjpnW+1y7ZGWMyk22++n7x/SI6vYshk8O8STBqidbIGTlMUjuKfeN43TEDb+QRjxDScfoNpf+lTO2BrQLQsitoSunatWvXrFmjtBN2Op1LliwhhBBCnnvuuTBOiQ5GgHtEqQcdxmdS56s7UL5fkqR+if3jxBBdX5vMMw6T3xE7TEibmGxMLrYWIRkNSRqWrEmJ6PQEMWFe7hMriv5BEPFR37O9Fgq4g/SN9cpe7LfDQAhRoFhdPKm0rIK2Wq09evRIS0tTft2yZcvw4cPHjBmzatWqPXv2jGgkeazjEeAeUXzijWUJlznKXjv+skE0UZm+ffpfP+378zRdWsAYrVYbMgHE/xLB+R2x5pNBgIYmDxveaYTd3syiIv3i+/1r0jvX6q6JIHYkK22OOXdd6adaQQsAPuobnjSi9VLYVdoXLfkcxMfHx8fHN/xaUlIyePBgAMjKyjp58qSioEtKSioqKpSDwd1PeJ5vdkcVjuOa7KiCMQ4YEPVV5+7KXXFiAkeIDLKA43dX7pqdeb//AAbs66pDxbZiLOOhSUMTRUu0RI0FECAjb+xg9aAzdBnzcr5/gjQpvAAAIABJREFU2nX6q9Ivx3UaP7FTQbQlUokV2uhF3RBTuX379q1btwLA7373u7i4G7bzGGOtVhu+mleYbT5CKLwdQNHFAQMaCxVqM3yyD3/Tdgsh7JE8AQO+vLrjv2X/0fN6ifo2lW98acCvE8XENhdTpXXpE993bM64+9PnqNXsVPxpRQWdnZ1dXFyckZFRVFSUlZWlHHzssccee+wxAKitra2rq/Mfn5CQYLPZwrS8SkhICDjFH57n9Xp9mAGKoSBgf63VasMH5N86DFi5veyq41qaNkSxJIvWcsp6QoO1AOCRvSnaQMvs6ourLNokAOAQb+JNR2oOj+80oXmS3IyTIOCg2+2+PR0JKiqxQEsq6NOnT3/yySdlZWWLFy8eP358QUHB0qVL9+7dq9Pp5syZ04IXakdIVFpdsmp/9X6g4KGen/b9WZou3X/AuNTxdsm+69pOyuiolNFjUsf6/5UyCv7uI0AeOXCJffPcjJMg4GBlZeXt6UhQUYkFWlJB9+zZ0787FAA8//zzLTh/e+RA9f5D1V/HiXGSJOmYftuVbd/Jfth/gICFB7MfmtvrOzarVSSBnaoxwmNTxx2qOSgQgQFzSI4e5h7NFuYmnQT+B6uqqoLHHDhwgFKq1+szMjL852+eG8AfpbFv+AEcpzrQVG4X1Ge9dalwXRO/iQbDCBVW7ZubHaLllZbTekjopfGUjLtEQdxcupkx+r3uj2cZs1tDzpB2noCDDb/+/e9/d7vd3bp1e/HFF/0HNM8N4A8hhDEWRgUrITGqoVblNkFV0K1LomjxUq8AAgAwxoZYhkQaH6Yl2llZs+fkPNDs6LTGCOkkCDio1WqDx/zjH/9QfqiqqvKfsHluAH+MRmPIetANhOzqbbHc1pEtKh0YVUG3LkOShl50lBytO8IouGTXyJRRURQmvJOguLh43bp1Tz/9tP9Bj8cTU46E4rqisrqyZCE5wJSvotIhQdHaLdbW1gYEbCQkJFit1vBRHAFLNn+aHcXR4nURA4REGNXimmvV17rou2g5XfD4Vlp4tsG6MqIVtE9m56q9DOHORmTQhF4ZhFlBM2CfXlyzp2o3Bs5LPVPT7xmfdj2apTXuNODWlJ6E9fX1jY03GAzhS8SFXPv7Y7FYqqurA76PwbdWXl7+9ttvm0wmq9X6zDPPmEwmACgsLHz33XdTU1MBYP78+UlJ35bbdjgcAVJdla9esJ7XI0Mvc6+Q9VpvRtSampow1exMJlNNTY3/QUKIv/9D5SZRV9CtDgLUPS4nTrqtn06bW/r+28cxAgAkU/ba/T0yEyNLdLy49ZOdsMkk80yn0xhM60s/zUsaYuSNrSNv7HL06NG8vLyCgoKVK1cWFRUNGjQIABwOx/Tp0ydOnNjk6VuvfL7p8kYN1nhlb7/4/g90e1CtqR3LqGGtKm3Byr1XPJIsyVSSqY/SN3eWRnQ6/Xxrzep3icvHHA525QrU1xPCWX2N7jk6MGPGjNm4cePLL798/PjxAQMGKAcdDseuXbtee+21v//975IkAYAkSTabzWazeb1e9A0+5lt/6VOzYBaIoON0R2sPF9cXoSAAIPhgwIAwYxr7azQ+rXaP+vJUaQuKKuyEXF8NEIROXInM4UkPHUrx6r086HwAhKNOh0/gLWJkfbMCYIy98cYbtbW1Xq/3f//3f2OtdEljrF+/fubMmSNHjly7du2OHTvGjx8PAPn5+fn5+YmJiatXr966devkyZN37969cOFCAHj22Wcffvh6ZGelq5LnBUVdYowFJDINS0wMkZiqWE7CkJDQREPIgGkbM12qhEdV0E0Q0uR32xbqazZGDccYA4QAgDGI1L4BAEk2Nmu39PFIjpOYT5CezH1GExQ2HhFff/210Wh88sknL168qKw62wUOh8NgMACAwWCw2WzKwbKyspSUFADQ6XTKvYwePfrAgQPKeH97usfnljkZAaKUOnz2ODk+2K+j2qBjB1VBN0FIk99tW6iv2cwYkHzisl2iDBjwHB6TG1k5ETxwINv6xdDTcXeWyLU+q2X+jzTxfW5RpKKiIqfT+de//hVjPG/ePACQZfnq1asAoNPpCCH+g5VVZ8DBGyTEmDEWZoCyaA0zAL4JAw8v9tSpU998882vvvrKbrcvWLBAib257777li9frtfrKaXPPvtsozIA+p8+P3nt+Ks84Xyy7+HsR9SeYTGOqqCbYMyYMS+88MKhQ4fq6uoefPBB5WDIHLwNGzZUVlZijGfOnOk/w/U6fCLfmDdGya9rbItNGd1XubfYWswBGdFpZIa+c/AYhJGd2kVRDK71ESPc2cX8wtTsneeslKF+adqIFfTECQyAHTxk0ojGQQPpyJG3LpIkSSkpKdOmTfv000+3bds2efLkysrKRx55BADuuuuu//mf/wkYHz5JEiHEGNNoGl3UI4SUlW8YzGZzk2KnpKT45+sajUbFlLFo0aImzwWALvouKya8VeeqRT6sugdjH/U/1AQhTX7+NOTXVVVVlZeXK3YP/wFbyz5/v2glMDQmbex92TMNfOC3VLGQNLa22nRx46ZLG/W8XpKlbZe/WDRkcSf9DaueYmvR/x38HY95ifoe7/X94akxupwf0Nk0KDu+wn2N+WgzPEZk4gSYOMEYF+dwOGhLlBvNzMxUtuF6vd7j8QBAamrqF198ofw1KmF2NTU1TYbZ3ToIkEkwu+RGRVWJHVQF3QQhTX4hc/AeffRR5Qf/7/bx2mOrij9O0iZLknSo8iCV6azM2QGXUMKHGwtzXl38iUVrYZQhhgycYV/53olp39YLlqj0uwOLk7RJAEAp/efJt1JIqlISL8xqLiqUO8tfKfy9SERJlkakjJzR5T6Cwu33W5v8/Pxly5a9+uqrHo9HWYSqqMQaqoJugpAmv4B0uzCnX3SUaLnrtgsOcV9e3TEzc9bNZ3sH9abDMtzgDa/xVguYV/bXAKDlNKWO0uCapbHA9itfxAvxMsgi1uyv2tdFn5lnyYuiPISQMObaACpc187Xnwcf9IrrHbN2JJWOh6qgm6Axk99NFurTEp3sp2QZsIhqcWCEJ6YV7K3aoyEaBmD31d9h7uU/wMibJPatypao9P/ZO+/AKKrtj587M9tLdtNIQnoglABBCCW0oHQB6YgVC6hYnuLz8XgqP5+CPhUUEEXUh8qjidIEqYLUAFJDCyWBJKSRutkk22fu/f0xuCyzm4UNyW4C+/lrd/bu3TNbzt4595zvcdnV0OcQIEfKjpiwCQECQuSM4rq52NdG3SmZVee/u/yNQqxkOdbIGj7pOtdlRagfPw2OPz+scekS1KXGVm3hLCxm9Vb9060mezrDkJZDB7QcWG6uaK1q9ULii9GKaMdHZbRsRORIvUVv4SwG1tA1KCWhceTu7hIEyIKtNNA0omlEGzhjtVXv0QzExpKLF9nMTPB6StySS18HSoOktFRGy1Qi1bGKY142wM99i89W0M4RUoSQXC6vK7nytr2x+bbW7ltfI4RcttxuPDRi7X9SPr5ouliuL09UJ8ap4j2dQUyJh8eMeCR+VF1B6oERgzqFJefqc1WUsm1AO292UxVkNbjRgyZAJJTIxJkpoAgQGS0NkGicR9alB00qKqyLvuQOplchJOrXl3n1FeStpFrBRQ+NmCrr/VjB6Mcn+MxBm81mQXGRRCIxGo1uxJLc9MYGAJFI5L71tcve2F6oH1OJ1ENaDHUj83Su8uyFvEyr1dZR07Gdpn1dw+rCzJkvVV0sqi2SIWkLaVig5DYlXj4BAaIoOlIWZcUWRIAAhEg9qANkf1qDT2UgjYaiKNvxk/inNeJpLzWetY4gQKmhvS5WX2QQDQAWbImSu8h09OOnMfDHoH3Mad3p/135USPRcCx3pPTwc62f76Dt6NEMG6+tP1+dKUYiG2fdVbzrk5S5MtpLVcvOSWOEkLoyyV5r9/qXF76QMTIbZpMDOz+g7eI8UiqVchznfJyt1BGGAT4FTcRw5RXebOw9MHwQRtzJ8pMsZgdFDEoO7Oy1l252ECD7i/f9fHgNweThqOEDwgb6s63vBv9752MuVJ0PEAcgQAghtVh9ruqcRw66ylp1rPyoVhpICKERI2fkV6qzPXXx3iFOGTcmbmym7jwDTN+QvmLKg169SKUkLAt8pxWbDWm8uhEaLA1+tu3z47mJnJnz2p9fM+VUxckNeRtCZCEsy+4t3kMD7ZgV6sdT/JuEPgYTAreUJriu9LVhm1PKHf90TvAEDlwH8X3O7qJd2/K3lZvLCwwF8y98Vmz0IIuDnjiBlJVBdTWp0uOyMnqCMJe8saEQFSQN8nvn25Jdk60U3djmkdLSElOJb+1p7vhX0D4mQZVwuvKUSqIGAANraKVuLRhQbav+5drP6SXpGHPjYsYL2n5rJYFdgrpm1VxmEIMJNrGmppnFQWzsb1fXKy1igxiLlDKVSHW26owHQhAhIeLfd+ALF1QqtTU+znvRDT8eIkIigrGJGFmO8+giyY9LXDvo2trabdu2ORaevvSSl/Zk7je6BXcHCvJN1ywWS4K6VdegFMGA7QXbzlefC5IEYox/K9gUKgt1TIVGgB6JGnWoMn1b3rbeIb17t+ijZG4j+OADWLb2k3kkxYCqaxmC9fIAaYtAlxcE7hCLqeRkkUZjNRjAiwFoPx7RJqDN5vxNDMUAYA7j/i0e9LVFzRvXDnrkyJHh4eGhoaFetuY+hEJUn7C+dXWKwgSnlx4Mlt0QZJDS8pyaq4JaFQktUYvUfcJ6y5Bc0SQLKPCpDG7P3m5YczpZJLGiAKO+zEy11yT52i4/DU9ubW6oNNQGNoyxhJaUWUp9bVHzxrWDjoiIWLlypZdN8eMMhSjHEDUmnJwRJnqvz12XWX1OTEmsnGVn0Y5Pus61F5c3FXQ6G0X3PGKVWKEyEEmsFl1N7+h+0bd/op/mht5aJRPJVLSKl6U+VHro0bjHfG1UM8a1g9ZoNCaTqbn0mLi3eSrh6Z9yVysZhY3jatlqQQyEz+IIlAUSQhgkkjHyKzVNLosDJbaWWs0UiLsfswKQAH2FbH6ar426X6BpWlCcxVcMuOkywdcc2GUaBVzQXVh/Zu3+gv0Pxzw8JHqY/NaLtihNdGZ1JgMMRVEcYQdGDWzwpsz3Fa4ddFZWVmxsbPv27e0amLt27fKiVfcRBEh6ycFrxjyLxdI6ILFbcHdBKWC34O6RAVFZ1Zcplu4c2FmgVsphzrEYkiJNMYsDxcZKZ/4jdM5/zISiOXb367NHPBDma6PuF5xFUBFC7pVRRSKR2Wx2mWlebCz+/Ny8YHmwVqzdV7iv2lwzPmaC44Dumh4F1QV/lh0BTDoHPdA3OI0vDaNp2r/gqweuHfS//vUvN9rkftzjspq8rnVEevHBdblr1WI1xvh01Wm5VN6jRU/BmLZM2/ah7a1Wq/PTZXJZSmi3S/qLDGIAgQmbOoR2UIib3JpFNGyoaNBAZa0JgoIncBZfm+OnnlyqvqhkFPwaQkyJD5YcGBU12lHej8McS1iaojCQExUnRkQ+4jtj7wVcO+hevXotX778+PHjCKHU1NQnnnjCy2Y1awTV5O6L1C+UZypoBSEEYyyn5efKznZQCgMULovU7QyPGBEgUe+4trN3aK9eIX1oG22wGcArVeyewTCK8FCapmtr/Q666ZJvyF9b8MuBwv2pob0eCn8oVHqLdC2DRI55987qjAdLD1ysuqCVBLIsyxFuT8kfgiW2H49wHYd6+eWX//jjj+Tk5E6dOv3666/Tp0/3sln3DwgJvuEeSx2pRepHWz/2bdp3E2MnRSoiG840P/cdtbbaeec+uaDLDJIGXdBnzjk9myW3aAd20HaotdVyhAUAE2scFD5YUMldbi6zL6hpRB+4vt9rxt+TuF5B5+Tk2Hv/TJs2zbnPk5+Gol1A+2PlxzRSDQGosdV4c3+voqJi8eLFEolEJpO9+uqrfChm9+7dR44cAYDS0tIhQ4YEBwcvX748LCwMAF544YWQEA8Ujvw0O/IN+VJahgARIBRQEkpy3XQ9Un7zX18j1rybPOu04XR5dXmsIjbFqeVCoDTIprcxNAMAGHDv0AboHnk/49pBWywWjuP4HUKO4+pSmPNz9yQHdp4iklyozrRZrR20nZK8mB28bdu2oUOHduvWbeXKlWfOnElOTgaAAQMGDBgwgOO4Tz755KGHHjp8+PCoUaMGDhzoNav8+BAJLbklrRM4CS0RjAmRhk6KfKyystKlMnCf0L6l5tLzVecwJmbO9GCEf213V7h20AMHDuzdu3f//v0BYM+ePSNGjKjH1IWFhcuWLVOr1Xq9/rXXXlOr1Xdj6D1Mp8BOqVGpLgtVGhWJRGLXmM7Pz+cdNM/OnTv79u3Lh85PnDiRkZGhUqmef/55hmEAYOrUqWazOS4u7v/+7/8cJ0QIURSlqVvJiE/tcjOAF4OWSIROwXGAUqkUdFb101BEK6I7ajtdrrnIIJGZM3cL7h4k9qz/uoJRPNXq6XJSVlVdFa2I8Vd73yWuHfT777/fv3//I0eOUBQ1d+7cfv361WPqM2fOdOvWbdCgQStXrszKyuratevdmeqngRk+fPjSpUvPnj0Lt3aPJoQcPHhwzpw5AJCampqamhoUFLR+/frdu3cPGTIEAF588UWMsUKhEOxbMgzjXrNbIpFQFOUmwUsmk2GM+R7bLlEqlWazmb21qUpAQMDtz9bPHcBQzPiYCeeMZwv0BaGS0O7BPSjksZ4aQzGxirhyttzvne8eoYOeNGnSTz/95LhkPnDgwKeffvrbb795OnVaWtq777578uTJqqqqSZMm8QfNZjOfLkYIce5mghCqq8UJf9xNA5Q7GeBm/vuQ6urq0aNHR0VFLVq0qHXrmyJNWVlZ0dHR/BtVUFDQokULAJDL5Xa3mJJyo1jGuQuBGz1oAOAX4G4G1KUH7Tg/y7LeFIP2DixmT5dlFFcWxypjgyW+DPTLGNmg6MEGg8HNm1xqLC2sKWghC3N2wSxmN+du2nN9N8YkNST1kahR/v6Nd4PQQU+bNg0A7rzbsRs2b948duzYPn36bNy4cd++ffxO44IFC9auXQsAP//8c3y8sP+Tm4tfnqCg21xw3XaA4PK5KfzUDawhs+S80WhKVCd6U9CSYZhFixYplcqIiIj4+Hi+Yfmbb76Zn58fERHBj1Gr1YsXL1YoFBjju/xWYELyKkwYUJCEiGj/3+RNbNi2Jven81XnEAETa3om8flkbfLtn+YLMMGb8zcdKN2PCLJgy5tJf49VxjkO+LP8yKHS9CBpMMuyZ3Vn5YxiZJQ/Fbr+IPfhPIyx0WhUKusjkPb999936dKlc+fOu3btqq2tHT16tOOjOp1OsPcYGBio1+vdtLwKDAx00zhKJBLVJTnEw2cTCzr7yWSyBi9FFRjp3vIyc+nsM7NVIgWHsZE1vtf530GSYMEYl5Y7olKpWJYVhA4coxaNhOCk3HwEZhteue/qhYuFNUpNcqx2QtewEJWL61+XJ+KIRqNxXtw1xpkKTk0mkzEMU1NTU9d4pVLpvjzPpeU8xyuOrcv5RSlVsSxLgFRaKr/o8SX/0N2fmsFgEFh1N6ae053935VlAdIAZ1N5Vl9dlVVzmaZp/nqr0lK5sMciAKBpWuutNpL3Eq5j0EuWLLFarS+88EJqampRUdHMmTPrkQo9fPjw//73vwcOHKitrX311Vfv2tS7BRNcYSonLFE0JUHOfSX7AiUahhJxHCemxHuv7x0X4201ei+Q+e3q0cu/HcUwNGv7bsI/tojpZ3q19LVR7hD8bTMM474l8d0IXJgqjGJGDH9totIUzUgZ5/QJ71BlrdpxebvOqFMz6rSwNMGP5brpupi6YRgCRANl4cwS+mYDaIVIwRGWBhoACJCeIcKyWD8e4dpB//DDDwcOHNiwYUPPnj2//PLL/v3718NBt2jR4p133rlrCxuGElPJ7rxdJ0tPcIQbGDFwWMvh9dj9aAwsrIWCG4InNKLNrNm39jQG5MrV+DU/VAYE8XGNKb/MfUO9oIk7aOfmwgzDuNn/vBuBi2AmxGgziRkJxhgD5jDHmlkWWPB6OagVW//v1LuB0kAKKCtnrbRWPh73hOMvJUgSZCNWGdzwyBxgR+8MAL1De+8q3hUAaszhWq62h99B3x2uHbRcLheLxdu2bXvyySdpmrZLJvkWFrNmziy99Qtxh+wq+v1KbVaAJABjvO/6/khFdBMJ8wWIA2zYJqEkAGDD1qbZk/suIdnZWCazbwuztGh4qD9P7iZtA9o9FD7g9+s7EQEbZmd2/JevLLlmyJPRUoZiMMYiSpRRfmpg+MAw2c3GNx21nS7qL2ZUnUIEmTjTtLYvC2YIkgR/nPLJFXO2vkbfTtPOOV7nxyNcO2iapqdPn56env7tt9/++eefPt9JI0B2FGzfcuQ3AOge3GNk1EiVyIOsagLkaPmfQdIgG7YBASktLjTkNxEHPSB8QC1Xc7z8OMa4a1BK/7B7sQNFcLCCwmaKNlo5AEAc269HK1/b1IRAgIZFPjy6/ZjCskKtWEsjn62HsGBHCgF3a+MbhmIejZs0TDSsqKIoSh7l8meoFqvTgvtXVlY2qqn3Ca4d9MqVK9etW7dlyxaxWFxQULB06VIvmyXgjO7M70U7Q+QhLMte1GeKabFHCiwIEEe4a4ZrCBAhRM7IAkR32hZaUPr88MMPA8DRo0cbqgBaxsifbP30+DYTqqtrtBIt8lyLo+lDdU6mBzwUvHsPKxGByUD9/W/SMH/mshCVWBUiDbltDY7L+i+j0bhw4UL+Ynf69OluQuHuiVZEmziznCgQIJZwyYHJYTKhMCyFqFaa1oE4yGUloZ+GxbWDbtGixcsvvwwAGOMhQ4bUL4ujAcmrybHnn9GIOXB9v6cSWW3UbU5XnkYUQghYwvF7MneCoPSZP2gwGBqwABoBCpaFMJZ7V9+Vppk3p+N+/eTV1UzbtubIJh19buK4rP/auXNnr1690tLS1q5de/jw4d69e9dvcikt/b/O7x3RHdmVt/Oh8AFpYQ/6cDnvBxo1i6MBUYpUHGEBxABAgDjKBdwJBEh2TXZLZUsLtgABEcWUmTxrlWYvfebvuiyAPn78eFVVFUVR3brdoiDDB17dly8jhNwM4FMI3AygKIphGDcDfA9FUd27iWQymqah7nxBP7fFZf1Xbm4uXz0UHx+fmZnZu3fvo0ePfvjhhwDwzDPPPPLILZnIFEURQuxfZgFa0LaJaPt0+8nu1/Juqjf5in9BUp1/uV0/GjGLw1MsnKXSUqGi1c75Fd2Cu228th7RFMbEyBqmJL7g0cy8OhdN0QpKgTE2c2at2IO9OMfSZx6XBdBbt27NysoSiUQuK+PdbMfzX2g3A/grVjcDaJomhDSRvVw/jYrL+i9H+Ey+du3affzxxwCgVqsd07drbbX7y/Ztzf2tT1i/vmF9W8pd6NOqVCqTySSop7fDYvaaLa+kqiRWFRcuD3cewDfZEuSMUxTl7wFSD5pKFsfBkoPrjv1CAWXDtjeT3opVxjo+qhKpP+k274o1u7yqPFGdGCH3+Bp5WptXvs36WkbLOcx20HbsGpxy++f8hWPpM4/LAmi7cpDLQhU3FTT1K7FxxFeFKn68j8Fg4EOOSqWyurqaP5iQkJCdnR0ZGZmVlcUX6KpUqnbt2oFTocq6q79cqrkUJA0+W3nmQPG+OV0+ct7oI4RwHOfSQduw7aecVReqLyACRtb0ZPxTdf2UBE+vnw9ZtWrV448/vm/fvq+//vqnn36qxwzNHdebCfYsjn79+nkhi6PAULA+b22wLDhAHBAoCfr8/FznIIaCUfSPfLB/2IP18M4AEKmI7BbSo9qmr7EZ4lWtPJJxcSx9zs7O/vzzz/kC6E8++eTUqVN+sWw/3mT48OFbtmxZtGjRsWPHBgwYwH8hBw0adPTo0Y8//rikpMSulOJMta36RMUJXlCfAkrOKLKqszx69dO6jPNVmQqRQkxJNGLNsis/ehpvvHOMRuNnn30GAGlpafend4YmksVRaCyQ0vbyJBBR4kpLZZDEM53Daqs+Q59hNpnaqNsKOqsCwPbCbZf0F1rIwjDG63PXhkpDWqsT73DmAQMG2G+3atXqzTffBIAPPvjAI/P8+GkQBPVfKpWK/0LOmDHjts+lEOXoTwmAp+Vaequecdg2pBBlxVYJ1SibHy+++GJWVtbkyZOfeuqpBQsWfP/9908++aTNZqutrX3++edfeuml0tJSwZHt27cvWbJk48aNADBlypT+/fs/+eSTn3766datW8VicVxc3BdffNGkt2qccP3xaDQakUi0fPlyAIiNjY2Li3M5rKFQiwJYwtk4m4k1c4TjCKv2JM0ZAAqNhf88OmPV5ZVrc395++TMMkuZ46MEyMGSAwy6EQJTiORXaq40mPX3MYpbkUqlfD10XYjFYj6eUxcMw4jFYjcD+IJpwUEvnCmHiY1r9sU1SkbZM6SnhbMQQjjCGllDK1Xr2z/NgShFlBnfKHbFhHQNSmkk7wwA77zzTnx8/LJly/i769atS0pK2rNnz8GDB3lBWucjzuzfv3/v3r179+7duXMnRVH/+9//GsnaRsL1CvqVV14RiUTHjh2bPXv27t27v/jiC/vb1BgkBiRqxAFXa3IAEAFuQPggxz7BPLW22lPXTlXoyxPViZGKKMGjB0sPSCiJwVpLCJbQkv3X9zkqWgiSizHB9StH9CNAUPrM61G4qYd23/0WACiKci+W5LJgulHroQmBdSevbzxdSgE81DZoYkqYXNyMN2N7hfS+Zrp2pSqbIJic8KzztaZ7EtVthrYctrXgNwRUcmDngeGDGslOZwYMGDB//ny9Xj906FBedNP5iDN79+7NzMzke4/U1tY2u42ZOnsS7t69mz+rGTNm8Dcaj7za3EqLroWihY21MRRzpOzwxNhHHZtR6q36Wafe1kg1mCO/5W8u3DScAAAgAElEQVR6KmHyA0FdHGcoqC2oslXRiCaEGFlTfu01wUuMjRn/S94aGlGYEExIlyB/9wA/d8SB7ModmeWhKglC6GhulVRETermInWhWYAJnnv+02BpUEtlJCb459yfWge0DvFQfnpg+KBR7UYXlhUGiAK8WVeVmJh47ty5ffv2/fzzz5988smxY8ecjzju5PO7lBKJZPz48fPmzfOanQ2L6xCH4w6syWRys+RpEMrMZWJKLGfkSpFSQklESFRlvSWl4XjFMbUoQEJLRZRILQ74Ift7wQwWznxDsB8AIWTBwuudGlu1jJaKKJGYEjOIqrHVqRvpx48jV8pM9iWzmKY2n/Esg75JUWXViSgR4uPOBOSMLLcmRzBGZ9X9dHn18qz/bS34rdbmOnFIxsgCJYGN7Z0pinIMXKxbt+7UqVODBg1asmRJQUGB0Wh0PqJWq0tLSwGA47hjx44BQJ8+fbZu3Wo2mwFg3rx5J06caFSbGxzXK+ghQ4YMHz48Nzf3rbfe2rJly+TJkxvViBBpiBVbFaAAAALERmwa8S2l2AbWgAlXYa7AHCehpc7fjChFVImlxGgzEAAFo4i6NQaCCf69aGewLBgAMMYsYS9UZbasVzaIn/sNhZjmMKH/Wsn0a92MRY1ltJwjN/XWMcaCBhFWbH3v1Cy7ml2FpfKJ+Cd9pfvI57b269ePT2Bt167d1KlTRSKRzWb7xz/+oVQqnY90795do9GMGzcuMDCwffv2hJDevXs//fTTaWlpUqk0Ojr6tdde88m51BvXDvrtt9/eu3fvvn37pFLpf//733pXjt4h8aqEB8Mf3FOyhya0BZunJE51jG8AgEqkKjGXiigRIaSWNbbTtBPM0EHb8bTudEtFJAZSa63p5F4IiRB/3ys/d0haYuDGjBKtAlEIqoy2XgnN2UEzsoHhgw6U7JcyUhu2Jmk7tAlo6zhAoGZ3uiJjUMQgRzU7nipL1XXT9UBRoOB32rBIpdLMzEz+Ni+rkJ6e7jigffv2giM0TW/dulUwz8yZM2fOnNl4djYqrt/f77///rnnnmvU0LOg0nRim0kpkd3y9NeStO1DZS0EgwlDFIy8ljUCEAktzavNE+zd91H0VSpU5yrPYEw6Bz/QKaiTYIYRsSP3Fu2RMTKgoMZq6BrWjZ/B36LQj3taqMVfPd7+dKGRI6hNiDhS27y3lx+OHN42pF2uPkdBKboGpQh2453V7ARHCJBtBVt2X9+NCLJi64wO/3TesffTgLh20MuXLx87duxtOwTeDWaz2bG71fbCbbuKd1JAr+QsL7Z5qb0myXFwob7QaDOJaRHBmONsgIhzWLy9qn3HkI7V+moxJXZ+9MGQh+SMvMhYhFmuR3xPDdLwY7wsiO6nOaKVi4Z1CnPf8qq5QCGqc3DnjtqOLlNlYm5Rs2OTA5Nb3LpaulCVuff6nkBpIN/y6tNznwhaXvlpWFw7aKlUGh8fn5SUZE/q3rVrV+MZkVNzdVfRTq0skOM4hUix5NLXn3db4PLqCSFEAIjTqteKrWuyVh8sOUAI9GuRNjZ2HINueTpDMQMjB7kvmG6+FNQW5FXnKogiXp3QRAVLCSFnzrD6amjXFu5CndUHcJxx/oKj17MO9whp0TllTPxQYTMqna787zN/aVFzsmd46zZdJredRMOteXinzxfP+Xj+gygnMSg1LvWxhInCV0hPv/rNygO0PGfS808PEYbvvImElr7X+d/birccvn44NaT3I9GjBGp2RcYiMXXjGsJlyys/DYtrBz1jxgxvKpuUmkvtjc6AAJ/FESy9mbEYKgvVSgNZYq2x1vItSAQzbMrfuLNwJ41oRMiOou0ySjYy5n7pJXygdP+v1zZIaKmFtaSG9hoTPbaJdPOyQzDGCxdxO3ZgiZQYDdRrr1KPjPS1UXcEZ7Xahgzfn0R+frQlja+dvX7tz4pD73X5l30Tm714kX38qW9fi81qJUdQXlK+8+ShI5/3+ExM39ASYFf9zH380Zx5HU1yRKByZ/GWo5WH5ndbYH8J2ydzycpV0QAxAB3OHX79zKyF/xjqg1P9i/TS9LMVZwPEmlMVJ8PlYQNuzXTWirUstgFIAYAA4QCLfdQ78T7B9S+5a9eux48f//HHH5ctW3b69OkHHnigUY0IkgZbsdV+1zmLo6Omk42zaKWBkYpIGugx0WMFM5yvPM9QDIUohCgRYjKqTjWqwU0HM2del/OLRqKV0lKVSHW49FBurTBxyvecPs3t3Ik0GlDIUUgI+/l8MDeT1ouLF9MV5T9PasnYMMVh2ob1ttJ1eWvtj5O3ZlSpqezWcgSEl8I1cNUbC9bbB+AvFqwbG2GUU/ZQbpVFd7Ly5M0ZVq7CgAhCGCG5xfjszqWrjxV56eycKDQW7CveqxKrpbRULVb/lr+52lbtOCA5sHNHbccaa42ZM1dZq6YkTm2iV2z3Cq5X0JMmTYqPj+/VqxfHcfv27fv999/58vZGIkGV0KdF30Pl6TShTJz5mVbPCuIbEfKIf3T85+na0zWG6lbq1s5lJgTdDHsQgNu2pbhn0Fv1tMN7JaZFOqvOh/a4prQMiR0uyMRiUl6BmoNsP86+ytIEyE0nhAhUWCpujqiuvtJKShyjbgiKam96WMzigkj5LZMSuKC/0CWwCwAAvw1zc3bQmqoul/rs30tn0TH0zU+KQWKdpdJRd4GhmMfinxhIlRZXFkfJooOkngnm+PEU1w5arVZ/+eWN2P/UqVMd1YIaAwRodPSYgQkDCyoLwyQtNGIXmUxRyujk6M4CJU87rdStCwz5NKIJAEe4tk55eN5EsPHIJ4q4V3N2rwctEonqGhApiWSJDRAgQBRFWVlrnDa+ye18xseD0QQyOQAAIWCxoDBhok7ThOnVC+8/EFVguh4m4VWGMCJxqlj7ABwZ2eHsOQAEDiJE7TUd7LdpheyBk1UX2t6SdNQrqNdfD9NcgAZV62/cJSRPG5Xmu0y+cFmElTMD3Kj/tmKLc0oVhaikoA7hKKKxNfjr+rG7p9kVc7vHtYOWyWRGo1EulwNAVVVVVJQ3MmmiVTEBWOOY2nHnjIkea8O2kxUnCCFdg1MeiRrV4ObdOeZbr98RQnK53Fz3Rb1IJGIYxs0AhBBN03UNeLXd3768sEhMiW3YOi5mQhAdxI+8rYpQRUXF4sWLJRKJTCZ79dVX+T8SQbtFhUJx983uUOtW1Isv4MVfE5GIWCyihfOBacT82QYEPT4Jbd02Yf2VVRNbloRKCQUxilbjHNqtSb7/L35w4KDdpbsGhAAgAhCjiB/ccrB9gOirr/s8PXl/mrkwUkowAIIO2g5x6pvqY7J/zqie/aHEZEAAZargjY+98XnbhnTQvHy+4xFeMsXlR6lQKCa3ffZ/l39kQGTF1teSXw9Wu/Z3crm8rutUiqIQQt4RsbrnQS7f5bS0tHPnznXp0oVl2YyMjI4dO/K9KX/77beGemGdTifwxYGBgXq9vi4Hzcveu/lTpRnaTJtr6m696lL2XiaTNfg3yaVgvxvL716wXyKXlBhKJFjiWBh226XEihUr2rRp061bt5UrV3bo0CE5ORkA9uzZw3Gcvd3ixo0btVot3+wuPDxcULIkOKnbnEhNrcRoYKKiDFar6wF1dB5wRKPRGAwGgVjS3Sya9uzZs3Xr1rlz5wqO33Jq2Tklx05e7hIZ3zKypdJFZIbdvff0+Uvn+7Uc1KZruFNZB7Bszdr1RwzV+T01Dyf0CZMK27CCyVTx266LTEB0Wo+owFv23O5+PSgQ7AcApVLJcZybN1milBTqCtW0ui7Z9ODg4MrKyrpW0AzDqNVqQVdvmqYFTbBui38FDXWtoN955516Nwb2FRSiQmQhonu49WrdiGlxuDzczU/OJRKJxO708/PzeQctaLfo3OwO/nLiarWa79lhh1+X1am3K5GIxeEURUnqLg66bXNFvnNSQ305q6qqMjIy6urOd5NWcbEd27eqOw+aGdA/bdSIPnV5PYZRTZo4wdVfyw1ksqAJI0cFB1dUVDSF7RMZIwuXhzd2mw4/d4JrB52amqpSqex3i4qK7C1F/NwzDB8+fOnSpWfPngWHdYeg3aLjeL7ZHQCsWrXKbDbHxcV16XKLpiBCCCHUqM0V+e66DeXFli1b9tRTTy1cuJC/W1paOnXqVAAYOHAg39Xe8XURQm7WgO47sfIDVCqVe8sbtTTMT3PEtYNOSUn59ttv09LSAGDlypXvvfdedna2dw3z0+hUV1ePHj06Kipq0aJFrVvfEG4XtFt0bnYHAN999x1/w7MQR32bKzrSgCGOgwcPJiYmOj5Xq9XyjVY1Go1gsSyRSGiaNhqNdc0ml8s5jqtLNh5u14mVf9Ha2lqBB/e7bCEWC7mcBWIRatUK7oMuya4d9MaNG19++eXk5ORr166JxeJDhw41+AvzSxLHI4QQ54OOYIzdPIoQ4me47et6aqqnOL+Ee8Pu3nL+V+3pqTEMs2jRIqVSGRERER8fn52dvWnTpjFjxixevFihUGCM33jjDYTQF198ceTIEblcPnGisARO8IpeO5EG+RCPHz8OAJcuXbp27dqOHTuGDBkiEonsQZuKigrHwfx3z80ONsYYY3w3A/hWrY0R4nD5drn/FNz/Em/7MTl/DRrkIyOFRbbHn0ByORCC+vVl/vY3UN5+A2n58uU//vijVCo1mUyzZ8+uS/otIyNj7969b7zxxt3b2YC43iQEgPT09IkTJyqVys2bNycm3mn7Pj9+mh2zZs2aPXu2r63wI8R5k5D9fAE5fPjGwtlsoSeMo554XDBGcDl14sSJf/7zn1u2bJFIJGVlZV9++eVrr7320ksvaTSa6urqH374YcWKFX/88Ufr1q1zc3NzcnI+/vjjhQsXBgYGEkK++uqrOXPmJCcnDx48+JFHHtm+fbv3+xm6dtBTp069fPny999/X1FR8eKLL44bN+7dd9/1smV+/Pi5n3F20Nb+A+wZ9IQQqmsXZsY/BGMEDvo///lPTEzM448/7nikVatWEyZMWLBggVartdlseXl5s2fPXrt2bUFBgdlsjomJeeyxx+bNm5eQkDB8+PDRo0cnJCRMmjSpsVWXXeJ6N7xdu3Z79uxJSEjo3r374cOH9Xq9y2F+/Pjx4zWoR0Yie4zIYqVa3r4YlRAiWIPm5eXFxMQAQFxcXH5+PgBER0fbH83NzV21atUzzzyTnp5eVVUlFotHjBhx9OhRn3hnqMtBv/LKK0uXLp01axYAnD9/fs6cOd61yo8fP36E0BMn4NJS0FdDVRXVrSs16vb1aEOHDv3222/53d2SkpIpU6bExcVdvXoVAK5evRobGwt/xccRQhjj2NjYKVOm/Pjjj1999dX48eNramo2b948bNiw9evXu32dxsJ1iGPKlCl8V+/jx49/+umn58+fb9Su3n78+PEjwHWhitmML11GYhFKTHSZxeGc0rNixYrvvvuOr4v+6KOPoqOjp02bptFojEbj0qVLly9fDgBTpkw5e/bsE0888eGHH65YsUImk+l0uu++++6DDz6YOHFiz549hwwZsn79ek9rbe4e1w56wIABfFfvvXv3AoD9RgNSUVHhJuXIa8jlcseM7wahpKSkYSesH3y2XKNyD5/pPXNqNTU1brIDvQbDMEFBnikr+SsJoa40Oy909a6pqbHWXfLrNfjygYads4mE7L3goO/hM71nTs1sNjeFcxGLxZ46aD9QVwzasat3ly5dxo0b52Wz/Pjx48dPk+jq7cePHz9+nKlT9bF///6N2tXbjx8/fvy4p3nI8t6HrFq1Ki4urqysTCaTDRo06PZP8NNkOHDggFQqLS4ubnaf3aZNm5xtdnnQj3doNg766NGjCxcutKeUf/jhh81OENUlR48ePXHixLRp03xtiDc4evTo7Nmz161bxwvjffLJJxRFjRkzJiMjY/z48b62rp5YrdbPPvuMb5Igl8vfeuutvn37AsCmTZvsY3Q63aeffiqRSMxm83vvvdd0Wt78+eeffDc7k8mk1+vHjBnj+Gh2dnZGRoZdxZCH47hffvllzZo1GzZsAABCyBdffKHT6SwWy6xZs/hsNj8NhdBB//jjj86DCCHPPvusN8xxS58+feyOTK/Xz58/X6FQGAyGmTNnXrp06eeff1YqlUFBQS+88IJv7bwbSkpK5s6dGx0dXVpaGhd3o+/G5s2bT548GRkZ+fzzz/vWvLsnJibm0KFD/fv3t1gspaWlYWFha9asKS4uLiwsrKqqao7neO7cuYCAgH/9618AkJ6ertfrDx48aHfBpaWl8+bNGzFixKOPPtq5c+fvv//+1KlTvXr1cjul9+jRo0ePHj0A4KOPPpo6deqVK1cOHDhw9uzZ4uLi9957j/9oWrVqVVlZaT9otVrbt28fGRnJz3Ds2DG1Wv3666/n5OQ0hcTZewyhgz5y5AgAFBUVnTt3jm8ae/DgwV69ejUFB+3Ib7/99uCDD/KdPvbt21dYWJiWljZ48OCcnKbX09oTtm3bNnr06D59+vC6lzwURUVFRT333HM+NKyh6NGjB++g09PTe/fufeXKlb59+5aWlspkspKSkuZ4jm3atPnll1++/PLLTp06de3a1bFBj8lkmj9//owZM/jkXJZlL1++PHr0aN8Z65o1a9YkJSUlJSVduXIlOjp6ypQpv/766969e/mPRiwWK5VK+8ERI0YEBgban3vp0iWj0fjZZ59RFPXKK6/48CzuSYRRgiVLlixZskSpVF64cGHFihWrV6++cOFCU+jyAAD79++fMWPGjBkz3n///ZKSEj5FNDw8vLS0dMKECVlZWa+//vrJkydvO09TpqKiIiQkBADCw2/pnBQaGuojixoYsVisVqurqqpOnjzJr93sNNNzVCgU//nPfyZMmGCxWGbOnOmonL5mzRqJRMJ7Z51ON2fOnGeffdbRuzUFTp06lZeXN+qvsumWLVsCQEhIiE53sz28y4M8NpstLCzs73//e1RU1I4dO7xl9f2C6xh0Xl6eXVhPqVTm5eV50aQ66devnz3EsXr16qKiorZt2xYXF4eFhRUUFLz44os0Tb/22msjR44URM2aEVqtlm/mVlBQ4Kjy6gUZa68xePDgzZs3a7VavnOKXc6mmZ7jn3/+KZVKk5OTBw0apNfrMzMz7Q898cQThYWFu3bt6tGjx7x58958882mVqxRUlKyatUqR7EdvoSytLQ0ODjY/tE4HhTMEB8fz5f8KRQKN/0KGhBMCLqLL8uGDRvkcvmQIUMa1KjGwrWDTkhIGDBgQGpqKkLo0KFD9lYaTYfhw4d//vnnp06dMpvNM2bMOHz48LJlyzQaTZs2bZqddz548OC1a9cAoGfPnkOHDv30008PHTpkMBiayIVLg5OYmLh48eLp06fzd6Ojo5ctW9amTZsOHTr41rD6kZiYOH/+/LVr1/INFd988017qzCRSPTss8++9dZbJ06cKC0tnT9/PgAMGzas6RQWLF68uLq6+t///jd/Nykpqbi4eOHChcXFxe+++25ZWdmyZcsSEhIoirIfPH/+/OrVq/Py8t59993Bgwf37dt37ty5s2fPNpvNb7/9dqNaa2bx2hPXt58rAwLjU8IeSQ6lbuent2/fvmvXrnnz5gFARkbGvHnzVqxY0ahGNiyutTg4jtu6deuZM2cIIUlJSSNHjmSYBs73yM3NbQql3lqtlg8pNCCXL19u2AnrhxfaLNzDZ3rPnFpZWZlzXML7iMViXjruznHW4lh38vquCxUShgKAWgs7OTWyb2uhepFgje/soPv06aNUKqurq/fv3x8bG3v58uWlS5euXr3a8S7HcY6i/iaTaerUqQih2NjYmTNnTpkyRaPRWCyWVatWLV26ND09PTIy8urVqx06dMjOzu7Tp4/FYnGcbeXKlcHBwZMmTZozZ05KSopcLv/ss88CAgIiIiIct5pcUqcWx/Xr181m8+zZs0+cOMFxXIM7aD9+/PjxiPWnSkKUN66PFWI6q9Tg7KCdWbdu3blz5wCgpqbGnhlFUVTbtm3//e9/f/fdd+vWrRPcLSsre/TRR3lR/7Vr1+bn5z/99NNjxoxZtmxZUVHRO++806NHjyeffPLixYsURbVr127mzJkDBw4cN25cZGTkuHHjxowZ4zibwJ7ff/99/PjxTz31FN+v2T116kGfPHly27ZtALB79+5mnbjmx4+fe4O01jf3VzEBqeiOmsaOGzdu+/bt27dv/+qrrxyP87L9YWFhxcXFgrsCUf/8/Hy+AmPy5MkajWbp0qVvvPHGuXPn+O7GYWFhACCVSsPCwqRSKR+IF0zuyPTp00+dOtWvX789e/bc1njXDjonJ+frr79WKpUAMGPGjCaySejHj5/7me5xAZUGK8sRK4t1Blu/O1g+u4FPyc3Ly+NzVBzvCkT94+Li+OScRYsWzZkzZ+LEiQsWLIiKisIY38nkEomE99oFBQUAkJWV9fHHH+/bt2/NmjV8fZMbfCY36sePHz8e0TlK/cGoxIz8aoZCPeI0Iaq7SgfIycl59dVXr1y5snr16p9++snxLsdx06ZN++OPP3hR/5qamilTpqxZsyY6OnrYsGH/+c9/NmzYkJSUtGDBgoceeui2k5eXl7/yyitXrlwpLS0lhBQWFr7//vuhoaFdu3aVSqXujXS9SfjRRx+lp6efP39+/PjxW7ZsmTx58syZM+/mvXCmurpa8P+jUChMJlNdf0oIIaVSWVNTU9eEDMOIxWI32uRisZiiKMFflkQiafC626qqKse7t7WcpmmJROKp5Y5IpVKMsWDTVaPReGJ1fRCcaSOdiCNyudxisXD2xnQA0DhnKji1RrLcEZVKVVtbK/g93v2pmUwmQfZbI5lqh6IomUwmWNXRNO2p8HqjCvbz1R5PPvmky7t3SQPO5jO5UY7jBN8AmqadD9qhKIqmaTe1pAghiqLcDBCJRHDrxYH9YMMieIlGslwwAyHE+4W2glf0wolQFIUx9sKZOn9PEELuX/cuLee/JA2eW+nyRe/eVI7j6lpLMQzj/IW/V3NGG5s7khstKytr8Fw0P378+PEVL730kpu7DTv53eB6kzAmJobXuOKZMGFCQ72eHz9+/Pi5Q1w7aJVKtXDhwnfffdfNNqWXITodsd2DWlkEY1JZCU3mffYtBEi1tZojdUY/fUiNtYYl9+A30FMwITqD1R+x8A6uQxwajeb333+fMWPG8OHDV61a5TwAY7xx48YNGzbwTcv1ev3ChQvFYrHVap0xYwa/NWk0GhcuXEjTNE3T06dPr7d8M8nPx8v+x+3ZV4Ix9dor1Ngxt39OM4FkZNhen86KRCaWZT6cg3o3FRVKn3CtNu+zo/MYRNswO7nVM12DUnxt0Q2qrFWr81YdKzuKMTcscvjgiCEImqVsyN2TWVw7Z8sVMUPbWO7vg+O6RKt9bdE9Tp1Ok2GYzz//fPLkyWlpaXz6niN6vb5NmzYRERH83dzc3LFjx86cOTMhIeHMmTP8wZ07d/bq1WvGjBkxMTGHDx+ut4l4xUp8+iwKCaZbRrDffItPn6n3VE0Lo9H2+psoLAyFhNAtW9re/T9SVp9t63sDjnDzzs8NlgVrJNogSdDKqytKTCW+NuoGO4t2XNRdCJQEasWBu4t2ndXdvgDsnsRk5T7aeiVUJQ5WSYJVovm7cnVGm6+NusdxvYKePHkyf2PSpElJSUm8GLkjWq1Wq72ZJZ6cnAwALMteuXLl4Ycf5g/m5uampKQAQHx8fGZmJp8KkpGRwWeA9+7d21E5FwAQQhKJRBhUMRprdu2m/mo+TyuVTHa2uEd3Z5tpmqYoyk1eIb8RLxjgw7YsJD8fZFKwq73IZSQ7C4XcUZLQLfNUVmK9Hpr5Lm6lpVJEiRAgAgQAJJQ033ithayFr+0CAiS95GCw7MbnIqWlebW5nbSdfGuVTyjSW8TMjd8LAiRlqLwKk1be8HlQfuwIHfSkSZN++umnX3/99ddff/VoIr1ev2TJkscff9zRcduxK8zl5uYePXoUAHr06OGc4sYwjCAdh6hUgLFdWxBxLBMa6jI3jqIohJCbtLnbDvA2Gg1ySEVCLIs81aLkOO6bb/G69XqGYR7sD08/BX9d0zQ7lIzSMfTMYZta1CQun/n/DAKED2twhGsihnkflZTm8M2fJ4eJxu+dGxmhg+YFl9944w2PZqmpqVm0aNHLL7/sKEaekJCQnZ0dGRmZlZVlFywdPXo031FCp9MJajcCAwMNBoNzHjT91t+5BQtBoaQJId1SrN1SrK6KPkQikUKhcFMPIpPJaJqura0VHLQrX3sZ1KIFNWE83vArkcmw1UoNHQqtWnk0A979B7dlKwoJoWiaO5VBGIZ56++NZG1jI2NkD0cO31X8u4SSWDlrcuADCSrP3o3GY0ri1B+zv1eIlDaWNXK1KcG+D47fySaQM1YWbzhVsvlMGQA83j18WIcQj1SVQ1WSoUkhv2eWScTIamP7JQbGBDaV5or3KkIHPXfu3Llz5zqPGzhwoOPdixcvrlu3rqCg4MMPP3zooYdycnLKy8u//vprfmRQUNCmTZtefvnlL7744siRI3K5fOLEifU2kRr+MGqVQM5nqqOjazt2AB/508aAfmEq1bUrys+XJSSYOiSBh/EWcjWHkstvLGloGv+2FZqtgwaAwRFDOrboeLXqqopSJ2mSaHRHUjheoJM2+d2u712pzQYr6qjtKKVvU57rBVxuAnXo0GHlypVnzpzp3t1FDBAAtpwt23OpIlQtAYB1J69r5KJeCZ5VKrYLV2zMKDGzFoxJmzBF82yx4IImq+IvdNAu184VFRWCI23btn3nnXfsd1NTUx9//HHHAW+++SYAzJgxowFsrKjEW7dzv/6qoxD9739T/fo2wJxNBIRQSldRak+JQmG6tbb4jggJxpWVoNOxAEirpR7s3/AWepdETZt4ZQIvEtakaKloGcjuchEAACAASURBVBMQ4+b6zMvcdhNIp9NlZWUBQIsWLez14utOXg9RSfhyTZWUySozpbV1sXWBEHIpL2ywcvN25oRrJAzNcBz39b78DpGaQIUwysE3yhHEEhtks4cAOVN5+oL+AoPoBwK7JKhvf421ffv21157LSkpCQCqq6vffvttwVozIyNj7969nsYMvIbwY7Bbn5GRwdfCWyyW999//9FHH/W2aX/Bff89SU8HpZISiW3vfyD+ejFKbO0rY5oUKCiIVFQgRoQQ4Eodzfq31O9fBJtAOTk5ixYtAoDHHnts8ODB/JhBHcLP5FchhBBCmIBSJhFs1PPwm+3OxdmFNTVSEU1TND9GLqJLDDgqVDgDX/EvmLlBKiqOlv35S+7PSkZJEEkvPfhq27/diY8eNWoUL9h/8ODBb775JiUlZcqUKYGBgYSQr776at68eTk5OVlZWampqUaj8cCBA3FxcceOHVu9erXVanXU5uf/eLyM6yyOv/3tbwcOHOCb/p05c8ZxsextzGZu02YwGAlFYQAkl5GMDL+DvkFWFpWQABYrBUDJZdyBdF8b5Mc3OG8CdenShQ9PGwwGu/BThzDJ7kyzTMQQQoxWNiVSVuXquk2j0RgMBptN+H/PcDYri/n2HRzHWWysCFucZ2AYhu8L7HiQpum770WXXZ2tEqkAAAFSizQZuow7cdC//vprdnZ2SUlJYGDgwoULlyxZMm7cuMcee2zevHlbtmwZPXp0QUEBH7WnKCoxMXHWrFkffPBBenp6fHy8ozY/vwz3Mq4d9LFjx06dOjV69OiNGzeePXv2hx9+8LJZN2EYqKkBsQQBAEJgMOD8fJ9lxjUxiEIBhIBSgWiaEAL+6q6/EOyhCe7yHD16dPny5bza+gsvvNC81GbcbwIJ2qXbaamRWm2Y5WxA4IFodZDSM48ZqBCN6txi7YliABsg8nCHkJggr24SOnaKRQCE3NGqnF9B792798cff2zVqlVubm56evqOHTv0en1QUJBAYy88PBwA5HK5yWSSyWTz589fvXq1XZvf+7h20Hz8yGw2Y4w7duzIN4zxCcRiAbkcLFagKcAEMEZNrGu9D6Ee7M99+y1oA4lIjKt0zL8aIuJ/TyDYQxPc5TEYDKNGjRJEJJsLt90Ecsm28+WhajFD0wCQU27cdaF8dGcPMs0JgXOFNbVWjiKYALlQVIMJuW3b1gYkQh5xujJDzsgJkFq2pm1Auzt/bv/+/WfPnn3hwoXY2Nhhw4aNGjWqqKhIpVLt3LmzrvDLggULJk6cOHDgwJEjR/pK9MK1g27duvUXX3zRrVu30aNHx8bGOm8Seg2kUCCRCLRaMFsosQhjjNq19ZUxTQ0UHi76eQ3e/YeYZeluKda2/nfmBoI9NMFdHoPBcOLEiYyMDJVK9fzzzzMMgzHmszDFYjFy5XdcHnR8yM0A/tHbDnDz6N2z60K5vaefiEFlNZ51bb5SZjyRpxczFJ8bfq6o9niuvntco8uO2+nboh8CVGDIB4A2Ae06aDt69PRZs2bNmjXr22+/nTZt2oYNG3Q63XfffZeYmPj+++8nJyc7p3D07dvXUZvfpehFY+PaQX/zzTfl5eUhISHLly8vKipav369l81yhFn8le2VV5FUSliOnjiequPy7f4EhYbSj02Sq1Qsy0LTS35oyqSmpqampgYFBa1fv3737t1Dhgy5fv36I488AgCjRo2aNWuW81Pcp8xLJK733ADgWs21jRc37M3/Y1DMkGGxD4fIXYdTAhv56nBQu+DjuXrMYQAChIQFeJYvWKgz3xJkoFB+pbl7XENbWTc0otPC+nv0lKFDhw4dOpS/bZdQXrNmjX1AaGioXZ3CzltvvcXfGDduXH2NbRhcO+iqqqodO3ZUVVURQuRy+YYNG3yYhoKS2ou3b4X8fG1cnK45NBd3LmF3PugIRVHOu96OMAxzJwO8X7YuMMkLJ8InGNz9dhMAFBQUtGjRAgDkcjmvLh8REXH8+HH+UUE7D5lMxjCMmzQ7pVLJcZzLSKWRNc48MSNYHqwVBx4pPFxRU/5Y3BMMJfwmBwcHV1RUCHIn7rA/yB3SLVa97mQJhQAAIrXSXvEBHj29fUslttdUEsCEJPvFkhoZ1/5u5MiRnTp1akLbJlIp1aYNHRgI9eqC42UEzX54n+Kmr6NIJKJp2s0AvgbSzQC+j4nAOzR4Ky9nBCY10okIXsJsNgsSDJzPVLCHptVqHe+GhIRs2rRpzJgxixcvVigUGONGXX/k1ebJaBkFFAZMI/pM5ZmHwge2lLdsvFesi6M5+rhgKYsBIUQwTr9S9Uhy6J0/PUQpfqpnyzXHiq0sJgjGdA5rFSJvPGv9QF0Ouk2bNt98842XTfHjp6EQ7KEBgOAuX0j1wQcfeMEYES3iFaB4MGAx5RsJi10XK0KUYqmIAgAOk1IPY9AAMDElbGC7oGosVlG2IEUzuJxt7rh+i9u2bfv777936tTJnpvdsJdafu49MMEHru8vMOVbLJZYVVyv0N73rWiygBhFTJuANmd1Z/m0sAcCuwZJfPNrGtg26GR+DR8/srEktF5dsQMVosTgoMrKSpeJDXoTuz+r3MiVhClQ7wQNQ/tzYu8K1w760qVLH330keOWRW5ubsO+sMs4o5taHT6S62YATdMIITcDeDU7wYDG3je/fzha/ueGvHUqiZrjuAxdBoOYHiE9BWNqbDV5ulxkQ3Gq+PvHfWPApyszRBTDAUKE8uF5D+sYsutChVzMYCBdo9UD23monmizces3kKs5epUS9+4ND3QWPG60ci+vPK+Ri6RipsZkydeZn+zRXOUVmwiuHXRxcbFOp2vU0kZnZVFeAaCuDSLek7oRC+UdtKcD/A66ocipuaoQKfnbSkZ5teaKwEFfrbn6xYX5MkbOYraztvPEuEkiH13pe5m82jwpLVNL1BhjQsi5qrOl5tIwWZj3LQlTS354pmOJEVGAw1WUpynMtuUrYOVqwJyJZsjatcw3S1CbNo4DzhfVKiS0mKEQQnIxszOzfMwDLRTieroR/1U71OWgW7Vq1dht0q1Wq0BZVC6XWywWZ7lRAICaWpSXJ4mNMSuVdU0oEon4HaS6BvDLZ8EAL+yk3Tfc/LUTIOC0UDxUlh4oDUKAMMbn9eeOlR/tFdrbuxbWn8v6S5f1l5ENdQnuqhF7mvl767tBSGP/uNwgZqh2EXUmnLiHfPtfYrUiQAQR4DC3dTtzq4O2coRyOFFEwGLD9XbQfsBNiCMmJqZ9+/b2RfT27du9aNUtkNOnba9PR3J5BYfhkRHUtJeQ79qg+KmLjtqOxyuOaqRavvGroOcIAXKs7Ki9LwmDRBUWn1U/ecqRssNr835RiZVWlt2Yv+H9B2ZrxS66UtRFtCLGzJnkRE4BYjGbHNg5VOZB7kQTwmS0V+MQQuDyJcHjrUNl1WZca7UiQIjgbnEutO78eIRrB/322283nc4jtr+9gcLCACGKYdjftqIHHkC9Un1tVBOitNpyKNcgolH7FhIfrlY6aDu+1O6VCzWZVoulo7ZTm4BbyhoRoO7B3a/UZiNEAYCVs/rkGr9+rL66KlgWjBASU0gtUp+sODEg3IMCcSktnZX83p9VR3bl7XwofED/8IeajtS1B9zsKsOnpBBiE/Y4F9EUhzFCqMbMKiTN8BybHq4ddE5OznPPPedlU1xCDAbEMDcb98mk5No1uIccNMnJ4YqK2PgECK+Pw7p43TBnS7ZaLiaY6E22Lx9rF6hogCKO+tFe275bZDeXAmkA8GD4Q0fP/SmhJBzBqSGpXYK6Oo8pMZbk6XMVoIhWxjSysXeKY4YcAFCIMrEeBwdCpCFPtn1qTNRYZ4k4b4LPnSc7dhgpGiW2JoMHIU8XYTIp2Gy8fyYE0bHCz+hCca1WJpJJ6HANzbLs8Ty93sQGyPzZePXH9Xu3fPnysWPH2nW+fQhSKAjLIkJ4H03MFtTS4wx/fOUK2bTZxGEmIpyMHIFu1a/yIdyan/F/l7IymdVqRRPG0897/Ke473JFkFLM0DQhhEKw51LluC5NdGUaIW/5ZZ+vS8wlxEpCpC5qoI6UHv4l72cJLbZy1t6hfUfHjGkKmR4IUJ/QPofKDhPAhGAC0HR6cXkEuXKVfe11FBJsYxjyxx5UWkY/O9l5GCakvMZCYSwMIyJETZqIN/0G+ipKoyEYU4MHCYbQFMJAMADmMAL461frp/64dtBSqTQ+Pj4pKckuPrBr1y4vWnULzLy53Ix/ErkcY0wPGUJ5unwur2Cfm4pkUowxRzNQWEj/463GsdRDKiu5b75FISGI4yilkv1pDfVgf/RX88Y7ZH+Wzi5/w9Co2uxqi7XJIKbFsepYQVtIHiu2rs5ZFSIPIYRIKGl62cHkwOR4VYL3jXSGoRiW2MyciRAioaUyxvctr+oBOXIEtFq+rRpSKbll/6OfeVrgQQt05nUnS47l6jHBj3ePGNHpllg589yzHCBu0yZCCDP9DeTUWKtduFJntJVUWykEmJC0xCC11L98vitcv30zZsxoOjFoqlsK2rAOXbkaEB2tD/E484Y7fhxYlpRXAIU4DsOGjfTUKdAELg5wSQkQQrKyCEKYEKTRkuslnjrooR1CdmeWs8SGACiAOO/q8zYgepueQTe/jWJKVGGpaAoOmgDZe31vqDQE0RTHchzhMqsyY5VelAhqIAghCDmGa1xkkvyQXnA0t5p/6MdDhXHB8qQIh7wpmQyFhlCDB8tkMrZlhPPzKw02KUPLREAA0RQ6nqf3L6LvEtfpEL169bp48eKKFStWrlx59erV1FQfx3yRRkN1SxHVS2gUXc0BkwkoChAChgajCSyWBrewPmi1oNMBIwKGQSIRqaxAqjqTCOtCKaGNVlxrZqtNrNGGQ9U+C0DfJVqR1kZs9pCGhbWGy8J9atEN8KEjRKfjLl3iCovAaiWAnXWOmgWoRw+iq+K7OhBDLf30UwLfaWbx0Rw9nwRICJhZvOVMqeMA9n/LuTU/k9OnLceOW/75Nsm8IHiJvAqTQkIFKcUtAqQaGS2mqbLapvFba7a4dtAvv/zyH3/8kZyc3KlTp19//XX69OleNqshaRECBN/IPMUEZFLSNP7TUVUVaDVgYwnHAcuCVotrXFz7u2fd8esRGklsiCIuWB4eID6Zp28MU70AQzEvtZlWbiyvsdVUWXTDI0dEKqJ8bRRAURH37qwRJ4hRKSJGI3ctt9pa00mb7Guz6gPVuhX9+GM45yqXfYWOjaPHjhUMMFu5WxbFBK6W37IdilesArkcABACSqvh/vxTMINWLmIdyr9ZjLXy5rpiaCLUmcXxxx9/8LenTZv20EMPedGkBgalpKCAAEJRCBMQi1BqT9REVPqCgoBioHU8ZWMpqYSr1FH1NYxGiFCAOd//8Zg5swVbJJQ73eS6aK9J+iptcWFNkZRI1aImoWPJZV5ASmXaORJgJlfDEF1t7ZXynMcJggWF3MGDJrmcdO8OYR50MGlYyOnT3JqfUURLGgDnXYOVK+lXXnYcwDD8cu1GWQ0CCKxbDokQQjlVGndoqewZr/nzapVEDDUm2+TUliLa99/JZo3rD4Cv6OOrVDiOc13d10xAMTH0+++R//s3MIxkyBBu/NgmEhVDISH0U09yq1aBXE6qqulHRqJWHodcn+wZ8cuJEo2cJgT0RlvXWJ/F1q3Yuv7quoPX92OM+4alPRI1qh6V3CJarBQpRVyT2f9QqziWowikXCHdrgJbrBe96jqFAxOss1QyWCQIgOALF7iXXwWNxkRT3PwF9OIvqXYeNGpqQPCxE2CxQmUlhxBgjH5aI6j5Uorp6EDZtUoTQjdqQUd2vOXvhHlxKrd8JaiUwGGorKT6CAtBKYSe692yZ7zWDKIQCefljoX3JK4d9MCBA3v37s13H9izZ8+IESMEA5pXU04qLU28b4+UphmZzGUKga+gn3kapXSlCwvlrRIM8fH1+OcYkhQiFdG5OhsQ3DVa2S6sTi38xmZv8Z4TZScCpUEcx50sP64WqQdFDPZohqs1VxcenS+iRDbO9lj84z1DfJ/tjh54gOqdSv48SqQSMBqZxya5zNHMrc2df3QeQ4lYzvZY3BM9Q29aTrbvgJAQoCigaRQaSrbvAB85aHItDwwGoBlAADRNzBbnity3H47/4o9r2aVGADIxJSy11S3/99TECaDV4DNnpVqtpX8auNrQphDqHB2gVqsrKysb8WTuG1w76Pfff79///5HjhyhKGru3Ln9+vUTDGiOTTlRQ7ThaHCoDknMA51FCgXUUd/hHoSgU6RKpeRowK1DPUv/upN/WaPRuHDhQpqmaZqePn26m14nZeYyCX3jHRbTklJTaV0jXcJidkHm5yHyECCAMV6T81OMIjZc7ut9QpGI+fubePcftE4nbtfO7KTfBgCY4M/Pzw2WhfAyI2tyf4pR3rScWKxgf9Moilg8lmBuKJBWSwgGQiFAgDkQiQjGAh8dqZV+Oi4RxHJgLYCdrptpmho6lBo6VBUcbKtDbtRPwyJ00PYFZrdu3bp162Y/qLxVpah+TTkB4MiRI5cuXQKAoUOHCuZECEml0ro+dV52zo22EU3TFEW5GSASiZwHNKpinxe4XGL4YHO2SiYiANUm29dPJN154dad/Mvu3LmzV69eaWlpa9euPXz4cO/edcobiWkxJpgCCgAwYLuzFlBtrWYxK6aEj+qsOhEl4ruRAoCMlhYYC3zvoAFAKqWGPyyVyRiGsbhqeaWzVoqQmCOclbNSQElpWYEx3245io0hhw7xe2tgNCKn6juvgdq3o1qEEhuHgCCZDPXqVZemjUYuNhhsNmcH7cfrCH/MHTp0cLyLEGLZ/2fvvAPjqq78f+69r0zXFPVmNdty7xVjGxtjTMAG00xLIB0S77IJSzaB8Es2m7a7JIRNAoSSYEILNTYd3CjuHVzlItvqbWY0/b137/39MbY8Go3GGlnSzJj5/CW9uXPnPOnNefede873aHV1df3Q3+rZlBMAXC5XfX09ADDGejrHsGRzzNnOqwcdXtx92fSgNxzucJgkQQhXEvL1h9uvndjXbai+3GVra2unTp0KABUVFQcOHAg76CNHjlBK9Xp9ZK3p3MK5n7Z8YhB0jPEgDc0tnCd0byDZEWp/8dDzO1p3UKYtKf7KVaVfiSwUtOttDM54BISQBtSutws9WlCG/4NJVIPriUk0B1nA7XVjhDlnMtFZpHM7nOT65eBys5dfZgiRFSvQ9dG5E0MGWrAAff4FfPgREgTm9YrLr02WJRn6TvQXIFKYn3O+atWqn//85/3rDNSzKSdENNl1Op1R4WBJkvx+f28bkhhjWZbjRJBFUTQajbEHBINs3XrB7ZbGjgmOHRsZ6tXr9fFbNac4G2s6uioJRYI6fIMo9dDVqvWhhx4KBALDhw//7W9/2/VqgVQwKXfKrpadAHxq/tR8a4FZ7hauffX0K0c6a+w6O+d8fdO6qpzhU3Ondr1qBvOKEbe+WvOKXtApVJldeMmU4ilRpd4hGtpYv6Et0FpkKp6WNz1FJIcwYMYZCmu8AeLACI8wTBTJd79Nvvl1q9XqC4WGXovj3KKEEOH+f+c33CBrKqqqCsVtjkEIiR/BiLOWirlUGvqOxhcHvT4O7969+3vf+15BQcGGDRtKS0ujXk2pppznIRSiD/+ObtnGdZKy6u/o5pvInV8dys/nHR28dxnrC2Tx6OxtJ9zh70JAYcPsA7xvXllZefTo0eLi4pqamoqzm0IvvfRS+IfI1tf/PPXmcdfRXH0OpbSmvebNQ68vLT23RuPA159al63PZpwxxmQkHWo+UCl2y1qZkTWzckrVSXetAYzV1mqXs1tQXmPa348/t9e5hzGGAPbm7b2x7KawB0+usrtbdekFAwcI0ZAEWC8aOtQe+2OCAIKQlAqp6CYV1SMlWeacM6XXaHj8zkRhRFHs7Tkm7LsznTEGhBgO2ul0Pvjggxs3bnzkkUd62+JLqaac8eE7d7HNm5HJDBgjm0SfXUVuvhGGRKefnzrFVj1H129o5oC++21y040D/hHXTMj1KXR7bSdlfGG1fe6IBHSK+3KXveeeex599NEtW7YYDIabbropzmxe1dtVqy1gwaN2e5Q5E1xGZwqMVU7NsTKdyy3lJYaSmFryx73HtrZtYYwiQAz4+sa1CwsWDl5zP6OxWz5MuNdP1MEwsl72az7GGUaEguYP+ArMBT1Hhpu7S3F3qo1G44BHbxhjUU0qBEGglMZpbaHT6RRFibPYN5lMoVCotyW2IAg6nS5qfkJIzL9ehvhEO+innnrqV7/61d133/3II4+kjhzHhcA73UAiTlMg3ONBQ+Kg2fMvsL2fo5wcIgja08/gEcPRxBhpABeCzSB+Z27JXfNkDEyCaH3e+PTxLnv//ff3ZTajYNA4lQADAOWaSYx+aPj2iO/8peYJAoQDo4xNdUxLyNpab61KVQELABxzpDClKdA0eA7a5/NF/qrX6wVBiDoYxqN6BCwGtABlDIAbBIPT7/LJ0SPD7X7ieD29Xu/z+aIcdNp1/KGM76l1Bbk3R8cqcwzJNiftiXbQ3/rWtyoqKl566aXnn38+8viePXuG0KqBBI0aBV4v1+kAACgj8+YOUSVhMEg//AjlntUDMxrZocNkoB00AGCEbAaRMxYMJuagB5b5BQvWNa0ziAbGWJAG5+dfFjUgxEIYMEaYc8QQ03gMa/2qv8HboOf6npWENtEW4bw4ADKLKSEbS7mmMY0gAWHgnAc0v0+N3gip89W9Xv/qxrqNc/IuXVCwIFldvQcbjbKnP6vbcbJTFkVvQLl5Wv6SsalRtZu2RDvoxsbGpNgxeKBhw8hDD2oP/YwJgnzVVUNXSSjL3TJJNRVFdEnvgh85Qk+dVquqoF8JWH6F/mNH09rD7cDg+il5SyfkJtoJdKCwStZHZ/+xRWv2er2lxmE9FYWePfq3HH0O5QwY17i6q31nlBPf79r/5JEnJCKqVLu65JqoriWjbKP1gj5IAwBgEAyE80J9wsrggwMCQAhxBChcJs15t2d/z6YN/x16zq5JdoPxc+e+IA3cUn5bmiouxeeLBu/22k6zTiAEC0h4fmvDgmqHLGS2B/tP9FUSLvy7yEhOJSFCwo//g/7Pw2AyccbxjBl47qVRQ9jzL2jPrvIJkltR6NVLrffeE3OmOKze27Kt1p1r1nHO39rXmmOWL6lMWrW3iMURtpEuFKPihgPnnLcF23yaDziYRbNH7ZZTrDHticOPnSlUIeydurdGZo0sNpzTSzIJpvvG3r/Dte3T+k9m5s5eULAgRXwcQVjGskCIO+Q2iUYBmY0R4R3+yae1zz2sX2ZDispdblJQsFfbu7Dg8kJDt7uLytR/Hn2zwd0wyT6pyjx8yE9iYHAHNAGD0e9RjBYAEDDuDGg55lQsEEsXUuISHxqGvpIQL14MFZXowAFzSbF37FiIMqCtXXvmr226LL9CETYYX3lt94RZky6blNBHrNnX0pVmZ5RITbMviQ46DghQjj633n9aQAIA71Q6o9p+O1WniM4VqshEbvQ3RjpoAMiWswtNhXMKLs3T5VsTads6qJhFy6zcmfvd+62SVaWqS3FVWc7pddAtWyS9+cyKmgjc5+OyTuxexePX/L/e98umQCMAvHf6naWl1y0rXTaUpzBQDHfX//L/7uFEJJy+tviudcWTsk0Z73xBfIkcdB+JqniOWevcd5kRPLwKjxyhs9u9ERlpZz6otSWEiEej2+fIW2aKiBvkE++MmzdewAmk915aZTvUdGY/inJukFL0cZIDbwu26InBq3oBuFXKwt0jMVliVmRUWmWqQ3ZEDlCZ+sap12q8RwgIu7Sd9b66m8pWYJQS57us9Lo8Z36Lr0UE8dL8uUYhYoOU8+JWPvY0O1KEBQ0UTKc6pjmkbqe2+tTqpkAjwQJwTjBZfer1paVLU6HdV2Iwln3fv3jz89t9GkJwzfvPXvHYrExy3QWScdDRRFU8x6x1HhCZEVxSioKhvZdm7Z4kWDo5obSxtOnj5k8WFMzv+yTTy7I2HXNaTIxiZ2dIN29EirbLQ4AAkEPvsOvsnPEQU6LS7CQs3Vpx2z9qX5KITmXKnJw55eZuWjwnfbVfOD83yxbGmEx021u3Lyq8IkV22/REf03ZUkppzwRBPHGitG79ss3WbaNxqxAomjRzdtmNUfeVDqX1XJowB46wT/OZhMHKnR8keFMTSJJZJibEkCSCIUtoPgkwMtl2pTcZBx1NVMVzzFrnmDIj77zzTmtrK8Z4eZQUeiAAjMXIl9Lr6376C++uhw0BDBxcFodeZ25Tm3uOjKkiEuaSar1HPP5y7dMCFnMQPxRSyvRLLvyPMBh8a8S3nzn6jFEwUKr5qG+KY2rUgBk5MycUTKx11xrBWNJDrT9ElchFJUIoSNOgWwdedDnXNNPefUskHRszml92ec896jJj5a723eFHCg4gYCFZ3pl/8indvNkjy2zqVLhkdkLvRVYrCgb50aMcY2AcjEZus2UW0BdIxkEnQFeVQUyZkba2tvr6+nAwJDyM1dUFn3om9O67nYwZf/wf0vLroiasvv7K522Hm1xfMCwYdGKWXhCJ2JtEScziLoUqr9c9U2jOBQDO+ZqTq8c6xg6zlA3oeQ8M42zj/9/Unx3trEEqGmsfF1PUP0efYxNtMQtVykzDAjRgACMAMM4m2Cfk6ZImfp8ACJGrlsBVS8BAGl11WTSoF6JvtEtKlux3f37QfRAACCJ3j/heMgwF9vEn9L9+CTabSgh9513y4x/h+fP7/nYuSkxVEUIIEGDgqgKmTGXKhZIqDpr7fINXD30hxKx1jikz8tWvnqkg7yqA1h57gu/aBTk5giD4/vfhUH4+Gj8uav7rR83748G9JsGEEPcorgmWiT3zTPR6PSEkZv5Jc6A5rIvPOWeMiUisddY6cDYA6HQp13y6wFBQxV3FGwAAIABJREFUbC7uXyKNUTD9+7gfbXVu/bj+40tyLllQmCpZHOfH7f5k1z9eF3cJkk7h2tdHfHNC96ZZXtV72nc6T5/PKKWIOpXkKCmzrVvBbIHOTo4xN5n59h2QiINGrS1I1kEoxIFj4GA2w+nTMHr0oNn7pSBplzghJBx34x6P+tjj9K232xAit6wQvvkN6KFhBmdr+XvKm0VNGGcAxhhjHDWgp0RAVAH0okWLImudjx492leZkWCQf/ghdBWqmEzswAHSw0FXmav+Y+JPDnoOhIKhcbbxRYbEcnttsk2l54rTVKamSFh2MCg2lIwtHLei7JahlxzqP6frGlbe9fp38q0dnFOXqazsmSNP/Wbqf+vJuXX05859JsFslM7c7Fef+ueCgoVDv0mI3G564jjGhCEASnl1YuFjbrVxtwtJMkIAgLjLDb3LfWToI0lz0F1qWKG/v8A++wzl5WFCtNVv4aIi8doYOUbnlRsNv3ThcqM9C6Aja52rqqr6KDPCJQkixQo0DdliJ8CVGEuqc6td/RLsl7B0e+UdL9a+IGNZ0ZTLCheUmcr6MU+GQYK+8UZrVY7EEGAECIHLJdkNrYGWUtO5uqSgFowsL0IAGtP60TDsAmE+PwbEMQYEnDIeS/w6DsjlRGYL+HyAMQeOzEZ+UWhFJJekOWhVVcPKosrzL6D8vHA3eDDolf372ZIre44P57eFetcDY4yJohhnAMaYEBI1YPBUEBHG+N/upX/8EzKbWTDE3W7Ui9q9y6+2B/164P3rsDkte/qEgomn3CeNYEoJhfsMEXB/wOZHavgqQ4gzpjLVJnerKa2yVL1Vt0Yn6QBA43RW7uyh984AgPLyqNWK3G5AgK1W1L11w/lxOIBgVFYGSojIsubz4YLM1XihJD+Kh5dcCbt28fAKglKclZVsiwYMsmwpqqiAAwfMxUW+SZPOtNWIgHN4dWfjmn2tokACivbLa0eUZ/dHHMehc2QJWTH31jJcIGzbdnr//SrC8tKlcMP1UFKc2Pvzcgu2huZ9oft4HBFUrur4taXXRamIlJqG3V55x6rjf+MMLs27dHFRjAXKUOB2o7ZWjhBCwNpbhQ5nYm+XZXL/v9OHf4+MBhYIkKuWwLjogF6GREm+gyZXXqG99x6yWnlI4c4O9JWrkm3RQKKNGr1JLvSoxNYQmlmuE0i3Bfveus739rc5TBLG2CShB9488sI3J/Q2VYahhzc2aj/6McrLx4SoW7eCz4t/8uPeOkXFhNx4g7Zz15Wv7hi/WXZOH13wrR8WOGL0Wp3smHLFyMXt7e1JbBbDTtSCICBKgQMiAj9Vm+gM5KolZPx4dOK4qbzCU1Q4RKI3FzXJd9BowgTxuVVsxw5jVlZo8iR2Ea2gKeN/3VS/+2SnThb9oVBNs+/O2cWRF22dMyiLZ77tCCGCUECheiklGoVkAAB24CAymcKOBhGibfwYf/0uSOTZn2/bzmtqcHFRKSHF64+T6SdhQQwHvbtj97Pbn+GMX5o/74rCxT3F/IYARCkXRBCEcF0Rp/3qCVtcRMqGiRYLZLp6DwQpUCnLGNu3jx06rH3xBT98ONnWDCQn2gLbTrh0EhYIMkjCxpqOFk+3fe1sk6RpZ1ZMHDjjXCdmvHMKgUzGSElCxBgkqDrPd+4EqxVEEYki2Gx8586eY056a587+my2PscuO/a273m37u0Ltbt/VFWCpp3ZONc0VF6eHDMyRJB8B81Wr6F//BPfsye0ZZvywE/5jhhXcJriC2mRu/MYwK9067g4ZZhlSpnFE9T8Ia3Dp/5gUVnmoTClwBMn4tmzIBAATePuTnzDDSjxJ7zz/kuPdR4zCIZwXp2Ahc0tm1SWhDxC4aGfoqlTQQnxUIhMnUZ+9tDQ25AhiuSHONihw2CxAABCgOx2tmkTmTol2UYNDOU5Bm+IBlTuCQXMOoFSVmTtVj4nEvztS0vnVwdVIHl6HkOYMRhka9eFXG5xzCiYMCHVgnpRTYzCmeZxOhvFaRwVOSBOak1fGkcNJLKM7/1X9OFHgtMpjh4Vmhpdnn5e0NSp/MOPkM0GnIPTiWLNoBN0LCL0HK72viCz+wXS68S/PAaqarVafXFbXmUYMpLvoFPN6QwgAkaMc39QQQgxyiaWWHqeK0IwtshsNBpj5EErCn34d2zLNq6TledfQDcsJ1+/a2gs7yNRLaBEUSSExOwLFSZcEhlnAMZY07Q46SgxG0cNal8oZDSia5fJer0gCKEEU4MBAF82XwBg27eLsixMmczmzOk5Zpxt/EsnXhQFATj4qf+akqRK2YkiiGKmxiRFSL6DxiNH0A0bIcvCOWcdHUIvycLpyPFWv0UnFGTJAhE0qh1u8jW4QsMcffUmdMdOtmkLNRp9GueyUb/qeXzzTSjTeTPdwJfNx5fNN1utPp+PxVqWmkXzLyf/6kDwQLOzqcJcOcY2duiNzJCapICDXnoNyDLbu082GvDMGTBlcrItGjAEgs48unYJlZHYD+9+zR/QAlEyOsjjoQid6ggSjADAqDD/iZaKsd23bk7X0Q8+CHAOkybB5EkX8eNIQkSJekf9Giam0neyMIuWrxRc3W5JZppdhhQk+Q4aMMZLrsRLrjTb7W63O1xeeHFQmWOcMizriwavIEBIYzPLswqzoiXcQiz06rFXNrV8xhibkztnWel1XVVkePRopdNDdFkEOOIgMW1NB+6WonW6Trnjq8jhCIkif/U1fPd38bKlQ3Rug4CisYMNnQTxfOOFNlaMEvWO+jVMTKXvDBlSin466LRboSQFkaDbZhSuPdTu1bBN4gtHOXr6nfWN63a377bLdkrp7o5dWZJ1UeEVZ14rKT4864px772MADXnFL+89Luf1ri+NfechgPduBHZHSCKp/NIQ7XD8sZjo5denSJNRhKlqVP54T8OGmSBcZheZvnarCKd2P8TiRL1jvo1TE+l76ampltvvRUAlixZct9990WNRwjF2ZxECHHODT2KRSMHWCznyW62x2orHJO+9P3JcBHQTwedWaH0kSy9cMOUArvd3taj5VWY9mC7jM987SUstwRaul7iJ09Wb/moLreMYECc37z6cesfXuz25mAQMNowFr83FUkq0qbYp5185YZh0Q070oJ3Pm9xmERREDjne053Ftt0XxkX3UiMAz/iPFznqsuV84oNCZZcxyXseXNycsL+zmAwRO3ZyrIsCEKc7U2j0UgpDQaDvQ2wWCx+v79LnLYnNpvN7XZHhTh63lfC9KXvT4aLgH466P6tUABgw4YNn3/+OQDccMMNVusZdTf1k0+1TZt9Br24cIGuFwHZsOxcnAytvuR4IYSiBvRUsxtiRCyqlGIOCIBzphPOiTjzQ4flLJOZC+6AhhBCkrQ0r9u3F02a5H/z1bem59h9wBmVLdbtbdsmO6ZUmVO08VUc1h5q7+p+Kwu40R3t6TjwN0++sbltk4CEkBZaUnzV5YWLLuQTeyp9E0KKis7IvUbdUDnnnPM48TfGGGMszoCwYHf8CB6ltI8x6PP2/Tlx4sRbb70FADNnzhw7ttuuYzjZ5gJzGQ0GQ2+mhmUj43wTM/SdIYpBx/lnK++8G/j1b5DNqgHiz79gfOpJMnbM0FiVdDiHYMeoOu8GoDoO3KhXL8mNWPtkWUCjdovBbpIAEG/ySLndHoHxlMmBe78lhF7jKkMOB9hsIihupT+ypUlnwUjHnjpPuIwypLE8c3Sw/rTv9Gctn1h1NsaYjOW36tbMyJkZpTrURZSot81mi/w1Jydn9erV99xzT6TS9yCf39AxdEniGQafQXTQMXuRzJ8/f/78+QDgdDrDD4za5i3cauUcBIEwR7bvnXdIeVnP2cJ39d6eMfnx46Sx0VBZ5cvvtQ1SzCTcQU2hPS+f13s2foEtxm9Q/SmmMdfJovxZ5xQa8ZQpeM5stnkLkWXu85G7vtZTDy97wVJ1+zpSmgMcGGNBNVg0oM/+Q8aSsTnrDrUbZZEyNrXMsnCUI2qAS3EKESKcAhbcqqs3B91T1Dvq17Cod6TSd1rT87tWXl6+cuVKAPD5fFHXPEIoZn/bLmImm0ei1+v9fj9jscU6BEEQRTHqQwkhyf2upSn9dNADuUKJDDJgBErC9Uv0pZfpY09ohCjA0R23k7vu7M8pJYPTzqAsIsxMQmAspRQzNaiyc5tjoijc90O28WPR7RZHjw6OHtVzBgEL/zL63v87+AcRiypVV1Tckq/PH9JzGCAKrfLTd45r9iMCrNCMe6ZxFBoKQzRkAhMAcOAqVXLk6CD1l4f4fX+SbV2GAQMlK+/S6XSG43H0xZfoCy8io1EQBNrWhh/4Cb40RrUVxjjmVhtvbVOWXouUEGAMnIMoii+9gIYN6zlDzM5+er1+wINlUUb2ZjkAbDrm/NumeqMsYIw1qrV51L9/Y0LPqHicnoRnBhj1rb4WickSPvd4m5096L2vok5KFMXYJZFnOe+JmM3mOJWEW1u3vHTiBYIFhSrfHXn3aOuZUNhgnGnUqen1ekEQPL1XEppMpvjLUqvV6vP54ixLs7Oze8qNXvip+Xy+KKsGxNSOjo44K2iLxdLRXc2OENLbhmeGOCQ/DxrfcD1wTv/ypLh0KRo7GmJ55zjwQ4cgEABJAgQIgIeCfNeumA46BZlebv283ruj1i0KxBPQ/nXhsP7tWQpYyNHnXvSC/TNyZs4tn9fgbLAQS1J6jmTIMMQk30EjUSS33kJuvcXSv0IVObybxIFxQJhzgPQJdQkYfXNO8ZzhDgWEQiPkWTLbO+dBL+jzDflDrOPDW9uo14Mz8psZhpzkO+gLBI8ahWQJAgFAmAMHWYempJMYHsFoYmlWvMiAqnKvD3K/vPHW5EJfeJE+/QyVJB4MkV//F545M9kWZfgSkX4VDVFwqiFRBCIAwYgQJEtwEckksrffURYt9i6/3jl9Jjt4MNnmfOngR46wvz3babIdV6XjxOz74Y9CwX7KvIVUmpHZyJAoab+ChvoGbjZDUTGmKpFkrdPNT51KuCFxSsKOHdN+/wjKz0cYI861794jrV8LmSreIYTXngwQ0eVXww3X/Uj4ZN0XV12VmJ5XS2fo9d3Nm465KOPfmVcyd3hf67kzZEj7bzsqyIdQCDrdzOmiLhcEQ+hsMVjac/QoMp5NfEYIJIk3NyfVoC8dKD+fBhWMz2zdipr2yumExbze2NOyv8GbY9HlWuRnPq0/1uofaDMzXLSk/QqaW614eBXbtgNhzDhD48dDfsH535YW2OygaNC15alpqJdEpRANNfmaZCYbhQRSBvsiuLNt27bnnnsuPz8fAL797W/n5PQaCmecH2z0qBDM0zO78SJJsUDjxtZdcnnuhvepIMpq8J+L75w5qtdKqJgEFPppjdNhOvMHMci4psVfmXOu4IirKn/7HXb4SKfZxObORV+aMtoMfSHtHTTU1/MTtaiiHBRF0Om0piaoqYFYNR1pB548ic2fp67f4AeBBP2eW+8s0el6DjvoOvjE9sckLCpUXT7s+rl58/o4f18Ed3w+37Jlyy6//PL4U2mU/W1zw+bjLpFgX1D7t0Vlk0uT0Jd64EHIft/KR8yjilRPa17JCcFyb5k1oQl0IolsZ0UZN8nd+gKzF16kr7yKTKYQxuqrr4l/eQJVVQ6M8RnSn/R30H4/YAyiiCQJMAZMwH+xPEIKwumvfecfvsJCzduYX3pALL77hGtGeTcHoXHtscN/yjXmcsYZYW+efKPSXFVk6FOQ57yCOwDg8/l27ty5Z88es9n8jW98QxAEAFi/fj2l1GKxjBp15ka4+1jHtuOuLL2IMdaL+OEPal+5Z1rPnO5wy0FZjtbZ6AJjLAhC/AGiKA6lnGaRVXfF0pkfHXYxgKsKDZNKErvxIAR3zCx8eUeTSY9UlXqDdEr3Wxf967MorE+AMbLZ2KZNJOOgM5wl7R00KiuDYIBTMxIEYAz8PhgxPLkmRWkOhAXz4ggRhKXFYg7YVt/SMHZqC0YAYOPsi0b//NHdAjhN/iaJSMABIYQx1ot6J+uo0l+oml2X4M6sWbNmzZrlcDhef/31tWvXLl68GABeeOGFYDBYXl4+efKZ7TJXkMuSED5TjLEgYE5Egxx9dYUda/w/BeecENLbAISQLMtDWf76RYP3b5sb7CYJI/zRoQ6rQbxybGIpj1eOzSnLNtR5uIzp1BKTXoo4ux4nkumIkyGSpDno8GIq6mCcxVH4yy+KPYKbokhWPau+/Ap9+x1p2VLxmq9gR7TOTpiwH4yaYTDWYlGiwJ4Q1TxUYgGjFMPvHGv1b6xxYizY9WjxmGxZ6GaPP6gAZ5xjhBBnvKfisJ7rVKrCWTVLRVOMYAqPSbSEPaa4VV1dXV5eHgAYDIYuLeMnn3wy/ENXPbRdx/2KKmARY0wp1TSqBryuHoWNF1jqDb1UIQ9qUfuuk+4svYAQAgQmmZzq6FXxOQ7V+caZ1bHqpxHCX7uDv/46GE3AGHc6USbPOkMEabOCVpiytXGLy+uqsgzP1nX7QuLKSvkn/yE89KBOp4vz5R8yItd3aw+1/+2zelkiQUVbuWBYVICiqTP00D+PZJtkQrAvqLgD6u0zuiUIjiowfXrUlWXAnPOAwgqydFGLRwnLN5bd/Mbp12QsK1SZnXtJmamsjwvM+II7R48eXb169XXXXffnP//ZaDQyxu69997ephpfZF48Juftfa0iwX5F+8WyJD/EDCAYd2uxzWGAF+/C7bcxs5nVHJXMJrh0Dkr281+GlCL5Ykld2Hsv9fZpvh/vvN8sWThjfi3w3ep7qrOqo8b0T6lnUMWSWjzKfa8cshtFQRA0TWvzKo/fNsakO3dT/PBA2xu7m2WRhBee7V7lmTvHh1Nuw3AOr+1ufml7A3B0xRjHXbOLI1/twoM9p9wnjchUZirrOjj0YkkehatIMqGQJMR+Lom/gq5zBo+0qQTxiUWGLH3spcOQraC7Tu1Qk+/X7xyzm2SEwe1XV0zNXzQ6xsdlxJK6yIglDSDpsYLe0bbdLJgNokHTNInIO9q393TQKUi9MyhHNNaTCGrqVKoiHDRCqHuLlGjne7Ij8Oae5sIsHSD0WY1z6rCsmNkRhcbCXDn5Ykl2o2Q0Gl2u/lRy7qvz/M8HJ6wGkTL4i1/5/c2jcs0poUxSnW+8b3H5ztM+jHG5TZxTlfEyGYaO9ChUcatugZyJHSNA21u3JdeePpJjllR6bpWhUsjp7nTGF5k8IRpOwwqobMmY7KgF8mdHnXaDIBAsYGQzittr07JbSl/YfNzpMIqSQHQithnFDYfbk23ROcYVme++rPx7CysvHW4b+BZpwSD92ypl/kL3gw/RTZsHevYM6U16OOgiQ1FIO7M5Qzm9JK8/PTHbgm1bm7fsd+3XWK+NOweWYpvumvG5Lr/mC1GnT71tZmHUk3uuRf6vZcMnl2aNL7Eum5B7w5RorX2F8kiP8HGNcwjMTgqRp0Yw8imxH5+TgjeobTzc9v7nTS2eUP9m0ChrcAW9oRjhO7rqOfr6Gyg/T9m+XXvwp3z/gQszNsNFRXqEOCY7pjQEGtY3rQMGkxyTFuYn3C30gGv/k0f+YhANGtPGWsfeVL5Cxr0m2w4g10/On1ZuC3DJjJVCa4xPLHPoh8+19BY9H5ln/Oyo06InABBU2Y09PHjq0OFTPjvWFmS4xIJnlFsTXWlePS7306POcH6dP0SrcqKbeyWLdq+68qUDFoOIEer0Kw9+pbI635TQDLXtgQfeOCKLRKXshsn5yybmnnuNc/rCS2fyoBFCNhvbtp2Mid03OcOXkPRw0AjQstJrbxpzc0Nrg1WyosSzRR8//FiOPgcAGGIHXQd2tu2YnTtErenLHPreOqqcl1kVVqdPeXF7IyC0dHzuVQlm4A4Z7oC28sWDVqMkEdwZUBtcoeWTEyuJXjoxN6jS9UecjPFrJ+YmPdTbtXW8+vPTDpMkCQQAZLNu8wnvlMoYpxanVfYDT+/LscgCIZzz1ftaxpbax5dkdb2qItT1LgxINhnlTD/sDGdJDwcdxigabVJ/vrcceKRPF7DgUtIjVoAQfGV87g0zhsVPH046u093mnVEIghjZNaR13c3LZ2QI5Bob8U4BxY7a8gokbsuKf7u5SM5o0qoP7nGA0tXz9O2Tj9GnHOOEOKcfXSg+a5ZMZ5jeuvE6lcowQCchxPVdQI+XO+stJ/73uHvfIutWgVmC2aMtbepM6ZrEe1WU7bRKuW0H+ukDImSNg46oNDT7X6sMbmXFK44IEDTs2cc89YghAEgSENp2vo6ZQmpLPy3DYMAKO92bTHOX9za+M+9LQAwd4T9m3OKdWKM/6MkYE1LoegzAJQ59FuOu006AACVskQfYnQi1ui55GlVY13CSWHITTcih4Pv26ez20Pz5kFp6cDYPWhsb9v2923PIQ4zcmYtKb7KKiUmTpIhIdLDQX9S43zi41OyKIRU7QeLyvshxHNJ7pzjvmO1nlrgfEburHG28YNh55eWUQWm57c26EQJAFTK5o90RN1H1+xteXlHo0AwAvhgfxtnbOXCsuTYmiDzRtib3KH39rdjjGZVWK6ZkHv+90SAEfr+ZaWPbzxl0kkqpVOHWSaXZnUfgfGiy2HR5ebsbKVHHnSqUeutffH4C7mGXE3TDrgPAPBbKm5LtlEXM2ngoFs9ypOfnMo2SYIgaCp++MMTT94x1hCrbDoOO9u3h5hSZCwGzg+5DtZ6ayvMFYNk8JeQUrtu+aS8VVsaVMrHFBqX9FhmfnbMJZAzusqigNbXdKSLgyYY3Tqj8NbZZRxhpPUn9jK70laebWj0gYxodZ6e4DSODBz3HDMIZ/ZvBUS2tm29vuzGyF7yGQaWNEizO+0M6kSB42BIv1cx79IZ25vciWU7ceAfN38sY0nEAkHEKJpqPEcGydovJ/Wu0Gu7m0vt+hH5ps4g/eBAf3ZEUxm9RCz6/otcF2TJC0bnTSzNSmvvDAAGYqD8XAyKc5Zprz6o9HMFPbBa7/GxG0UFOmnes4gZOQAzBRo0SwVM7fsMCBBESChwzoYmx66PHHDt/+TIJ5qqzc+/bIRlRLLN6Q/7GzxmmYRT6ySC1h5qu2V6QWSUY3al9VCjTyAIIdAoXzAqtqBVhgGnp74rISQsCtjbWxBCkiTFzEiZWjDtxRPPi4QghP2q/6bKFTo5WqMcY9xzfjTwFT5fCvrpoAdQ6/28lDn0o4Y3HvQbCAiMc6vB+o9Tf5tTkICDBoBrS5e/W/+OUTJqTO1UO8fbJlygVQPFltbNfzn8hIAIINjasvk71fdMz56ebKMSRsAoMjuDc4haKS6bkOcJ0DV7mwGh+aPs35yT2aQ9B9u2ne/Z48vL47NnQX/XMb3BOY/Stwnnk8QUvemCUhpzgA7p/nvGwwf8+9s62yrMFSOzqmMO6/mhQynhfTHRTwfdb6339957b9euXQBw1113RYmnIIQMBkPMTZIJ5frmUzik+YLUT0QrZ9hkii4WwBhjHON4mKuHXzPMMeyI64iM5Vl5s7P12V0f2r+/wEDxQcP7IhIQxsA5wvj9unfT0UFPLLE8/VmdSLCEwa+wpRPzxO45dgjBHbMKv3VZJSAUDFwsHRX6TKM7tLO+WYdjxKDZ6jXan/4MZrMPIe33vxdfehHlD2Q5Eue8Syf2zCcyxhiLOhj1FkppbwNkkBeVXhEWS4ozSdRLcTS+M8Rh4DcJ42u9W63WoqIiAAjrt0W+MaAFWn0tVtEm4GirdFjuVNoFLIpEcCudI7KG93b/j7MumJg9aXLulFAoFDks6dcNZRSd/cYiAI0PURn6wGI3ig/fWP1xjStEUYlVmFMZO/UKISA9kqMvejYdc4azOBSNThtm+fqckkjFFe3h36OCfABAgoBsdrZhI1lxc/KMzZBaDIyD7rvW+8yZM2fOnAkATqczMqv/k5aPXz/5GgGiMOXe0T+ISrHwBf0WMatT7QQAo2A87T3dsyJAFEVBEOIruhFCogYkvRAgV5fX6K/HWAAADViBIV073uZb5NtmFsdXfD0vnoAKkFp50BcI4/yP60/lmiQiEFlAO092Tihxz6w4ewPjvJuEIREgokolNVGZurlxU5OzqdxUXmwoSbY5Fzn9dNADqPUOAHW+02+efCNbn00pZZw/cuB3j0x/FEcUPghEMIomh8GhaioC1BHqiDNbevH1Ed/4v4OeQ67DADAyq/prlXf1HNMcaDrWeQw0NMY65mJNaeoMai9ua9h8zM04XzIu56Yp+eme8BAmqDKBnKu5EwXc4YuQY0WI3LCcrV0HsgwAvNONJk5Mhpl9JUSDL5146Yj3MKLgp4Gby1fMyMm0gBlE+umgq6urH3jggcgj999/f9fPVVVVP/jBDwDgP//zP/syW72/Xj7rdxCAiEWn4nTI5zb6i8XRLf41OmwBDqKoXFt6Xf/MTkH0RP/ApIewjN1ut47EaNr9hfPzp48+ZRKMKtX81PfbKf+jF1JFSCgqgh/+NX5YHyEUc8CavS376jwOs8w5X3+oI98iL6iOkemBznJhhg8dBololDPOw6G0gEqHObo9tOGv3sE5Z6+9oSEQf3Q/mjI5KXb2kX3OfQddB806kwZaFpGeP/73adnTI9dSGQaWlChUsUpWjZ+LHWtMs4jnagWDKvvlP51W642quUZlapmxYm7+/CRY2S94UxM9ckQpLYXSUuh9I1sv6EMkdnL3X448kWPIAQ4CEjEiO9p3XJo3d9DsTQydrtsdJawWFHUwknDPyZgD3t3flmuWAQAhZJTJaZcSc1g4AyzpOwcJ8evrRvzkjSOyyMJqdmMKu+1jI4tFWPl9WPn9mB1VUg2P6hHwuT8+RljlqoxSKGn1IiMlHPRwy4jJjil7XLsxJ0EtcFP5zZHZ78da/QaJSDRP8BZpmna0SW0cpxTbevUCqQP/bJP64EPIZHQyxufOJT+4F/VsehsXxhkC1JXDLSDiVtwDb2iHqj7yAAAgAElEQVR/iQrox98G4BxcSpBysIq0p47S3Crb/kZvWPJN1ZhRjJ48jCzLoVAoqhvTgDctSwi+dy/74EM/EVBFOXzlKujxLx7m0D971ziFGAhTZJzeEfZS07AgDehBDwAM2DTHtJQqKbj4SAkHjRG+uXzFpNDkY+3Hqi3VFaZ4Rdj9e7xVmbrx1IaWYLOm0mk506vMVf01NgG0nzwA+fmAEBYE7ZNP+LSpaMFlCc2AOMxklYfcJwWdHkQxSAOlpmGDZO2gEtLYs5vqN59wIUBTh1lunloQpRl06Qj7xzUdWQaZMeYOqPNHpEklS02N+m8/RDk5KiF84wbkdJK77uw5SiA426rz+aiqpreDrjJXXV2y9PWTr3KAifaJVxRfmWyLLnJSJXj0QcP7T37xxIbGdX/Y//uD7m5NJSpzDH6FapQDgEr5tPKsmMr38Xmv/t0P6t4/2HHgkOvgnw48Wu+vGzDTeyMQ4IScu51IEm9uTmwGStnvH7nsD2sr9jZ1tJ1yehovK1g4zjZuwC0dAj460LbrVKfNIFkN4oFG79tftEYNGJVv/NnS4VPLrHOGO/54y6go952y0M1bkM0WzsRARhN99jlI7RjFBUI5bQ406US9Hus+d+5rD6ZQZ7KLkpRw0LXeEx/WfWCTbSbBZNfZHzv058iuVDoR/+HmUbOqbONLrfNG2G+dXogTXEQzzj5seN+rek97T9f76wGhg+6DA30SPdDrEaPnvq6BAKooT2gCvnsP/WidA8y3byI/fQ1+8YtjS3IWpqkIb6M71KUvKmD0/v5oB32s1f+zf9ZsO97x8ZG277940B1Ik3xw1E1F4KJnX8feXR27s6Qso2iySfY/H/pjsi26yEkJB90caJbI2ewxDiISXUq3XNocs3THzKIfLBl109T8qLZ+fQEhFKJKiIYIFgRMvKqn0d80IJbHR3jicWhuAqeTNTej65fj6YmVCPL2NiSdWUhm+UHmAm9P1wVLtllS6RlHxji/bKQ9asC6Q+12k2iQBaMsWA3CukPpcaZ41ize4QLGAAA8HuHrd/ZszQ4Ax1v9a3Y3bDrm7PojpCntoXYRnXu4IYBDNPndFS5iUiIG7dBlq+zcto/K1SgVcJ9CNx5p61RaHTo+d4S9f5r9jDOMMAfgANKQSHChkSPFDz+Aujp7WXlH4gtfVFHJ/QGk1wMA5wCKgvIS6yOVOiysdvxjR5NR5gghb1BdPDo7asCGIx05pjM3aRGjbsnCKQyqqhQefSTw9ntuv6aUV+TfeG3Pzet1h9qf3Vxv1ouKxiYWm78xp7gfF3CKkG8oUFlIDzoA4AAUmBwrNzTDQJESDrrSXDk7d/bmtk0YhCANfK3yzshqb43xP647tee0268wg4QPNvq+v6A0oSgHAiQSSU90ClMAQMJioaFw4E8jJqKIKyux3Q6J9yREw6uE792t/eFRLkkQCon/9yikVXpZJGadsOrr4493qIyjkixs7CHnvXh09vZad/j8giortcf42lPGm1wBwqmYSmGeE/kVD2Uvsuglxpnn+YN/vnWM1XDu6uUcnv6sLsckEUJEjPbWde486Z5dmeSOi/1mdNbomTmzPmv7DHMUpKF7R/8g2RZd5KSEg0aArht2/cKKy+ud9QW6wqjl8xd1ns+OdYgYiwSHKPu4pmP5lIJia2IFdV+rvPPFE383S2aNaj7NO9kxpbeRfVFSjXlwMMDXLhMvX6gLBIXiIl8oMRXsVEPAaEJJVm/NFa8en+sN0R21nZTzy0ba54+MzuI40xtbICpjN03JT7SzyeCx7lC7wyQKBANgAaOPDrbdENF8PaDSyMUEQcjlT3J4XWNaa6BF0ES9kLDOAUb4umHXX1O9rKG9IU+Xl8mxG2xSwkGHKcsqt4G9p9pRbXsAoTN7YwiQSvnpDn+iDnpq9tRhtmFHO2sIJeNtE2LW7IXpi5JqzIODBDKZcE4OIgTS3EHHx24U755XGpgrImB6HEPx6oE3jjhMoigIjLE39jQPzzNW5/ea/jyUeuXdgjMEuQLdgjMGicyutB5s9IYfGfwqrcpNZiHo0c6aR7f+ASPEOLux7Ob+FT3lG/OlkMRYeqcMpgVJc9DhoobII+EisZ7/9aoCC2f1Z7YzOXDOK/KyesqNC4IQR4a8ts2/tZYwVj2h2JRlMHcd77n47YuSasyDfr8/rAkVM1M7Tvr2eSuk+1jfnEYF0DFBCPIsOk3TepaoeEOUYKQxCARVzLksohNt/jgOeij1yq8ck7P1uEvCAAABlQ1zRPvfZRPyOIdttZ0apV+bXTwiL2llNYyzh/f/b4iFgHMO8Pzx58rNFcWJN1BWqNKpdppIbGnfDANI0hx0WJQ28khvOuJjCoxzhtt2n+r0hzSDLMwb6SiwCD2Hhd1TTLnRYy2+B988bDeKCOHVu+r+dVHltLIzjTsTKhruUlKNeXDlypV79+6VJGnTpk09hzkc56m8OO+AOC0wwq8mt6BuUDFIOKBSd1AjCDgHSSBZuniXbv/0yltbW8MaMvPmzbvzzjsjJwx3CbFaY8io3n6pQeHHP6tpYxyuHJd/7fSKSDVRALBaYXRZnidEDSKOrwCVlZUV59ULpyXYEqJBhBAghDgoNPRZ0yc3V9yS0CTrGtau2f5PBHiSfdIVhVfm6dN14zotSJqDjtmyQdO0GJ4X4J55JRuOON0KyjHAvBF2RmnPhyuEUE9t8jAfH2m3GUSCMQBYDeL24x2Tis/4MvF8tdcxlVRjHnz66afDP7R13w/EGNvt9rbeNwlFUYyv0qnX63sL3YYxm809F57Z2dGZEsml1aPsOeRigEbmSGWOxKKfKHz/5WelSDnj/c0Hj6NXbrFYVq5cCQDZ2dm+7rKfsiwTQvz+GK0GJIBvX1p8++xhBIGeMCXoV2J9rsVkCgaDwd4V7rOysvx+f5QWx8C6bFeo+zWGUFsosXTGI51H3q1/J1ufo2nasc6jH6IPbq+4YwAtzBBFCsWg42DSCUsn5sV3c3FQKUOIU8YBwt0J4+Wi9kVJ9Z577ok82M+z+jJR7wre/+phq1HCAH8PqPddUT6h2Hz+t53Fr1KCzv3rMEHuQAJ5eH3UK5dlefrZXPWoKy0cQIvSAInEYdJRSgOBXvcJwquH3mYIasyt+bES7CrnGQyKjEXorAY15xwQGpk1MqEZTvtOyeTMkxxCeEfb9hvLbspsFQ4e6eGgAaAl0LzuyFqnxzncMnyMbWzPgrpOxb3HvScYCFRnVRuFbtGxEXnG979oD1EKADqBXFIVL8mpj0qqkQcHlXpXcNfnHQxgdJ48PDddgxif1DjtRkkUMAA4jOKW486EHLRexN4QFQWMATiAP8SCWrwdqoHVKx9sdpzsfOTDEzpJCGr0u3NL5sS9Pi8Es2iekTtrS+tWBAgQG2Yqm5s/L6EZLGIWjRCeZJxdrALlKUJ6OOjWYMt/7f1Pu8HBNP5Zy6fXDVt+Se6cyAH1/vrffv5rs2RmjPk0308n/r8c+dymvCdIJQEFNUAAIoFQ+gjWnGwPPPDmEZtRQoBe267ce3nZ5FLL+d+WevgVivG5B5ePa5zfmVuayNuZRSd6QxoD4Aiy9II+7kpzYPXKz0uDO7R5d5sooAXDs0xxg+M98QS1Rz46YTeIDBODhP7y8elR+abBkyL51ojvTMmbesB5IFtwzM9fkKh7nWCfcMh94KDnEKIQYIE7Kr+aptoD6UJ6OOjdHbstUpaABA1pZtH8jxMvRTnoz5o/NQumEA0xzkyC+eOmjdcPu6Hr1XpX0GEScywyADDG3t3fevvMoSpUuTA+Peq0G0WuP02lOqNJ2lSLJ5eOTbZR/WF4rnHTcZdFRwAgpLFrE8xiNskEgJdn6znCwJk3qJXYk9yrrIvNx5y/evcEwYhz9uRGePz2MUXWBIrrGt0hADjpCmCEOecmHalzBQfPQSNA84rmz8m/NH5zuN6QsLSi/NZT9GSzq7nMWFZoKBpwCzNEkh4lpwpVcLcbdfRNuzXY0hxs8Sgev+ptDTW1BloiX7XoBfVsxgjj/LIR0UIQg4rGtC/aPt/n3OtROxN9r0K5avwiYF2j6A4qpt07+Z+iVErShUuqrFePy2ntDLV2hmZVWK+ZkPDW/8+XDm/xKN6g6vSpS8bmjC1MlRyvl3c0OTR/vr9dRiBg/MyniQkl6kTSGdAEjAlCBKPOgIZSW31JxOKMgplz8i7NeOchIFVW0Ptd+5/c/jhwmJE9c1HRFdlyt6qB4ZYR65vW2kUZABSqLCxYGPV2t+ImCCOEgAMC4tE8ka8uHOl4c3ezRYcAcW9AWzhq6NIbQjT4ysl/7Hd/wRkEtMDKUf9SZRne97ePzDN+oq4nzAIAwJBZZ9rdvuuyggUDYttQ1kxihK6dmLdiZhnCOODvT1/UqlzD3+4c5+OyyFVTyoQ9OWOT33958YH1DOHd5ZNWT1zS7k1sxyyoUqNMAirDCBjnRomwlPbPGYaUlHDQbaHWJ488kWPIpZQe6jykce327rGtkVkjb628/bmjqzjni4quWFSwKGqGYlNJS6jZp/k4B5NoLNR3i2A4TOJTXx17sCWEEK6wCZFSCYPNtrZtB5z7TbJZ0zQd0W9p25KQg55RbnmuCQcCHACsBsGswwHanyfTmAxgzSRXNb5hg3rqVLCiAmbPgl5SthGCC2kFKwk412r0+XxxsimGGL5h46JjWzoMNgCoajx6Bfrw+MS7E5oh2ySJBNkMMgWEgfsVGm79lRD19fXPPvusxWJxu90rV660WNJyoyJDT1LCQZ/w1BrOygJgwLvbd19dstQmddvLnpY9ffGIK3tLsyvWFx8kB206O6MsxEJl5mjlZYNE5gx3xM8mHgycoQ4xoh/u9tZtt1Xc3vd9FYLx5cWX7XXuEbHIGOtUOocn4t/j0++aydWrV2uaZrPZpk2bBgDAefDRP7IPP9T0er+i4h075f/4ERJjXFqCIMRvWhiuG4ozAGOcWj0Jjx9Hej1SOedAEb706BZ9wQ8TmsBuFFdMK/zHjka9LAVCyrUT8/rRj2Lfvn3Tpk1btGjR888/X1NTM2VKr1IzGdKLlHDQekEfWVXIgOlwYhqGc/PnKaC8V/cu5+yqkqtn5cweaBv7SYGhMNSySRIlAGCczcyZmeiu95VFVwqCsL5+HePstorbh1tGDI6l3YhfM7lz585QKFRcXDx79mwAYA0N2ltv45xsBIAkia5fj5ZfJ06c0HMGQghCKE5xEEIovvNFCIW9fGLnM3hkZzOvN4eqwLkqSgLwBnfCq/urxuVMKLF4mWRAoZJ+NducN2/egw8+uGvXLpfLtWLFCgDYt2/f448/DgDXXXfd/PnzIwcTQjjnMf/FXQOMRmP89rVmc69ZkmFZgqgSmxRvhpuypISDHmEZMdo29qj3COI4oAUXFlyeqM6WgIVrhi1dMfqWOPV4SWGyY8op36lNrZ8hjhSmLChIWPnBKJhWVN1y28jbB3vt3/eayZ///OfhH8IPNLypmWNEKUUIYYwpQv7WFuzx9PyI/pVERmK1Wv1+f1SII34R/OAyvMrhaWeYMIQMAe/myQvDmSqJUmSVL6Sr95o1a5YvXz5nzpw333xz48aNCxYsKCgoWL58OQCUlpYGg9009XU6HWNMUWIWPAIAGAwGVVVjFuWGEUUxFAr1ZirG2GAwRH1oWGknsbPK0G8HPbD7SxKWbiy76WDwQKOrsVhfPN4eY/GVphBEbiy/6frRN9S31ufp8iJ1rpPOQNVMomGlEAwAswAhwDn4fHhkYvVpacyevUrpMJfbLwAPifL4A1uhOgntbn0+n8lkAgCTydTZ2QkAOTk5YR0on8/Xs/k6pTTUuziiXq9XFCVOoN9sNiuK0puanZ/5t7Vv7fR2VmdVO+QzG/IpFJVKK1D/7thOp7OhoWHVqlW//e1vAeDNN9+02WzhraSCgoJwpDLmwcgZomQ37Ha72+2OqXYEfVC0IIIg6wx+b6+pbDGXb3q9fsA1hoZei6OJNp3qPGkE4yjraIzO3AiHQIuj66T40WPslVfpBx8gAPLI7/CE2LfYeCfS1k7XrpU5RxMnqtW9+ner1dpzk3AwzjTq/6XX6wVB8PR4LKDPrmKr12hYCFKOAPQdLfL6tTG7XsW0vAvOQTZlhXzuqHf28dSam5ufeuopi8Xi9Xq///3vR8Yfejpok8lEKY3/mBJ/JzY7O7ujoyOmg24Ptf1878+zJDOjzEt9/zrq3yrMFQBACInc8MjQR/q5oOv3/tKbb765ZcsWAFi5cmXUxYcQihP5CovV9Rb5ev/zpj+vPUYwnj8qe8WM0lxLjGfeDp/GgdpMpkR7zl4gnUrnjpPb293twy0jykxlAz7/Rw0fvt/4nox1ClUmOybfXL5i6Iu7UFUl+fGP5Ad/YjKb+xFl4i0t2o03g80ekkT2zF/JD/8NL148GHYOOHjGdLrq70K2wyIK4PPD7bfF9M7xOdjo+8XbRyWBqBr998XlE0sSzsHIy8uLqpxMFptaNtkkqyRIGmg2Im1t3Rx20Bn6x8A/ccffXyorKwvfeAVBiLpFS5KkaVpvz03hGFbMu/qhRu9TG0/kWmSM8Z6TLsbY9xZ0uyZCKv3rZ6c2HGrHADOrbF+dXWo1nNmnGuwnL5fifGj3T616K9f4u3Xv3FZ5+xTH1AGcP0ADb9WtydZnc85FJOxq3zk1e2qVecAyPfoIP36cvvyK+v4H/JqvsCuuwOMSK3dk69Zzux3JMiIEZ2drv/qtlCYOGlVXC7/+JVu3XpRlVFxEl16T6Ax+hf7ynaO5ZkkQBFVT//eDE3+6dUw/OiOnCF7VS9CZ7xQCtKV1yy0VtyXXpLRmYK6Dvu8vTZw4ceLEiQDgdDqjthEMBkMoFIoT4jAajVFvCbO/zqkTMeecc46AbzjUdvv0/Mi+nG/va9lytMNuFAFg72nXq9vR7TPOJP/q9YNbMbyrfZdFtMhY1rCWJWU9e/RvA+ugPWqngM7dYwgirpAbEpAhGghUVfv6N3huLi7IV3fu0ta8Lb35GsSSTu4VrxeRiEsRoTOSa+kAnj4NT59mOF/coDcaXCHprH40AqQXycn2wPhElKRSihJjyeeuvUZiAgCVqZcXRpcsZEiIfqYrHTp06Je//GV4f2nz5s2LFi3atm3bb37zm+bm5qlTpx49evR3v/td1MGBtTsSk0wi192c8yjF9AZ3SD7bZ1TE+N0vWgfPmCj81N8VFAYABCi+2Gmi2CWHwtSuOUM0WGIsGcD5+wKrPQk6PcIEAAAhZDKww4cTmgGPHweeM5sHXFHw8mvTxTtfOBYdiXxm1ChL3+UzAMzMmTUzd3ZbsM2pOMfaxi1MPG0pQyT9vBRSSpNzWlnWEx/X0qwdNGsb53y2ZTFC4yMHZOkFSoFgAADO4bKRQ6fFUWYs29C4XhZlANCYNjd/3sAGiAUs3Dv6B384+HsRCwpV76j86tB3uEBGA6e066w4ZciQ2L4rmj6d3P1d+sgjFBPp+uv57bcOuJEpS65FXjQqe93hDgPgQEibN9JRmjI6UP1AwMLysutvGXNrW3tbP5rSZogije/VXRgkcucS5zunviDYIWE4yTZtas6+JO+c3N2i0dlv7mkx6zhCyBNUFw2hFsdY27ilpcteP/kacD4775LFRVcO+EdUmCueXvjXNl+roIlJSeNDBQXkqiVs3Xqk1/NggMy9FKqrE50EX7sML1tqkiQqCP0TWktfbpleMKbQ1KmJJqJOKrFcBA8PMpEz3nlAuBgcNAC0BhvtBhPGmFLKQXfKd/ISOOegbQbxmTvH1bSGGEcVdsGcoGLvBTK/4LLrxixvbmkePO+JANlke4Alya8hhL//PTR6FD55Si4vD106B2LVeceHPrtKe/xxFSFxwUK47weJhbDTHIzQxBLLhRSqDCwn3MdPu047xOyijF5dsrlIHHRYS7frV4Kiz0sn4OkV9qHX4giDAKVUicqAg0QRLV4siqLeaAwlnmbH3nuP/v4PQDAHUN5+l3g95JHfD4adgwLn/MQJjQNUXgz5ZGtOr/6k5WMBCUEteHXJNQt6KEdmGEouEq8x2TF5W9sWq2yjnHYq7qnZ05JtUYYEoKvXAGMQ3urkXFu/kaRJFgdXVfbo/9H3P6CCyP0+4cm/oOFVyTaq/zT46zc0rbfpbIwxGctrTq+emj3NIma08ZLGReKgR2ZV3zfhR4c8BwKB4ETHpGJDcbItGkjaAm21vhOgopGWkWm6EuetbeyttwJOpzhqFCxcAFHJ8i2tvGvzFCFIH0VkvnYt27AB2e0IY2Qx01dfE378o2Qb1X86Qh0CFv2aX6WqgAQBC85QR6IOuqaz5ou6z/0BX7V19Hjb+ExPrAshLb/tMSkzlY3JG5NqYkkXzkHXgSdqnjAKBpVq42xjbyq7WSb9ETxLJl6fdsONkO0ASaYbP4HDR8i9/xL5OqooR0dqAMJN1zlKAVWdqAR5URQxxj2z5kONTUxvQBgjhIAQ9sEHup89hGLJzmCMZVkWhHjfOL1en9wYdL6+oDPkosAQAANOEMnVJdac7Kjn6B8PPmqUjJTSba3bbq5YMT17xiBZ+2Xg4nHQ8fEpdMfpNoRJhY3YDIPV8G0weOzwn7P12QiQhNgB18HtbTvm5M05/9tSCbZnDzebkSgBQmA00DVv4Tu/iiK2AfFVS9iWrdDpAQBkNuOvLEl6fKNnSZQgCD0Psrw8Fgggo5EQwhnFV1wR6kUlTpbl+ApE4TqsKAc94EIx8fFTv4gllfkRIM6ZSHQBGtQLhr7PsK1lq1f1+DU/cM6A7Wnfm3HQF8KXwkG3e9WVLx2w6EUE4Amov7h2RHl2euQAMc4QoK6HRBELLsWZXJP6g6IAZbyllXGGJAkQQHcvhubOJXfdyVY9hwSBXL4Q7vxasiztIuZKtudBtOhyvO9ztn4DEwXu9QkPLY2zBA4Xu8b/0OSuoD2qxyDos+VsRVMIIn7N71U9djmBuoHT/lMECEIYgCPADf7Tg2ftl4EvhYNee7jdZhRkgQCASGDtwbZvXjrU5Xb9AyM8I2dmjedIuBwxSENFxjQMr5cNg8YGkCSOEPd4UEU5yunWcxJhTO66k6y42SQI1GJJpzxoUST334eXXaPngEeMCAjpLapZZCgKspAJzBKWGGchGsoz5Cc0g1EwUMQEwADAgTUHW877lgxxSJnOFINJZ0ATz4YFMULrj3Qk156EuLzw8uHWEW7F7VJcc/LmTLCloVh2XT3Y7AAAgSASRd7cwp2xngP0emQf0obrAwLCGI8aJU6fBuZUaTTeb6yS9drSa+s8p096ahv9jV+t+pqME2uGMMo6xiJm6QSdTHQmwdyzv3OGhEjaClqSpK6nOc5hzylXw9HTZglmVtgkIcZtIyw3GqdbXZAHdrQcUBRllHVUVNSsPNe861SnniAAoBwtm1jQNU8KNU/qhVxd3l3/v70zj4+iSBtwdff0TOZIMrmGJJCACSGgIgokkHAkgApRlICgKLjfDxB2UXRdXURxdUEXD44PBH+suBJJAGUVCctyiKIEFkiIYWW5PwgudzgSJsfMJHN01/dHyzh2ZjpzdE/XFP38FbprOu9DKm+6q9+qyp5anFHM2qFBFZkp4GYDaDQTtBpqoyDDALsduLwviaUgLzaXbdP5TamGzgzLAAhONp64N+6+gAqHhnQaesN+41BDDQSwT3yf+1MflC7a2wHZErTnyqIbD9VtPXJdH0XbHa5/n7s5Y2hX3mpH4FaC9vWO5Wrr1b8cnq+noyHLWl3W+X3fToz6ZT73sB7GSw3W7081EAQxKNP48D1J7uugn6ABACRBmrSdLIwMU2yE4S3WSpKk100FWZICwGONKEhQBCC8LfTKbWcnsAYst6uWsj2HRFywXtBSUSRBAgJAAI+Y/zMseUSXQEbV1KR6UvfJ43o+1nCzoZO2k+dKYQpBIFuCZlmWW1m01cF8dehqgoGGEESpyEP/bTpyR2P7Ncu5TOprMdKKK7vj1PEqSsUwjJqkK67sHtt13C+fBeB/8lInDkwHBKEBTs/rSPFOhvBWgeD1oOcp4QYcQXxfSeFt/+prT1giJYUxmYDTCRsbyYREwDJ0TAzhbetYLvn62lW29prl/E9X9DTRr2sMTSm/+eKjJmnPXwgWQjUVcMkTAYhkXbK6Tf5aSQyQ/yWhxc4AAM/Vt3KLAMdoVS1tAT//OhiH+281SVA2l619G6OOpijKYgl40+VA4Y3DcHlTrVH7upugKIokSYHRG24fa4EGXGYMNt7g4ZWd0TRN07SXNbvvuhO0tRHx8aTJBK1WYuSDdo0GeFvam6Zpl8vlddXv707Wl1VdidbSTifTJy1m2uAu7iW/ue34FEIn3dC1d3zvM5bTFFTZGXu/hP6JmqSOP6YgGfIn6Dgd3dTKqFUEAQgIYZPNqaMDvjkyamKdzU7uhYaTdXiOb4QfXhHCgRv7vzi3AUAwpFPByNRRBpqfTWiaVnW0hBtFUQINVCpV+82ww1xCK4ROR/+j3FWyhrx2VZ2b63j00UAvACEo2X85KVpNURRNEocvNB8635SfqexxJzIqQjWu6/j/WH682HgpRZsyIGmgMkYhL/In6Js2p1FLMRDYHCyEME6vtjm973olwLDkES2ulpr6GpZlc5NyC5MLJYg0GE40Ht907qskrcnlcv3Y8G8AwGNdx8sdVLiBLMuWrWV3fkNEaWyHfiS1WuqhooCuYHMynkMaKhXZHPhjloI/6FX6h7qNFt40ViFsyJ+gjVoVBMAUrSYpCrJsc5uT25sqIHQq3eSs34zPftzSYjGqEVqp8r+Wn/S3Skpokt57dc+4ro/ddqsTHD3KbN9BxBm5jcuYhYupEcOBJoD6Lb2aGpgRd+qqhXs52Gp3ZUTIVCMFhVCQ//lFrSKn5He5aXXanUxLq2twZlyvlGCezQlAJGoTkcrOAIAoSsvAXz0Q3BQdXNwAAB0hSURBVHbZGQBw9Rqh+eWVEaGm4Y36QK8xtitddOVwt3//q/V6/VMDO/fohMwAjkI7IIAMVB5xRED+O2gAwIheCdnJ+no7pSNdWUnaIF53NVic+3+qt7NkegyZc0csKfdKDm76JvT7x4XNJEUBCK0u61O35Q7HRMYd0NZKaHUAAAAhsNtBp8D25YI//ZQw9Zn7Y2JGAJI4sF716BoAEqQIVSFEIIDbLmz9+vJ2loVDkwtGpz0S6FQXBU+QSNAAgC5xUffExzc1NfkqpBOg0eZ6YcOJOJ2aVpE72xx1zfbie8O9L58v4tRxf+n3zinbyfrm+h4xPbrHZMkdkWTcuMFcqWMyM0D7moqsLGraVPbjv7FqDbC3qf53CRHglivsP/5JREdDi5UkCRATAzf/g3jhedEixxqKonivi2ma5gqHfH2EKxlSC64pqNPpvJao7qv7V8W13YnaJJZlf7z5Y6w2ZswdY4MOXgGVBB0Kh8436tVUq9NldRBqith46OqjfUzo3EQb1caHkh+urw/4oT6CYLbvYBYvIbRah8NBTJ1CPTmR14Ca+AQ1aqTGYlV1TbcG/jcYXrgAL18BKooFBLhpBucuyD82FyEwDMMr7yEIov1BT7haSYGXhFqt1mazuSeaeXK64f+iyCgAAMuyNKH653//eb/pQQAARVHtF2tV6BAcEnRzG3O1xa4iSZIALhaqKZJhAanMNQsXsKmJXbyEMJm4aX5Myadkfh7RtSu/ndFIpqQQFAUC33UMms2ApLiackiRsCkCl/S7PYiitOytly4QwgFJA+WNJ9JB4kbkptVZVnl59OI9q/ZcqL3uZY6JMAyE5K1pdCRBsCxUZpmFlatXocfjMNRowKXL4n4HIqs7iNYDlwu4XER0NJGZKe71FcRiQNLARkejg3E4WWejs7FfQj+5I4psxLmDbmhoWLlypUaj0Wq1s2bN4pJldXX12rVrk5OTAQAzZsxISvI+JQlC8EXN1WOXW0yxUUcvN1ecblj+RM94fQDzRLUqMk6vbrDaASAMGooggJOBGhUqQxyhc8V6pbb5DOEie8f3RvGVS3Iy4bG+M2G3gy4i7wZN3n03+6/9RJKaICnIQrJPBC7p5xsIwfErLc0X2gyk8+7OBnlH51jI/qf+P5caL3bSdOoeHfArk2Rt8tv9/nLKeqrF2twz9k5lX/AQESdB79ixY9SoUTk5OevXrz9y5EifPn0AAFardcyYMffff7/wZ802R9V/zUYtDQAgCcJAU6euWvMzA0jQ3ZK0LW1OiiQIQFjtzH3pMRpv6+FFKEfMR9bUrtar9E6WKTv76Xv9FukC2eEiDBCxsdTsP7oWLQZRWtbpIKdN9TK+EeK3uOsu0NgI7G0sAYAmCvTqKe715eXvNXXfnmjQRalsba6CHnFPD+wsV4qGAG46v7HmZg23q3dh8rDRaY8EepF4TcKopKKbNyNpUV9kESdBazQay62BxYsXL7oT9KFDhw4fPhwdHT1t2jRuN7YNGzbs3bsXAPD666+bTCYAAKF2AvDz+mQkSQKSNUYbYmNjvX4jr8ftV+z6KLrJ6oAEjNXSZ67ZYmJi23dxbq013hW8vuhAik9Of8xteaUiWIogDt2sGWIaKndQfMiiUXT//tSVK/rumS0STDFntvwTpHUBFKWiKNblAlu3AVyqOG60OHYcuxGno1UqioqCu//v5tAe8d0S5Hmfdsl6qepGlTHKyLIsTdPf1e0a1GlwnFqZUi8b4iTohx9+ePXq1UePHgUAJCb+vA5GXl5eXl5eQkLCpk2bvvvuu5EjRwIA7r33Xq6BWq3m1sRRE2BEr8T9Z24atLTDyVraXNmdtO2Xy+GWSfO6jM71Rmu0mkrQ6wEAEMIGq7PZamt/E61Wq0mS5F1BeBNP2eFteUUBVZO9Sd6QfEEkJVKpKZReD6TYt9fh+GV5UpJkba3YPCI1tjpV5C93EyqSaLI5gUwJutnRpCJ+eb2uIlUtjmYlQcuIOOmpubm5uLg4LS1txYoVWVk/j1tdunSpU6dOAACdTudyubiDPXv27NmzJwDAbDbb7Xbu4MT+nVJi6DoLa6BhYY84CrrsdhfvW3Blm+6PeJJmVNscTlqlJknSxbCDMo2AcdrblXJxS1nyroD4etAkQeaZ8k81n6QICgDQxrR1NYg8ehARECnJ8GAb0EQBAEBrG5nWwQrFLMtu3ry5vLx87dq1AACbzfbBBx9QFEVR1B/+8Afuh+71YPjpbIxqc7LR3EqFELS52K4Jsg1hddZ3bmPaDCCa+6eDcXTSojKl4PZEnAStUqlWrFhhMBhSU1MzMjJqa2u3bNkyduzYlStX6vV6lmVffPFFgY/TFHF/r4T4YCeq3JVqeKxv8uc/XKUpMqdbzKN9AtsoHnEeSHmQJZiaGzUMyzyU9vDdcb3ljkgGqMcngIYGdtt2BgDVmDHEY+OE2zc1NWVnZ6empnL//Oabb/Lz8wsKCjZu3FhZWTlo0CBfB8OPTk29VpT5zo6zGppxOJmXH7zDqJPtqc6ojpvS45mSM59QBOViXc/3ekFD+VzkViEMiNMVEhMTFyxY4P5n9+7dX3rpJQDAW2+9Jcr1O+The0wP9UkBKg3hDLhKD3ESohKm9Zr+ZPYkV6uLJgNeRgoTtFrqpT9Q06fHGGNbSbLDhdbi4uLi4n55MD937lz//v0BABkZGSdOnOBycfuDZrP5/fffBwDk5OSMHj3a84LcitvR0dG+vqPqFr4aUBSl0+m8vvPI6xm9JTvF5iK0Klb2CVZ94vqUPLDmWuM1LaG9HdeNQQykR2ADQq0i9Xp1YyNuCZojmo622KXd8iqUWskwEW0go6OB1RrKNbzOYOYOajSa3NxcAEC3bt3a/w2gKErgDwNJkizLCjTg9iIQeECMNxisVivz6/nTmkDW/BMLiqBi1bHKcqMogE+CVgiRUGolESczM7O2trZLly5nzpzJyMjwdVCn040b9/PgCW9qPvfnyus7ag6VSsUwjECDqKgoh8MhkPUMBkNbWxtvgQtls5jbHCVBK/yM/7WSn332mdPpTExMLCws9LwCtwSPwJILNE0LN+hw7y6SJDUaTYe1N6dOnfrqq68uXbq0YMGC4cOHP/DAA8uXL6+qqtLpdI8//jj3juTZZ5/1PCh8QQUFWSCk2DXVH5qamnjjcRaLRafT+XqZDiG02WwC2zgxDONwOAR++Z1OJ8uyvGdGjUaj04n80txs/tVKERBCq9UqcCvUYeTco7HA025bW1v7vVY9B2H9wWazrV69musP2dnZXFlkQ0MDAICrldTr9dzBxYsXOxyOlJSUp556yvMKTqfTYrEIfN/W1laXyyUwktvc3EzTtMB/hdlsNhgMPFMpxgF4P0Sn08kwjMC2kHa7naIogb8cra2tarVaYD9yi8Wi1+t5f58C/SG2x2az8SqX7HY7SZK+duYNOlQ3LMu2trbyflVJkvQ1uUFBCIgMo0aNqq2t9XW2oaEhNzdX4OOVlZVPP/20QIPS0tK33347+PiCxWw25+TkCDQ4ePDgpEmTBBqUlZXNnz9foMEbb7zx+eefBxnfLerq6i5cuAAhXL58+dmzZ7mDhw8frqurgxDu2LFj69atwleorq5+8sknBRqsW7du3rx5Ag3efPPN9evXCzSYOHFiTU2NcBhS8Nlnn73xxhsCDebNm7du3TqBBk8++WR1dbVAg379+jU1NQUZXyC89dZbpaWlAg0mT55cVVUl0CAnJ8dsNvs6e/r06aKiouDjU/BAGeJQ+JkQayUVFBREB6EEXVRUFBMT4+tsVFRUcXGxwMdNJhNvSJRHVlaWe5ZjOFGr1cKRJyUlDR8+XKBBjx494uPjBRr0798/JSUlyPhuEXqtpMlkGjFihECDrKwsgR8xAKBfv35cxYgvhg8fLkslSffu3YV3Se/bt28nwW1iRowYwa1t4Itx48YJDDuISN++fRMShPajGTZsmHCoxcXFAsv5x8bGFhUFtimwgi9kG4NWUFBQUBAG6YnOCgoKCrczCCVoCGFLS0twZ0VpIBFhiFwutUDDiFxTnNSkDhWR3ogHqCTompqaWbNmvfLKKwCANWvWVFZW+n9WlAYSEYbI5VILNIzINcVJTepQEemN2IBKgi4vL1+yZAlX9TlhwoTy8nL/z4rSQCLCELlcaoGGEbmmOKlJHSoivREbUEnQKpXKPQug/ety4bOiNJCIMEQul1qgYUSuKU5qUoeKSG/EBlTK7JKTk0tKShobG3fu3FldXZ35611Bhc+K0kAiwhC5XGqix4msKU5qUoeKSG/EBlTK7CCEVVVVp06dUqlU2dnZOTk5nhNJhc+K0kAWr4hW44GxKU5qUoeKSG/EBvkTdElJidfjU6dO7fCsKA0kIgyRy6XGA2NTnNSkDhWR3ogZ8g9xZGdnB31WlAYSEYbI5VLjgbEpTmpSh4pIb8QNidb4CJGvv/466LOiNJCIMEQulxoPjE1xUpM6VER6Y+Qi/x00x/Hjxzdu3MjVt7tcLpfLxa1s6c9ZURrI4hWeBuEBY1Oc1KQOFZHeiA3UvHnz5I4BAAAWLVo0bdq0kydPcpst5eXlpaen+3lWlAayeEW0Gg+MTXFSkzpURHojNqBSBx0VFZWRkUEQRGpq6vjx43ft2uX/WVEaSEQYIpdLTfQ4kTXFSU3qUBHpjdiAyhCHVqvdu3dvYmJiSUmJyWTiNvLw86woDSQiDJHLpSZ6nMia4qQmdaiI9EZskL/MjsPhcDQ2NhqNxp07d5rN5sLCQs8nI+GzojSQxSui1XhgbIqTmtShItIbsQGVBH306NGKigqbzeaO59VXX/XzrCgNJCIMkculxgNjU5zUpA4Vkd6IDagMcZSWlk6aNMnXdqLCZ0VpIBFhiFwutUDDiFxTnNSkDhWR3ogNqCTobt263XfffcGdFaWBRIQhcrnUAg0jck1xUpM6VER6IzagMsSxY8eOb7/9tkuXLiT5c2GJ5xalwmdFaSARYYhcLjUeGJvipCZ1qIj0RmxA5Q66oqJiwoQJBoMhiLOiNJCIMEQul1qgYUSuKU5qUoeKSG/EBlQSdHp6el5eXnBnRWkgEWGIXC61QMOIXFOc1KQOFZHeiA2oDHG8++67Vqs1LS3N/WQ0ffp0P8+K0kAiwhC5XGo8MDbFSU3qUBHpjdiAyh10YWGhwLqxwmdFaSARYYhcLrVAw4hcU5zUpA4Vkd6IDajcQQMAIIQWi8VXgY7wWZTpMPLIVeOBsSlOaji5YA8qa3GIuFXwxYsXZ8yYEUoDERF3O2ek1HhgbIqTWjhdZOyN+CDxcqb+Mnfu3NbW1tdeew1CaLFYZs+e7f9ZHi6X6+bNm6E0EJEOI49cNR4Ym+KkFk4XGXsjNqByBx36VsEQQm4VWoqiuF3ffdFhAxERZTtnNNV4YGyKk1o4XWTsjdiAykvCELcKrqmp+fTTT1mW/etf/7pmzZrs7Gxerc+2bdu2bt3qdDrdRz755BPpdPyPPHLVeGBsipOa1C6I9EZ8kPX+/RdYlj1w4EBJSUlZWdnBgwdZlvX/LPTjuez111+3Wq2SKnilw8gjV40HxqY4qUntgkhvxAb5E/Ty5cshhH/729+COOvmzTffhBBynQZC2P4X4IMPPggxzkDpMPLIVeOBsSlOauFxkb03Yob8Qxznzp2bPXv25cuXz5w543n8/fff7/Csmw6fy1pbW1955ZU77rjDXT//29/+VnwZDzqMPHLVeGBsipNaeFxk742YIX8dNMMwTU1Na9as+c1vfuN5PDExscOzbiCEVVVVp06dUqlU2dnZOTk5vGr5yspK3pGBAweKbPJrOow8ctV4YGyKk1p4XGTvjZghf4IOkZKSEq/Hp06dyjsCI638HmM1Hhib4qTmpwv6IhGE/EMc7bl48eLbb7/98ccf+3M2Ozvbn2t2+Bo9DAh7tW8QQWo8MDbFSU0KFxR+Rlghz9C3IEFUv9fV1ZWXl3Nfl5aWXrt2jdcgoPJ7iQhuhkJEqPHA2BQnNSlcUPgZ4QQqE1VAaNXvS5cuTU5O5r6+5557li5dymvgT/m9RPjp5asBymo8MDbFSU1SF3R6Ix6gMsQRYvU7wzDudxH33nvvunXreNfv8DW6RIQ+QwFZNR4Ym+KkJrULIr0RG1BJ0OXl5UuWLHnrrbcAABMmTJg/f75nv6msrFyyZIlOp/P18c6dO69cubJnz54syx45cqR9t/jd735XVVVFEMT169dHjhyZk5MjkQgPYS8QyWo8MDbFSU1qF0R6IzagkqCFn4xMJpNAjwEA/P73v9+3b9/Zs2cpisrPz8/NzXWfWrFixfPPP7969epnnnkm/O8rOnzii1w1Hhib4qQmnQtSvREbUEnQQVe/r1+/ftKkSWvWrOH+6XK5Tpw4ceLECXfpj5/l9xIRygwFxNV4YGyKk5p0Lkj1RmxApQ4aBlv9Xl1dnZubu3//ft4FBw0axH3hZ/m9RAh7gUhW44GxKU5q0rkg1RuxQf4ELXX1O/dnv/13aT9TQFzCMENBLjUeGJvipCa1CyK9ETPkH+IQpfpd4NVzVlaWn99FXMSaoYCgGg+MTXFSk9oFkd6IG2GvvPZOiNXvzz77bHNzs8D1v/zyS5fLxX1ttVo/+ugj0UIXJPQZCsiq8cDYFCc1qV0Q6Y3YgMpElRCr35OTk4VfPTMMM2fOnOPHj+/du3fu3LlhK88MfYYCsmo8MDbFSU1qF0R6IzbIP8TBEXT1+6pVqwAANE2//PLLPXr0oCiKO85b5PCJJ54YOHDgnDlzDAbD4sWLjUajtD63CGWGAuJqPDA2xUlNahdEeiM2yP+SkGPp0qUajcZd/a7VamfOnOk+C32/eq6qqvJ6Qd4ih+Xl5fv373/66afNZvOWLVuKi4uHDh0qnY4bYS8QyWo8MDbFSU1qF0R6Iz7IOb7iAcMwe/bsKSkpKS0traysZBiGO+7nLg8QQpZlBYbGNmzY4HQ6ua8tFsvKlSvFiLpjfHnByFfjgbEpTmpSuyDSG7FB/jto4eqcl19+mSTJy5cvp6WleZ7lVb/7s8ghhLC5uRkAEBsbK75GOzqsOopcNR4Ym+KkFjYXeXsjZsg/Bi1cnbNw4UKv1e88Olxh4NChQ6tWrdJoNCzLMgzz3HPP9e7dWzwJL3RYdRS5ajwwNsVJLTwusvdGzJA/QXNz+d0Tq3hs2LBh0qRJRqNxy5Ytnsd51e8dvnr+4osvFi9eHBMTAwAwm80LFy589913RYnfF8JeIJLVeGBsipNaeFxk742YIX+C5gix+r3DFQbUajXXaQAAcXFxKlWYxEOfoYCsGg+MTXFSk9oFkd6IDaj8923fvn3hwoXtZ5dyf/br6urGjh3LlfXYbLa1a9e6bwQ2b948dOjQDhc5TE5OXrZs2d13382y7LFjx1JTU6V3AsC3F4h8NR4Ym+KkJrULIr0RG1BJ0P5Uv0+ZMqWhoWHTpk2jR492n2pubp47d25CQkJBQcGECRMMBoPXK8ycObOqqqq2tpYgiPz8/AEDBojv4A0/ZyhEohoPjE1xUpPaBZHeiA3yV3Fw1e9ms/nq1asClfznz58XqH6vra3dt29fdXV1586dCwoKcnNz1Wq1Z4OjR49WVFTYbDa376uvviqVEgDAby8QgWo8MDbFSS08LrL3RsyQP0GLW/1eW1v75ZdfHj58+O9//7vn8T/+8Y+TJk3yfLLr3r27GOH7RPQZCuio8cDYFCe18LjI3hsxQ/4hDnf/gL4XOXQ4HO+99x73wiEnJ6esrKx9pzl9+vS+fft++OGHrl27vvjii7yz3bp1u++++yQI3yf+eIHIVOOBsSlOauFxkb03Yob8d9AcQVe/cw9cBw4cSE5OLigoyMvL8zrEtmPHjm+//bZLly7ufSLa/5JIQSgzFBBX44GxKU5qUrsg0huxQf47aI6gq99XrVo1dOjQhQsXCi/LUlFRIfCKRjpCmaGAuBoPjE1xUpPaBZHeiA2oJOigq98XLVrkz/XT09Nl2cgylBkKiKvxwNgUJzWpXRDpjdiASoKWuvq9ubn5T3/6U1pamvvJa/r06aGH3SFhmKEglxoPjE1xUpPaBZHeiA3yJ+jwVL8XFhbytsKUmrDNUAi/Gg+MTXFSC4+L7L0RM+R/SVhWVnbgwAGu+j0/P9/r6BXLsu7q96ysrAEDBoTYCXbu3Dly5MhQrtAh/niByFTjgbEpTmqyuIS/N2KG/AmaQ+rq9+PHj2/cuLGlpQUA4HK5XC7Xhx9+KGL8vgjDDAW51HhgbIqTmtQuiPRGbEAlQbuRqPp99uzZM2fOLCsrmzFjxoEDB1JSUgSW9ZIC6WYoyK7GA2NTnNQkcpH9Z4QZ8o9Bu5G0+j0qKiojI4MgiNTU1PHjx8+fPz9s/UbqGQoyqvHA2BQnNUld0OmNeCB/guZVv0+cOLF99XtmZuZLL70USvW7Vqvdu3dvYmJiSUmJyWRqaGgQJ3rf+OMFIlONB8amOKmFx0X23ogZ8g9xzJ49e+jQoUOGDBGofp8zZ05xcbHnaw3/t2mYO3fuO++843A4GhsbjUbjzp07zWZzYWFhenp6qKEL4o8XiEw1Hhib4qQmtQsivRE3JN/1UAw+/PDDoD87ffp0ESMRHYzVeGBsipNa0C6oieCB/EMc/hBK9bvFYlm3bl3745MnTxYtvhDAWI0HxqY4qQXtgpoIHkRGgg6l+p2iqISEBHHjERGM1XhgbIqTWtAuqIngQWQkaN7s/p07d/r/Wa1WW1RUJHZEooGxGg+MTXFSC9oFNRE8iIwE3b763f/pSe1XG0AKjNV4YGyKk1rQLqiJ4AE1b948uWPomEWLFk2bNu3kyZOzZs0iCCIvL8//V8ODBw+WNLYQwViNB8amOKkF7YKaCB6QcgfgF7zq9127dskdkWhgrMYDY1Oc1HBywYDIGOLAuPodYzUeGJvipIaTCw7IXefXAa+99hqE0G63X7t2zW63b9mypbS09Pz583LHJQIYq/HA2BQnNZxcsAH1O+j6+noAgFqtNplMAIBHHnlE7ohEA2M1Hhib4qSGkws2oJ6gMa5+x1iNB8amOKnh5IINqCdojKvfMVbjgbEpTmo4uWAD6gka4+p3jNV4YGyKkxpOLtiAepkdxtXvGKvxwNgUJzWcXLBB/uVGFRQUFBS8gvodtIKCgsJti5KgFRQUFBBFSdAKCgoKiKIkaAUFBQVEQb3MTiEiYBhm+vTpJ06cSElJiY2NLSgo6Nat26JFi9ra2iZPnjx16tQ///nP3333HU3TPXr0WLFixffff//RRx9t3rwZAPDMM88UFhaaTKYFCxZkZmZarVabzbZ+/fqYmBi5tRQUZEZJ0AoisG3btnPnzlVWVprN5l69ehUWFtI0XVVVdfbs2bi4uN27d3/99dcHDhygKGrixIlr167t3Lkz7wokSR47dmz79u16vf65554rKSkJdGNsBQX8UIY4FETgyJEjQ4YMIQgiPj5++PDh3MG77rorLi4OAHDw4MFhw4ZRFAUAKCgo+OGHH7xepG/fvnq9nvvi2LFj4YpdQQFdlAStIAIsy7o3suMSMQBAo9F4bUwQhOeudy6Xi/uCYZj2V1NQuJ1RErSCCPTs2bO6uhoA0NjYuHv3bt7ZvLy8iooKlmUBAN9///3AgQNjYmKuX78OAGAYxn1D/eOPPzY1NQEA9uzZ06dPn7AKKCggiTIGrSACY8aM+fzzz/Pz89PT04cMGaJS/apfFRQUFBUVcaMcvXr14lZHMxqNjz32WHx8/J133slNZ+3du/cLL7xw+fJlvV4/ZcoUeUwUFFBCmeqtIAL19fXffPPNU089BSEcPHjwsmXLcnJyArrCrl27li1btnXrVokiVFCIRJQhDgURiI2N3b59e//+/fPz8wsLCwPNzgoKCl5R7qAVFBQUEEW5g1ZQUFBAFCVBKygoKCCKkqAVFBQUEEVJ0AoKCgqI8v/We4t544kFaQAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## Effect of Tamoxifen treatment in females"],"metadata":{"id":"afKfdPHvKIWg"}},{"cell_type":"code","source":["%%R\n","\n","res <- results(dds, contrast=c(\"group\", \"Tamoxifen.female\", \"Vehicle.female\"))\n","summary(res)\n","res <- cbind(res, rowData(dds)$gene_name)\n","head(res[order(res$pvalue),], n=10)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"J8UY-CqlKStc","executionInfo":{"status":"ok","timestamp":1718912382014,"user_tz":-120,"elapsed":2794,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"dad7c4ab-c908-44c3-9935-a89ca6ee0b58"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["\n","out of 25314 with nonzero total read count\n","adjusted p-value < 0.1\n","LFC > 0 (up) : 59, 0.23%\n","LFC < 0 (down) : 227, 0.9%\n","outliers [1] : 45, 0.18%\n","low counts [2] : 9310, 37%\n","(mean count < 94)\n","[1] see 'cooksCutoff' argument of ?results\n","[2] see 'independentFiltering' argument of ?results\n","\n","DataFrame with 10 rows and 7 columns\n"," baseMean log2FoldChange lfcSE stat pvalue\n"," \n","ENSMUSG00000025316 1183.036 -0.666516 0.0640143 -10.41199 2.18611e-25\n","ENSMUSG00000004328 262.763 -1.162027 0.1210255 -9.60151 7.87826e-22\n","ENSMUSG00000066687 1775.042 -0.841603 0.1119219 -7.51956 5.49616e-14\n","ENSMUSG00000020484 3255.452 -0.332475 0.0466068 -7.13362 9.77653e-13\n","ENSMUSG00000021250 1608.603 0.579880 0.0833544 6.95680 3.48095e-12\n","ENSMUSG00000026773 2180.037 -0.412198 0.0611925 -6.73609 1.62703e-11\n","ENSMUSG00000024222 2141.045 -0.438681 0.0671178 -6.53599 6.31885e-11\n","ENSMUSG00000035877 3491.865 -0.278293 0.0429140 -6.48491 8.87857e-11\n","ENSMUSG00000037868 349.935 1.083647 0.1677509 6.45986 1.04803e-10\n","ENSMUSG00000032846 1792.367 -0.408770 0.0633040 -6.45726 1.06613e-10\n"," padj rowData(dds)$gene_name\n"," \n","ENSMUSG00000025316 3.48881e-21 Banp\n","ENSMUSG00000004328 6.28646e-18 Hif3a\n","ENSMUSG00000066687 2.92378e-10 Zbtb16\n","ENSMUSG00000020484 3.90059e-09 Xbp1\n","ENSMUSG00000021250 1.11105e-08 Fos\n","ENSMUSG00000026773 4.32762e-08 Pfkfb3\n","ENSMUSG00000024222 1.44061e-07 Fkbp5\n","ENSMUSG00000035877 1.70143e-07 Zhx3\n","ENSMUSG00000037868 1.70143e-07 Egr2\n","ENSMUSG00000032846 1.70143e-07 Zswim6\n"]}]},{"cell_type":"code","source":["%%R\n","\n","df <- assay(vst)[row.names(head(res[order(res$pvalue),], n=10)), ] |>\n"," as_tibble(rownames = NA) |>\n"," rownames_to_column() |>\n"," dplyr::rename(Gene = rowname) |>\n"," pivot_longer(cols= colnames(assay(vst)),\n"," names_to = \"Sample\",\n"," values_to = \"Normalized expression\") |>\n"," left_join(y=as_tibble(colData(dds)), by = join_by(\"Sample\" == \"sra.sample_title\")) |>\n"," left_join(y=as_tibble(rowData(dds)), by=join_by(\"Gene\" == \"gene_id\"))\n","ggplot(df, aes(x=group, y=`Normalized expression`, group=tissue, col=tissue)) +\n"," facet_wrap( ~ gene_name, scales = \"free_y\", ncol = 5) +\n"," geom_point(position = position_dodge(0.2), alpha = .8, size=2) +\n"," scale_colour_manual(values=myPalette[1:3]) +\n"," theme(axis.text.x = element_text(size=10, angle = 90, hjust = 1, vjust = 0.5))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":497},"id":"VlTH8XGXKYLL","executionInfo":{"status":"ok","timestamp":1718912397619,"user_tz":-120,"elapsed":1884,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"ad2274aa-46f0-4405-fae1-f4f7438e6aca"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOydeWBU1dn/n3POXWbfksmekIQt7Jsg+yabIILUfWlVKiqvtta3pf6U2uWtrbVWi7TaVYtoXYpIQUVBREAFwr6IgbBmJ9tkJpn13nvO74+LIcxMhkySSSYwn78ymXPPfe7ce5977jnP830QYwwSJEiQIEH8gbvbgAQJEiRIEJ6Eg06QIEGCOCXhoBMkSJAgTkk46AQJEiSIU7juNuACDodDUZTutUGr1er1+s7ts7a2tnM7bAfJycmd3mfiuGJHpx+X2+32er2d22e0EEKsVmv32tATiRcH7XQ6A4FA99pgtVo73UHX19d3boftIBaOLHFcsaPTj8vj8Tgcjs7tM1oEQUg46HaQmOJIkCBBgjgl4aATJEiQIE5JOOgECRIkiFMSDjpBzFm/fv3mzZtD/04Q5+zYsWPPnj1NTU0PP/zw7t27u9ucq5F4WSRsC4WFhS+99FJeXp4kSSkpKY8//nh3W9RpFBYWrlixIicnR/14zz33DBw4MGxLh8Px3HPPiaLo8/l+/vOfa7XaLjSzrQQdztixY9u44VdfffWPf/wjIyMDAB599NHU1NRYmdgZBB3mM888g3EPHvEUFhbu27fv4YcfBoCTJ0++8847Tz31FAAUFRUNGTIkMzNz2bJlWq3W4/E89dRTFoulu+29KuhJDhoAJkyY8PDDDzPGlixZQil1Op3PP/+8wWAIBALLly//6KOPjhw5kpaWdvz48Z/97Gdbtmw5dOhQWlpaWVnZsmXLDAZDd5sfiYkTJ6r3hkplZeUf/vCHzMxMl8s1c+bMurq6/fv3Z2VlDR8+/Lbbbhs+fPirr7564MCB8ePHd6PNEWh5OOvXrweA6urq559/fuTIkXv37j1y5EhlZeXPf/7zoHPU1NR0yy23XH/99d1qexS0PEyn0/niiy/q9Xq32/3EE08cP3783XffNRgMSUlJS5Ys6V4728f69eu1Wu2hQ4eKiopSUlJ+8pOf2O32P/3pT6dPn87Ly2t56xFCutvYK5Me5qB37txZU1NTUVExduxYjLHL5br77rsHDBjwzDPPlJSUYIyzs7Pvueee119//ejRowihnJyce++994MPPti2bdu8efO62/xIfPnll+Xl5erfy5cv37hx46JFi8aPH/+LX/wCIaQe2v333682kGX5xIkTCxcu7D57o8Pr9b744ovLli376quvcnJyvv/97//3v//9/PPPg86R3+9Xx3Emk2np0qUc15Ouzw8++GDatGlTpkxZs2bNtm3bysvLp0yZMmvWrDNnznS3aW1l+/btqrUejyc9PV3959y5c/V6/c0331xWVvbDH/7QbDaPGDGipKSk5a2Xl5fXrYZfsfSkGwAAxo0bpw5YnnvuuUOHDqWmpq5Zs2bLli1nzpxRw6htNhsAiKKoflTfkW0226lTp7rV8Mujvhw0f6yvr09JSQGA3Nxc9T/qRwBwOBwrVqy477771IONT5pvdb1eP2LEiHfeeadv375qhG9mZiYA2O32U6dOmc3mlufo+uuvnzx5cnJy8ttvv71x48b58+d371FclpaHaTQaR40aBQDp6emnT5++5ZZbXn/99Q8//HDy5Mk9xX9Nnjy55RRH0LdZWVkrVqx47bXXPv300yFDhgTdegliQQ9z0M2YzWan07ljx46pU6eOGjXqySefDKubWllZCQDnz5+PRVJDTDGZTHV1dX369Dl37lz//v0BACEEAI2Njc8///zjjz+elJTU3TZGovlWB4D169ffdddd5eXln376KQCcP38eAKqrq5OTkyVJanmOzp07pw7c9Hq9LMvdZ35baXmYb731VkVFRUFBQWVlpTpp8+CDDxJCHn300fnz5wuC0L2mdpA33nhj8ODBw4cPT0pKcrvda9asiXzrJegUepiDVucBGGMGg2H8+PGMsTfffHPHjh25ublr1qwZMWJEUPuqqqoVK1ZUVFT87Gc/6xaD284XX3xRUlKi/j1r1qy5c+e+8MILO3fuDAQCqmtWWbNmTXV19YsvvggA119//YQJE7rH3Cjhef6+++778Y9/PHDgwLq6uhUrVlRWVi5fvvyzzz5reY7Onz//4osv6nQ6xtgTTzzR3VZHx7x581544YUDBw74fL5ly5bt3Llz1apVFoulf//+Pd07A8DMmTNfeOGFdevW+f3+5cuX7927t+Wtt3z58u428MoExcnT7+zZs53+oqQuccycObON7a1Wq91u71wbTpw40b4Nq6ur3W53Xl7eypUrZ86cWVBQ0G4b+vXr1+5tW6PdxxVEtOeoJfF8XB2h04+rpqYmHlK9myfrErSdHjaCvqp46aWXUlJSCCHqFEeCBAmuNq5kB33jjTd2twntJyUlRZ3HuLLp0ecoQYJY04Pj6hMkSJDgyibhoBMkSJAgTomXKY7k5OQgwX41I6u19jzPY4z9fn9rDXQ6nc/no5SG/ZbjOI7jfD5fy3+Kohil1ZcnKFkZYyyKYgT1dFEUKaWSJIX9FiGk0+ki/CxqtEAXxKUGHRfHcYSQCKdDq9UGAoHWajIQQgRBiPyzKIrSBYF3QcclCAJjrLXTAQB6vd7j8bS20n7Zq1Sr1fr9/tau0s7CaDQGhZFoNBpJklo7HRhjjUbj8Xha6zDyVQrhbt5EqmH7iBcHHXS5IIQ4jpNlubVLX80xi3CJEEIi3NIIIUEQgjaPRd5a6C4IIRHM1mg0ETyC+rNE2JzneYRQhAadRdAuCCGR96vX6xVFidAAY9zun6UTCdqFKIqR96uejghXaeSfxWAwdMGDJ/SX1+l0ETzsZa/SyD9L2Js31g+hK5XEFEeCBAkSxCntHDNSStetW/f++++vXr0aADwez4oVKwghhJAf/ehHqqbXli1bdu3aBQDV1dWzZ89OTk5evXp1WloaACxZsqTTI44TtJ2g0+d0OlesWCEIQiAQWLZsmUajgVbOaYIECbqSdjpop9PZv39/VRYSADZt2jR+/HhVJmbnzp1qett111133XXXKYryu9/9bvr06Tt37lywYMGMGTM6zfaISEqPfKVikgzo8s06SNDpO3v27KJFiwYPHvzmm28ePnx4zJgx0Mo5bdVsBnLP/ME7ApN6QDJ6WHro3XEV0k4HbbVaW5aAPHv27DXXXAMA+fn5x44da3kzb9q0adKkSRqNxu1279u37+DBg0ajcfHixeqE77p169RR9qOPPtpSLuPk+aYj58+nGrn8FGNYA9RJT6MxzLel9Z7395ZvLTpCKTx1Y8GY/DCKQhhjQkjYzbsLuvZ9+aWXGgjhFy5k99yNYqm3G3T6hg0bBgCyLJ86dWru3LnqP8Oe061btyqKYjKZBgwYoDZjDNYfrHxjZxnCMHtQyu3XZumFMMtBGGN1xSysPYQQdfm0NYMJIYyxy67idtmbAWtooK++pmz4oBIBeeQRvOimdnTSLTg80nv7qrYVN1BKvz8pa1r/uFZ0SdD5y2It14sZY1988cWvf/1rABg3bty4ceOSkpLWrl27ZcuW2bNnA0Bubq66etBy7eudwvL/7q/QCrxXkheNSr/5mszQvSCEwi6/UMYeef1AslFIMWkUqvz2g6IVdw5NNwff2BzHha5KdeNCM925U/nb31FaOiZE3rYDGCM/eLQrDXA6nX/5y1/uvPPOsKWXm8/phg0bfD5fbm5us+zJl8W17+2vTDVrEEK7Tzu0onD/5DDKbeqqbGuLaerZVB1oWFT/ftkT1OlvBq3BXl9Nv/gKpaZyHCf/7e+QkY7bXJSge1m7//zBssYUk0gpXbWzPM2kGZDeyZXsE3QineOge/fuffLkyaysrOLi4vz8/Ob/FxcX5+TkqFo/ZWVlagyTTqdrXrYePnz48OHDAcDhcKhBb1WuwNq95VY9z3GEJ+zdPeVjcgwppmAPixAihATFyQFATWOAwwhUR8BAx+OjJfXWvsFORxCE0M27sToJ+/oYNNcTEHhl7Try6COAYj/ZAQAAjY2NK1euXLp0aUv90rDn9IUXXlD/qK2tVf84cLpGSy4ouhAEa/eWfmdYmFcWi8XidrtbW/fneV6v1zudztYsNBqNkiQFna9QhcL2vRn4/f5Dhw6pHQZpBKrja57ng3bkeX8dSktrNg5/fYyfNCnUbIyx+mhp7bjUgAfUVSdaoWzr8bpkw4XHrUEgx6uaEg46nmmngy4qKnrvvffKysqeeeaZ6dOnz5w586WXXtq1a5dOp7v11ltPnjy5fv36xx9/vLS0tHk4YzKZXn75Zb1eTyl97LHHWuu5rinAcxffOgWC6z1yqINuDb1IFHZxfk2hzCD2hABMgwHcHubzKoCQRkTAYuqdg07fmTNnamtrX3nlFQCYMWNGUlLS+vXrly5d2vKctmq4SBR24TJiwCb3CTMAj4ys0EPlDX7WmKGHLGurg+j20ZY3A5fLtXLlSgCYMmXKvffe27KB6qBD4y+9334FAJhS0W7X6sO4OYwxQkgf7isVhJBWq+0ywTKCUctdKRQMmngJtE0QlnhRs3M4HGocdINHfuStY8kGXg2lrHNLf7pjoFkbfBlptVpCSFNTU2hX7+6t/ORYnUHD+wPK0CzDA5OyeRLs7ARB0Gq1QUM2rVYb4V5qH80jTRWO44xGY6i0GCvcE1jyICIEAAGjeM4c7je/Du0NIZSUlBTUZ0t0Oh1CKChHIBZa2M02VLv8j71bZNULGCOnO/Do9F6jc82h7VsbQUsK++cXZftKnALhGn2BJZOzJ4Zz8W0cQav89Kc//d3vfgcAjY2NK1asCHoz2LBhg9FonDp16jvvvJOfnz969Oiwx6ViMBgopaEpG3TTZvn3zyOTkQCSa2v5Nf9B9jDGaLVajuMaGxvD2gkAVqu1sbExKA6608+X2+1uTgLaUlT3xq4Kk5YPKIrTI//l7kGmEB/NcZzJZKqvr2+tQzV8u7XEIvUqraura+lbCCFhn5EJIhN3z0+Ljls6NfvlrSWiQP0B+ZHpvUK9c2RuHpXWJ0V/3gMGno3pZQz1znEIPXQIDHrm8SJgjAHdvqO7LWorKSbxT3cM2F/mkSnql8zn23VRbb73nHN/idMgchhjHvMvf14yvrcFt/ftoRPfDCKDZ83k0tPZgQP61FTvmNHQc1zPdQVJmRbN2QZZwGx0jsGYGEHHN/F4esb3to7MMSu8npM9Ihf1vYoRGpljstlsLperR1TlAAB2ohj5/MDxCAECYIFWk4PjEJteuGGYief5CEPF1mjwSFzzExQBh8Er0bBxIG2hoKBALUStMm7cuDvvvLNlA7US/LJly9rX/0V8PrZnj/L6annhQtDrYWLPKJugUpCmv7a/2ev1JkpVxT9xmn2gFUivZL2Gj1PzOh+rBSgFYADAFAqYQHxMPcWavGSdT7qwZkABZArt9s5dibLqdeX9dchs9u3YIf3iV+zwke62KMGVSTyOoK9C8DXXsK3bmCwBICwIMG1Kl4VwdC8Fafqbhqe+s6+Sx2R0rumGmT2huCpjyup/M08TIKwgYDo9KyxEQ4d02f7r6upefvllURS1Wu0jjzyiBoFEFd9d4a4odZQkCcl2MZHQG9dcmQ76vCvwTV2tFkm5ts4XqIsFePo0WlQE6zcgjgefl9x5R3db1HXMH5Yyd1i6gnle8fWMpxJC4PchjrsQwO1x0zNnuvJdb+PGjXPmzBk9erQa361GE7Y9vvvTys0fl2/kEOdX/AtyFk5Nm9aFtieIjivQQW8pqv/r9hKMEGMwrb9tyeSsdi86dR0cx/3gUXbbrTrGWFa2T465bFtcoeGxXq9paAiOao9fOA4CASAEGANKwRQmcCV2iKLYHL9UWlqqOujQ+G6fz1dXVwcAgiA0RwpWe6s/Kv3QprUxxnScbn3JulH2ayzCJWmr6ug7QloQQkjNxW3tW/g2+TOozwTRcqU5aElhL289xwAwAgbsoyPVo3PNo3qZutuuNoFSUzmjUZZluMocdI8D3zif7tgBXi/iOMpxZNDArtz7vHnz/vnPfx45cgRaiclT47v379+vFtt++OGHb775ZvWrMrlU5DVq6iYACJzo47wWS25QDwghS+tiAwghxliEzE8AMJsveWi1pj2dIDJx6qAlhVU2eJHCuCifuyX1HolSnlzYjGB0qMzVUxx0gp4CWbSQfvIJ6HQIgEydimfP6sq9u1yuhQsXZmdnr1y5sm/fvuo/QzM/x48f/9lnnwGA2+1Wh9IAIAY0Psmj53SUUsaYT/KKAU3ztyqdEgddX1+fiIPuOPHooPeec724+YyGJz5J+d9ZeSNzonCvFq3QMvyBAtgMQuvN20NbpFbb023hHvrZVrcgoJxsuHE+CFGbzWpqFI+HdHlx++NV7t3nqihDfZKFCb2t8T+f1HFQ//7CBxtY8QlLZqbTbu/iFV2O41auXGkwGDIyMvLz89XE3TbGd9tE2829bl1T8h8e8QElcFfve0x8YvgSv8Sdg3Z65T9+esZuEDiekyX5hc1nXr4rTLJTayQZ+HH5lt2nnRgzxoAnaGrfMNIQHbKwDVKr0cK++Ub+f0+h5CSZ49i2beB0ksX3R9WD8q/XldVvKALPvD7uxefRt2JGseZUjeeZj07ZDALGaMfxQJNPnjM4usCA/eechecavzzpmDnAtmB4arR5Sd2GQY9GjOCTk9GlKXNdQHJy8jPPPNP8sU+fPlHFd09InTih18QKV4UJmQy84fIbJOg+4m7mvrzBp+HxBU1kBBqeVDREl7XxyPRet45O0wjk+qEpz99SYNF18g1vtVoHDRrU/PHs2bO9e/cGgPz8/DNnzqj/PHbsWGFh4Z49e/hLUZVx+BDQnn3YZkHq6Fuvp2+8yXNcaDNVdif0n/jrY+zfbyGeA0qxySg99jhHSMtNYse+EpdZy2GEECCjhlu9uyKqzUvqvX/ccu54VVOKSdx9xvmfvZUxsjNBS8yiOdeQm/DO8U+8jFaaFxwykrBCkTpRgDFWmJyeZNTrg3XmVE8XVjpDr4cl080/mDskEAi0VglNnZEI2rzjomLNspxr1qwpLi7mef5vf/tb0C7Cmu3RaSkgwFhtwADpDa3ePKGb+86e9XvdzOcHjJlCkShqPR5yaf3TGKFQ1pGfrajK3axmxRO0vdhx99jMqyhBKUGCiMSLg/b5fOo6r0WA2YOSNh2r1Qq81x+4fkiKmaehdaxVsaQI9a3V4tmtpXqrYklBm7dPbjSsLOfTTz+t/hFWLKmhoSGoEzZyhPLyK5CUjHmOuVzogcWhbeDb5ZfQr5SKCub2AiZAKcMY3E2NsgzfNouFWFIzI7JNHx+tSTIQAPAElNuuSY9qc5HDSss1Axb1snDnEvYhHfnJfdnn+mU37zK50QQ9jnhx0C25fXT68GyTmwlGLPVLjU58pwuILLXavj5Rfj738p/oJ5t5StGQwcrUKdFtn5YGhEDAzwAYA6zTgd8Pna3MF5aCNP0Pr8vdX9pECE4zkBkDoqvQMSLH9LftpRxGIo+b/PJNI1I50p0eOih0TC31EjmeTK04HvYrtYhMhM3VOgaxKCef4MogTq+MAemGUMXCOCFIkQc6RXwHABUUkIICvdEoy3JrAUytbosxyBIIAjAAhJiigLnrUidG5pjG90tpn1iSScOtvGPgl6ecXgXlmMm1eTEs9NUWgn55QgilNPzpkGVWXq7JyvZyJMJVynFchLOp0Wj8fn/Qe16na94m6LnEqYNOEB2Kgux2VlMLCLDZAghYfT3qIXXTbXr+mlxzAHibIPeYd/3SMmXVKmXHFzWU4ZsW4AeXQPfVS2sHlFFXwCmCBnVBieIEHSAuHbTPx86dU7KywZAYSrQJ1CsHMEb9+2GMgTGlogIlxbYYaNAoT63xGGHop77pCyHB3YzBqzvObjp6niPY45d/sXDAsJwwg2i1/24sGhmE/NZb7PBhZLUSjpM+3Mj17YtndlG5+o5z1HHk74V/I4jIVF5a8EiBuSCqzet8de+Xr91W/vnopNFj7eN6m/rEyM4EEI8Ourg48MAS0GirKSM3zMX/s7RnjU26BTRsGL7lZvrW20wQmdfLPf97iLH0QdD6qkaj4Xk+wpotz/M+ny+0osr+Etfmo+fNWg5jrOPRz98/9sbiYS3H0ZJCPzpaU1Tl4wlM728dnn0xq6Iba0jSjz5GaReCZJBOy06dhpndZUt0uCTXP078LVmXzChjwF4p+vNvR/1Ox7V1pYcB+6j8g9NNp5I0ScWNxXtqC38+4ldWIZEiGCvizkFLDzzot9m/IUrRIJ66Ps/+SD99/n2JF7HLQhbfj6+fI7o9XO/eHtxjfq4qpx8Bq270N/kUi5ZDCLkDSssykm/sqnz/QBUhGBj7qrj+5/P7Dsnq/uhdMnsmPXhITSBk/kCzs2479Isv6c6dTXq9cu21MGpkDGwMT5W3UuQ0CBADBgxELFZ5K/ONvdu4ucNff7D+oEW0AAACpOV0p12nRiVfE0uTr2rizEErCgUoQsqqB/SGJkoUbrfwpVzWa3bWdd1tWYdhjO4ulL75xl9QwK4ZhWKQP4IyMjidDiEErY9k4w2e4OrGAM9hnqBGv4wgWLB/w+FqnmCEABBSGP3vwaohWd3/To2vn0M3bQaDgTJGxo3Fs6IbP9PPtsq/+S3ieR/G9L215De/xtdeGyNTgzBwRlm5uCYpM9kYTaq3SETaoigzY1QkPUPRt4cSZw6aEIWy0/05fRMjCmBGiazZULo2WgdNGf2m/liFozJDk5Gq7Yp8jcuiPPuc8s47gHEDY2jceG7Fi4iPsx+/vWw6VrtqZwVGaM6gpEUjUrXRlERhjBk0nCegIIQoBZ1IAgoVW8RCSwoVvv2IALsDcSGKhoYP5//zLj16xJye0di7N3DRzcLRTz9l9fVAiAIAikI//qTLHHS6Ln18yvg99XtUPegpaVPtmigWk/WcYWLqpL11e7WcRlICHsXb19wvdtYmiDsf4Xrmd9yHvyaMYAo+jc4j6gzYRxnFqK2TqgzYmnPv7nfsQ5T4Fe9teXdcax8bU5svC62rk995BwkiqCUHd+6ELZ/BnC6VQIsRe886395TmWoSEUJfnnRwGN02OopcFYHDZi1n1fEMEIdYvUcKEu8emmn8urKJQwgQKJQNzYobZZ/kJDx1qpic3BR9MCg7deZbvX9gCNETJ2JkYygI0E29vjM6c0ypszSZt/eL3r2OMF1XVFPd4K1M0Sc9NGCpiBMj6BgSdzm1qRPHVF/3gzqLsc6aUm+waTUwLW1q270zABx3Ht9bu9fIm7ScxixY/n36TZl2d+nYkycvyRZDSCkqirYPRimrqWVRhkjHmqLzF3O1BQ6vP1wd1ebDso0un0ww0grEJyvzh6YEVWFfOjWHJxgThBGa2Nt6yzVpnWZ694GsFqZQAGAATKHIFtuQmyAkBUQ5r0A/ob+5f7SrO99UuX/5xeunm07VuwNfn6989vCzbrnHzKf1ROJuBI0QPDjjuveOaz6rf0uL5FmZM2Zlzo6qB0egnkMXZ3g5zLkkl03sZE276OjXnzHWfCswSsng6CTeWWkpXfU63bb9PKV48f04bmpiaXmsMHbhMmIwuU90C/pWHf+HWwq2nWgIUJRlJhNDNk8xiXeMSfvP3vNj+1iv7WXies76ZyTGjMbFJ5miYIQoxnjC+C7b8+la7/J1J3QiJ8t0eoHt7rEZUdUb2nqihDOfwIoBECAgTBFPNZ4aah0aO4OvctrpoNuiiVxYWLh69eq0tDQAWLJkiV6vb6NuMkbo1gGTHk5a2L5MwnQxzRNo9MpNjbLbwBkUpljFbg4DwlYL99276dvvgj/AAPCkyWhadIXglDf+zQ4dgaQkwnHy66uhTx88ZnSMrI2KCb2t7x84b9FjglGDVxqSaQxq0OiTNxyu2Xj08JT+SRN7WwrSgmOl00zi3eOy9Hp9WPmR/x48v+lYnc0gnDjvPnDOadRygzK6P4qjg5DbbqUOB/1oIwDwC29Ei27qsl3/7L8n7Aae4zhK6Y6Tjn6p+rH5UWRvfnWmXsj91qEjxACUbn89vaJpp4Nuiyay2+1esGDBjBkXAvjXrVvXcd3ky+NwGF59MzDcGeAQwrhJbhxpGxUXUXq2ZDAYGTBMCGRmQFQPHkmimzaj1BT1E9PpobgY4sNBp5nFF24p2FvqDihQkCIUpAV7z3f2Vu4vaUwxaY6WN247XvvcdwrSzVHMWr63/7wnoGAEDEAvkAOlrggOOmjcEPRRJWjcYO+OfEuk15P/fZwsWWK2WtwArUl6dRYYY1V1VlYoggtSkQghDU+qGqVQQVo1ISisUO2Ng3t/Wt2XakoREEopIH+BbUBQS3U2j+f5RE3CjtNOB221WlsWsAktWAkAbrd73759Bw8eNBqNixcvDtumqqrK4XAAgN1ubykZ01x3sjUDMMYY41CVmcDb75yqPWbyCqICMpN5s+1k00kP9ZiESxaXCCEIoaDNYycqxlwu5fXXUUoKRghjrGzbzmbPjEJTn+cRVaC2ltXXKxYL4jhI6tYZm0tJMYmLRpnDanH4JLr9hMOm5wEAARhE7lhlU1QOOqAoqto0AHglpaw+UmHZoHFD0EeVoHFDd2I0YKMRohcwaTccwYyxZr8ZkGmqKbolvoUjM1y75n1RvRWZ9+Xpxjwwcl7QnZWgc+n8OejmdN5x48aNGzcuKSlp7dq1W7ZsCdtm3bp1GzduBICXXnopKysrqCujMfh9uRlVpDG0Qc27a/gJGQgxTJEAGEkSAtFisuj5YOnn0M1jWNfS6WwZ+Mw4jtY7oovMGjWKbf0cCEddLkQIys7pbBNjAkdQyzcFxiDaSWSMkEQZhzAAUygYItbWCRo3BH1UCRo3cBzn8Xg+/vhjAMjNze3X75Kohg6q2XEcRwiJrGYnimKs1ewopc05nMvn9Xnmw5N6DS9TOjbPfE2OMTS9Uz2c0P8DgIDg++P6PCgMQUDlgD9sM/VxKklSUE3CzrBjgpsAACAASURBVDugq4jOuTLCaiKXlZWlpqYCgE6nk2U5bJuHHnrooYceAgCHw6EOpVWahY9bu/RVPejm4vMXN7xhbv6h3e4pIi8DVpiXsHEpEwJNgQAEWjZT9aCdTmdQn6FiEZ1DWjr4fMDYheJ1Hjfu37/tWzNJhgMHUF4v5vURXqAE0SNHuriSdPvgMJo3xP5ZUa1RSySFunxyy1zttjBjQNKes66AwgCAx6zj8rNB44bZs2f7/f7CwkIAYIy1rJUDABhjxljkqjQR3Kv6ohZhc/U1ritf/wek61++e9B5DxIQzbZwUa0QNqMViKJAYu65C2ing46siaxWsbzppptefvllvV5PKX3ssccQQh3XTb4seMEC3YYPnnrNvGuo2IT8mYtum5AdXRBILEA8R/7ysvzQUuB4SmXu6adRVmYUm6sSyYKIBBFzHHO7kdhjgk+/MzI11SSUuaiWY1P6WKItOTh7kH3bCYdRw8sKHZNnmdKvo3M7QeMGALBarc8++6z6bVCBBYPBQCn1eDyt9SaKYlNTU4RhBMdx4VVYa2ro7kK9yeQfNpReqg0rxvjkmjRcdqrZ6/UGAoHLt07QraA4EVx2OBwtZxjUEXSEKI7WRtAAwBoa2IGDRqvVP2ig3MrgpbURdKdL8Qbd8KSpyZSZ6bh0vy0xtqIHLb/2L/buu4A5TIjicvJv/xulhYkI1ul0CKEg0aJYVFQJOi5VLCmCHrTFYnG73WHfmgGA5/nWojgAwBNQqtxAEM0x8y0HfKHHpY4bjh07NnDgwOnTp1ut1pYf7Xa7Om547bXXmscNQYpL0Tro5OTkyFdpeAddXBx44EFkNmOMqcPBrV6FsrMjHFcHcbvdQVeU2RzJQXMcZzKZ6uvrW+vQYDAoitKaznXYm5cQEjrdlOCyxF0cdMdBFguaNlW02fwuF8R4fTxakMXSPp05XFAguxoBgCKMpk2BGKuJdi7F1e7yU24dR4dn6oXoS1rpBDIsyShJks8XaYUQwtVSCPqoVr/+1a9+Fa0NnYuyfgNKSQGMESGI55V1/+UefaQrDahwl5c4SpL5ZLsmpSv3myBarkAHfUWiPPH/UFYWIMRxnHTgIN22nczoGQJSm4/Vvrm7Uq8RZEUelmVcPDFL7N6yg3EAk+SLz2lCwNOl2aGbKzZ9UvExh7iAEpiffeO09Omd23+17/yWE5/Wuer6mPoOsw6LKg04QRDx6KDZgQP00BFPWiqMvRYs3VwDKS4IBCggVF0DDU4JMbDboaqqu21qE5SxV78sxwjKHW7GwONXhmcbx/e+2l91UWoK9fmRRgQA5vHiXl0Xk1Pjq9lY9pFNa6OUaol2fel/RySNtAiddpfV+mt+ffBXNl0Sk9me2t2OjPrpGT1jJBGfxJ2Dpus3yH/6MzIZmxjIv31WeP89sMVRzG+0hBYhRQhFiLtSo5GCG2g0ktfDAEDgECBWU8PxghiuE47jIvev0mUJHV6JSgpVo+sYgMsvn67xJhw0vvUWqK+nH22kANzCBV2ZSVjvr+PwxYUZHnG1vppoHbQr4CxxlepBFzpDcrj+MIe5UlcpABh4w7rStQkH3RHizkHLf3gRpacdycXHcsme/KwZhX+fNfOHIrmMx2kJO3eO7trttdnYNaOgu9clgpbFGGOCILS2VgYAgiAoihLcQJJAo4GmJkCYAUNmM6UhbQDgWwcdoX+VrkzoYMAYAKMACAGDuFiS7m66OJOwJXZNikT9ABcyAAI0kBKlHu+Buv2rTq0SiSgpgRkZM+Zm3dDy23JPucvv4ggHjHllD0IoKinKBEHEmYNWFMDobApaPRVbvGBthJ22c7T84wU5C9vYATt0SHrsf8FidhMsP1PHv/4vlNOdOR1ByS9qDH+EjJiATBmlQQ0YAMMY9ekDkkQEQfb5mV4fthNKKULoshk37UvoAIAHHnjA5/Pl5eU9/fTTLRtjjBFClpD5KBNjBGGfTBkwxqhG4AZlJ4U2QwhhjEP/3wwhhOf5y74Z9DC6PJMQAGyi7Zbc29ace5dDfIAG7up9jykawX6Zya+dfNWutQMAJdrPKrcMtAzKNeQ1N8CAGQJAoD6MMYthgu7VQJw5aELw/PknfLsNfgIAQBVR1H9WuWV+9o1tfAgrn2zCKXaGEOI4bLfTDz8iDz8UW5s7CXdAeXdP5dYTDkrZzaNSbxyW0pxEgDAmDz9EX/sXMxiQokCDA0+aGGt7QhM6AODBBx+klOr1+qBIPkEQ1JS8oE4oYwwAowtSDBiBrEihpQs5jtNoNBFKGqoxy0FhYeZLw4cTtJHxKRPG50yocFWYsUnPRac85Qg4+JYzJFis8dW0dNCZ+kyzaFGY3KQ0mQSjTGlcKOH0WOLMQQOQe78rbKymylkmM5SaCjod+L1tf0VqWc0TCGHhAqXjk/WHqveec9mNImPsw8M1dqM4offFESW59RbUKweOfq1LT/eMG9sFUzehCR0AoKqpQGh8NyEY49CplSafrOVxkp6XKCBgPMH1jWFKxwIAYyzCzAylNMzMT4J20eiTaxowD3adOeq6a1bBKtGLZ0FSAkHT0MNtw9eee8+isZqIyaO4b8u9pRMsvoqJOweNbLbh3/nRBwd/adMlMQoe2b0gJ4olFHLPXXT9B4CAcRz4/VFlVHcvHxyuthsuJJrrBFJ83t3SQQNCeOxYNG6cPinJe6lzbAdBiaBqQkfzx+aEjpaJoO3bkUHDKZRpeKwnhFLq9ASyLD0mB/KK5Jsq968/PGnQ8JJMx+ebvzc+kydRTBBziLu/7+J/nXqVAKcwZVbG7FxDbssGFsH665G/KfJ9U+us7WPq28+UKIjVIeLOQQOAXWN/cvjPjjQdqm+q72PsOyIpiprHaPo0+GQTPVHMAMiQwWjK5NA2TT5530mnRHGelfS2d1TbobOY1MdaVHXhHV9mtGVl606nKxM6fnlj36fXF2sFIsls4fDUwSGC0Qm6kv/74KTdyHOEozwtPOsckGG8ZBzQBngsUAoIUcaYSMJo15gF89z0ee0Tc08QRDw6aABI06YNyhrUnnO84QOgDPfv12gWHMiT+sE6w13fa/m9yyc/9MbXJi0ncMTlDXx/YnZoFY9u4do8y5enGjQ8BQbugDy5w6ITcUKfFN2q+4a6mcAzSd/5pcxjjKLAFbTGJSsUI2ieFBY4XOW8THJmcA9U/uvxV5K1yQgQpfSjso/6mQqy9dmX3zJBu4gXB60GCDd/bLcetHftOpSetmk4+nQEEEUX0Gx7pGn8AMuA5gZ7zjksOl7DE4SQVSu8sq1kaoG95U67i1STKMlUrVQ3Ns9iilJUKJ7hCcq16CNoccQPzZcc/fgT/6+faeCIsGABvvtuZG9VH4MQ0towQlW1jXAZq9922UiTI5h9qyYKAH6JZlqiC4xRFwkvungsVnkrEw46dsSLF1DjtJo/IoSqPdW13to0XVrLVeOg9qGXPnfTwpMnd24ZSsxuYIwaBNPKr1e8MumvzcuMbj8lzTtCgNQKEwhBdzvojUdr7CZR4Ahj7FhV42ff1M0d0g3FPq5yLlQeOXwk8PvnSWYmQkj68kuiKJr/90SETVrzsOra6WXVSqO98MrLy1etWmUymZxO56OPPmoymaDNiUW/urHv0+uLdQLIijKtIGlMXnSRMBbBIrdYJJSpZBOukFe9+CReHLQkSc3Ru5TR90vW7qr9ilEI0MATQ57M0GUEtccYE0L8fn/Q/9F3FlX9/mMhYGUKYwY9sph56j7fWGUTL6gL5SUJbr9kQDwgRCmd3j9J+jZ4q3ur8nx2vM6s4RoCCgDS8rjKFXxoCboAVY9J2b8fDAZKKcYYCBdY/wH8z1IIpxVuMBh8Pl+EEXRzn2HRarV+vz8oUcVguEzo2+HDh0ePHj1z5sw333yzuLh41KhR0ObEovwkzT8n6Z1ehnP72M1Rq5/zmL+r9z1vn/m3hmgDNDAxZWK+qXdQmyap6VDpwZqGmj7GPr0uXUJMEC3x4qBbcqB+f2FtoUW0yrJMGdtaueWu3ve0deOszNTlz3qO/7kG/IBkndxAGTXxF4cJgzIM+XZ94dkGYNArWRdVxcyYMijDsPu0Uy04UkPppCiXbhJ0IshggJbJPowyjoufqegpU6YsX758//79DQ0Nt99+u/rP0MSir776avny5QDw8MMP33zzzQBAm5qann2OfrIpmWDNtKn6HzxK0tPD7kKVDA371fVJc0f3GnPWeSZZm5xrygv61ul3PvXZE0bBRBDZWP7R94c8MCFjIsS0XNEVTTw66EpXqSgDQwF1IqOwtvCO/LvaHgqt01n9hCKGEYBH9ghEIPjiTMjec66zdd7edj1CWFbk7SfqB6bHRZVokcMIkAIMUdALhF1Ba1M9Djxpovz75xFCTOCZq5E88j8onmqebtiwYdGiRRMnTly3bt22bdumT58O4RKLRo4cqYqrCIKgam3Lq9+Qt29HVgvG2Fe4N/DXv3GP/TC0f0KIwWBwtq5abtKZBpuH+Hy+UAnvzyu36nmjhtMoimLiTS8f/PMg3WAAwBgnEovaQdw5aFZ80vznfwamWXCAgtkC9mQGLKpc/jJ3aZJoI4SX5ACP+SapyRlwNsvBlNR5NZxa1RgwQl+cdCyZnN2+wj+dy75zLp2IPX6FAhCEPAHa3RZdxZjNwvp1yqdbRH8ADx0SGDzo8pt0IW63W50GMRgMLpdL/WdoYpFGo8nMzIQWgv1KWRkTBLWiPCNYeu99FE6H+rKCBIwxGiJIoNIYaCSA4dulSIyQrMiJZMJ2E3cOWn5gyciMlDMV6Eguj/0un1v5wbCfRNWDgTcoVNEJeg4IY4wyRcddDHZOMvASZc2rNpRBPHhnAMiyaoqr3RxBANAYUPxywkF3J6yhgVVVKbKMqqpY//6Ij6M7Zd68ef/4xz927NjR1NT0yCOPhK0wF3ZDlJKKpAAIIgCAouAb53e6bXnGvK2Vn4m8CAAylcfbJya8c0eIo8sOAEBRGEICxbdtV8adRm6q9Bo2yjqxT1R9FFgGDLIOKWr8BjPsk303ZN8o4IuLIeN7W7+pdB8odXGENHkDP52T39nH0E7KHF6DQBp9CgOw6Hgx+jlPSWHHKlwAKMOA2lG4JEEzrKpK+t59KDlZ5nnp0y3o3Dmy+P7uNuoiqampLROLjEZjGxOLyE0LWGkJ/WoXI4Q1NfK33Nzptg0wD7whZ/7759YCwFj72NmZczp9F1cVceagCQFGgTEMqE8lyE4PmRm1Fh2HuNvz7jgtnapyVmVqM/sY+7b8VuTwA5OyTtT4JUYyDWA3xqaMd/RM7Zd0tKLRbtIwAL8kJ+mjM8zpld/YVXGwtBEQ8/iVP942IH4OrcfBdu1GVgtwHCCEjEbljTfJvd+D1sOZewxmM/fET9mxY3pBlPv1DcTmiKamTVs06Dvna85zKM7cSw8k7sZZ/B9fZOerWWMjrXfgCRPwde1R++YxPy59/HUZM4K884VvCR6RY55SYI8rFzZjQFJ9k+SVFLdfbvDI0wqiCy/95Fjtscomo5YzanibXth4tCZGdl4VSBLApWlT9EqZceJ5NGwYP/ZauLRabueCAIVNX0gQLXH3iEPDhwvvr6FFxy1ZWY1Zme0LZgjItKTOzVFF03MGPfl23Z/vGnTOqXAI+iYLPAk+8Hq39PHXtQqqEZE8Z3CySXPJuXO4A82bEAyfHKv97rjMLjL9igONGsle+Qu22wGA+Xxo4QKImGxyVcEY1DX5EbA4Gt1cucSdgwYAsFrJ+HFCUhLU1UH0WbAnisrXr/qEE8Wv0/p8Z1LvOYM6uYh97DBruQkpVlmWQwva+2X6yFvHbDpeI/Jev1TnDiyZlE3wRSdu0/GSwkQMAKBQdv3gRBZi+0H5+dzvn6ObNtNNmzWL75MXLuhui+IFl09+q7By5+kGxmB6ge3OMRmhI4kEnUhcOugOIJ84mXTv/Xdq9YiB6Gv6pfxMQdro3KQYvs11DadrPDoBqzEePEGFZ5zzhthzbBePa85ge02TtL/EBQAjsk1zEw66Y+BRI/GokYZn/o9SqoQUIrhq2XCo+khZo00vAMDOU440kzi75wyAeiJXmoP2rFnbYLAiQhCgAMdPKfqipH7wFeCgEUKMtZgVheBXC6OGe3BydrUHGIBdy6IS+b1iaEsxXI/Hs2LFCkIIIeRHP/pR9+b39zg+OlrTrFqu4UmpIzoxvATR0k4HHXTph73onU7nihUrBEEIBALLli07fPhwx6tEXxbNJ58ovEk9KplwWrcz2nCIaAmrXNPp5CZrvZKiFTAHICv0mlxzZojyfU1j4FCFByE8MEXItsX2mRQkAHRZVSCEUKj0YDOqYFCEzVXplciqQ9C2YribNm0aP378lClT1qxZs3PnzgkTJkTuM0FLpvVPOlzmUp9pskJNPWiRp2fSTgcddOmHvejPnj27aNGiwYMHv/nmm4cPH+6sKtGRIbfdnPLRpho/wwiEgM/Ur/eAdH1M9xhWuabT0XB4xW0DPv66dvOxuusHJ88ZnMxdOkY+W+ddvu6ERS8ixt7wSE/OzR8QHynsbaKT9DbbUgz37NmzauGu/Pz8Y8eOTZgwoamp6b333gOAvn37Dhs27IJFtXXSxo2+xiZ+xHDt2GsjqEJrtdrWxJJ4nscYa1uPl0AIiaJ42QdP/DC9IGlrUZ1JC5SxRp88Y0BifiO2tNNBB136oRc9AKjXuizLp06dmjt37pdffhlaJfrtt9/evn07ADz11FMpKSlBe4kwGlXlRkOz++mDSwSvV7txkyIrgTlz5zz9KNaGUbxV5aSDNqftCqUKq1yzePHiQ4cOCYLw1VdfhW6SnBzpshZFUa8P81BJToYBeRk/uiH0GwCA/xwqTjFr1azIFJ7bX+6bNCQ3ykOJgkuUnRkjHi+2WSPIPTPGZFkObcBOn6bv/EfZtMkFwP3xBfStfwwiRjUJBUEAAEVRysvLASA5OVkVsKV1da55N+CkJMTzvv/8R/PA9zX33N1aJx3Xg+5KnVt25gzd+rmH49iYMVAQdUG4fNb0V+6Io9zlHTgoa+YEnXilzZHGG53/+wotVBmdTudf/vKXO++802q1hq0SPXz4cNVbCYLQUpVRfeGNoNMoCALGOEwDnY488VPDfffqTWa/0RCgFMJ1wnFc0B7Vf7bjeMMq16xcuVLVQ6irqwvahcFgCJWYacZgMMiy3NqBI4RsNltQnyrORrffL3skCgBaHrm93uZmrcmSdQrsy6+kJ5+SeB5kmXv5z2jggMtv04wkyfctZqkpOC0NISw99riw5j+QFFt94d69e588eTIrK6u4uDg/Px8AzGbzk08+qX6rFsNVPtnEzBbK8xhjZLF4VqyUF9wI4WarNRpNU1NTeAddWiY4nULfvk1iq5NsPM97PJ4guVGNJjoR/bbDTpyQHnwY2Wx+jldeX8398hdowvgoNq+pkW++VbTZMgSeffYhDnwfFkVRLzRBO+gcBx160QNAY2PjypUrly5darPZoJUq0QUFBQUFBQDgcDhaijsjhAwGQyAQaG1s0poe9AVsNmyzSS5X0KXfDGOM47igzdu3XhRWuUanu6D+EVT9Wj2cy1bQiNwg7LdaHpc6vOraYL2bDc++/F46Djt/Xlr+NKSlYUIwgLx0Kb/pk7C6yeE3Ly1lGg3CBAAQAtDrWVFRVC4jiLYUw126dOlLL720a9cunU536623hu/I40EtZ5AQAllu+3EBgPLaKrrqdZlgt0zx00+R66a3+6A6Ebr5U2S3A8ZACEpOVr74kovm16bbd4DVBqIIGCObVX5ppZBw0DGmnQ466E6YOXNmy4teVW9JS0urra195ZVXAGDGjBkpKSkdrxIdhwQp13SXGQGZmXW80yMhhEwarmsq6bHik0ivV/fFEGKilpWUoj7BCu6tgYzGlrLLSKFg6NCCQRuL4S5btixyP3j4MOUf/wT1zSMQIPPnReWdWVGR8ve/g9/PMAZKleVPkwnjIWbj4ijw+xn6Nngeoain/t1uCH1uteu9M0EbaeePG3ontLzo+/Tpo94Jd955Z8s2nVIluuNUOf1fnqkJKCjPyo3JM3dQzS5Iuaa7aPJLLq9ECEaMuXxykz/8q0MnYzYzWbr488kyskRTZ8BuJzfOp5s2Ma2OSRKePBEGDux8I6MHFRRwTz0p//KXFLBwy830jtui2pzuKgSfDzgeECCMmddDz5zBA6KZ/IkNaMgQ9OmnYDIDAHg8KCu6XFM0bBisfkN9brFAgCxcmPDOseaq+32rq+o/eHZVL3etw5a+us+1NWN6zR8WvDjZE3H5FYQQQQAIAWX1TYEu2CkeNJBcN51u28Y0GubxcrffCsnRzXeTpQ/DwIGkpESTl+cbNzZ+MqrxtKnCtKkGg4FS6okyUYURzAAQMGDAEAJAcaL3j2dcx+rrlVf+QhHm7/0uu62VGZ7WNh82FH7yY/k3v6GICLfezO68o7WWlFGZyQQSQXgd5Spz0LLc+PuXZh3aIwuieOpQSk3Jq+z2G4amxIcidIdI1vMWLefwyABg0XFnaoOTxWMCxvixx9CY0VxtndCvn68dwvYcR2Zcx/O8Rq/3tb522rPA48fRl/4Efj8wYABIp0V5waWhupgLgSIIcbffxt1+m8lk8vl8gUCkp3jY2BIyexaZPctgMCiKEipIoPJ51db3d68FBmNTxt2QfYORN7XWW4LLcnU5aHb2XPL+r2p5AwII8MKAkwcz+09iMKJrNMWrXf6tJ85LQNL0aGp/G4ej22mjT956vN4l1dhENq2/TStcMjxJMYo6gdgMIgAEJGV8n+D43xiBeA5NmSJoNDzP+xobu2ancQ4iBAQeZBkwQowiDnfNkkBrEEKCIkPUrKLWVsXVGNYIwSRqaGDYBl/XH/2gdINdZ6eUfuM8JnDCXf3uhoSDbi9Xl4MGv1/gOcoYQQgAKLDJ2fquqaji9MqPvPWNWidFK5Azte4HJkUhdS1TtnpXxdHyRp1GaPL5S+q9D07OaWn47EHJ1S7/rjMuQGx0L/MNQ7tQi6OsXHE4SJ/eMVWw7EGw02fAloQyRKQoWBTlujpWUYF69eoue0JHu2p+b2sjaI7jRFFsbYAMAISQ1kbQRXVFWqIFAEopBry98vObshchQISQ5tCmBG3n6nLQqHc+CXhTLHqPDG5PwKAEpswd3TW73nbC4ZcpxggxCMj0k6/rvjsuS2xz3ZPTNZ59JU6jyAGAhiO7zzjnD/O3zPbWCeSBydm3jcUUwCp0XclZZfUbyqrXZY3G4/WSZT/Gs2d30Y7jGGS3o4AfFInJClMUkCSIZSh6XKHjdAq7GJlDGUuUvOoIcbF20XVoNPyqf+knXJvkru+/cIbhjX/pLMau2fO5OjcwJitUpjSg0IDMGrxRBFoEZIoukZAHSQnOe8QIZVi12TZdl3lnduo0fX01Sk5GJhNJS5OffQ4am7po33EM698PWa2s6jyrr1dKS/DQocjQc9LuO8bIpFGNksun+GUmOwPOe3p/t7st6tlcXSNoAEC9enE/+bHw1JNarTZCYflOR8BYYRemIhEAY8ysieLHz7frvAFFJ2AAUCjzSTTLGgdxtRUVLcN7kSiyykoUrorN1cWRo8zpQtnZSJaRRkOPHmUNDdEFIPZYTLzp2WueK/YXVzdU9zX1zTV08+poT+eqc9DdRVaSFmGE1Zc+BBqe+GWq4dv6BqMTyG8X9dt8rO7zE47rCmxzBidHu8YYE7IymccLkswUmYka8PnQpdJxVymNLuAJaLUIY4QQcBw0NsLV4aABQM8ZrkudUaev64Jc1iueq9dBK0yhjGLURZM8/VJ1Vh3HYUQZ4hDzStQUzQgaAHJs2u9Pyv7pwuFB6ePdSVYWzslWDh5SMEKU4qlTO5gKeGWA+vdnTW6k1QEAUMp8PpSe3t1GJeiRXI0O2k/9606/v61yK6V0bvYNszJmd8E6Rt8U/Z1jMt7cXcET5JXoMzf1uwLijtixY6zqPM7PQ4qCRJEeOcqqq1GIKmEPIkgwCyGEMY6sosVxXPBQMTsb/fY3gWU/VQinmTuHf/a3qJWQtchadwkS9EwHXVOjNDbivPz2+dXN5Zt3VOzikVng0GcVWyy85Vr72M42MQxzBiXPGJRCscgr3ivAOwMAcnsYwYjnkSgihIBg1tjYox10kLtUo3db86EM2Df139S6anINeRbxkhkMMnmSuOsrHoBoNBFEGSN03kOhjB0oaXQWN5l5ZWSO6cq4zruReHHQYYPewwZO+v75qu8fryoC7/H6dH/8Az8+vBwXQkir1YZKPHv88ppTH2JqQhCgjKWaNOX+MlV/uQti6TUcNho1DkeXpPm1TmeVhkL9+4PbzfQGtVPw+XBOFMHdcUiQwCHP85TSsKKJMpPfOf3WEecRRMFDvQ/3/58Cc0FQG6zVolY2V9HpdIFAIEhz0Wjsosii1pCpfMJxwulqyDH04nEUyfeMwd+2l35+3EEwUiibVmBdMikn4aM7Qrw4aJ/Pp7QUNkNIq9V6PJ6gl0d27Bvp1ddQchJgjMzM/YPHuE83Iz7MUaiR9qFyo1uK6jjPQNCWIkAIoSqXl0vj3W43AESofHGF0WmloZJs/It/kB77EcOYn3cDLLwxfsQ0Ys2Buv1HHUeMGqMsyyJoXi7600vX/qm7jbo8rKGB7d7t5wU2YjiElJsBALfctLZk7dfOI1RhPsX38+G/TBLbGsR9rt776Td1FBimmAHbfKxu9iD7FVARtBuJFwfdRljJOdTsRhFigoBqqiGayAGHW+J9ffyGIqxoATHEea5JGhMTW+OY9pWGAoC9e/dSSvV6fVZW1oV2o0cLX37BcxwvCBFEhbqmJmFXUh+o58gFDVIECCMsU5nDcX1DsYoK6Y67kNnsJpzS4OD/tBINCpYP3Fa17YTzuJE3yUjWEM3Wqs9u7nVLG/s/VeORFKbWngcAWWEnazwJB90RP88cwwAAIABJREFU4vp6CgWlp4Pf35xSjCQJoiw+m5esDXydLuiGBPT7SCAtXxifoesxK+wnqz2Hz8smEujVtRd9c5Wcv/71rz6fLy8v7+mnn27ZQFVvCFupq7mBRqMJG3dFy8qU02doVqb+21IPoagzLXHloNO06QHFp+FFAGDAKKPt8M4ljSVl9aWpYppNjG0dGRW64QNstzOOQ4RgUaAffURCHHRDoKF5WoMgsqNqe9sddIpBYIzBt0tDFCDVGFzaOEFU9DQHPXQovnG+Z+OGz8caN48SxmhmjnKfHGCJQml3ZI55UMGZo+6vmawhYmMdv/2wo89Qa/hSeHHFO3sqP/m6ViNwHr/0nVHp82OsthG2Ss7f//539Y+gUD+NRsPzfGPrYkkWi8XtdocWFVTWb1BWrERaLZIC6LZbyf33hd3caDRKkhS02ha5tGOsGWIZMi5lwhfVO4BBgAaWDXkiqs0ZsA2l63dUbyfA+RTvXfn3jE6OveqAy8Wa1yQRUj7cSH7y46AmNtEWcEpaQgBAYcrktClt735AhmFMnqXwjBNjRhm7NtcS65LNVzzkF7/4RXfbAADg8/laDq8QQjqdLowaC0J49OgPB3j2ZvpMlpQ6rfJV9Y7B1iEmPri8rFar9fv9oYuECMHBxs+qAuc4TmEo4Fd8AhGH24YDAM/zQjSFM9pC0Fs/xlgUxQjL+qIoUkpDp85L671/21Fq1vGiwAkE7TvnnNLPGiRoBwA8zyOEgvxg6FprUVHRX//611OnThUVFfE873a7W370+/3/+te/br/99rVr1+7YsSMQCNx0001BK6hBx8VxHCEkgnylRqORJCnodLDGRuWxH6EUOxJFrNfTwkI8diwKV5Mw7M8SC/GdoOMSBIExFrZYLUKowDxgdr85g/SDv5N7s0UIk4eiKsaF/VnONJ5Zc/Y/FtHCIU5DNLtrdl6XMYMgAjE4LkmSLvx0NTW0cA8SeIwx8/vxwhvxNcFF6NN1GbX+6lJ3qV/xu2X3fX3u13LBr2vqzxJ6lWKEBmUYmvyKWS8OTjfcPyHLIF64RCNXN0/QGj1sBA0AClO2SYeTjckAgCg18Ibjzm+ydFmX3bCZKm8VhwkAAsYAc1XeypgZ22nUuSW+RbUhnqA6t2TTt/Nx0lmloToIqzp/SSkpUWAVFahvn5jutHNJ0iSBvj3lH+sDdTy+eOw85hsCjhRNaqdaFwyaN5eUlSnvvU85wl0/J6zivp7Tf7fvvfVQ3+B0ZOmyo523+eTr2sNljTqRK6uT7CbhjtE9Zv4wPul5DhoBgha3A2OMQ9FNTdb4ahWmYCAIGGOKRYihdHJQlKv6MULoK0IobPJCr2S9X2YGDQIABMgvsyybPrSZOhfcU0JrUUY68/kvjsx9fpTbbZqc7YAxcLgDlLF2BJKlatIC1K8HHQAwYAEq2docLNFuEM+TR/4H33evyWDw83xrbzwY4XxTfr1SH23/FQ3+Td/UWrQ8xxGC2CdHa6f2s6WbE9PQ7afnOWiM8PVZcz+v2qrjdQpTGqXGwdYhUfUwO2v2F+e/kJkElHGYDLYOjpGpABC0rqUqnbcjXCHdyi+dnvfnz06LHPFLyk/m9LEawkSOqw46rhbTIoD0eu4XP5N/+X+g0VBJIg892I2iydFytLzptxtPCTwJSMr/zsobmRM8yRaZbH32OPu4LVVbAkqAR/zifos51Nabsby8fNWqVSaTyel0PvrooyaTCdoWt66C9HpsMkHrcs/txumVSQvtBIJRg0dOOOiO0PMcNADMzJiVakg93Xiao9y19rFtj9O8sHn6LD/176r+iiI2KXXKWPu4GNkJAEHTzRzHCYIQYQ6a53lZlsM2GJtrGH7PYIXXc7Jb5HDYNqqDDvrKEMdal3jqVH7ECK66Wp+X5+o5FUjdAeW3G0/ZjQLHcZIsvbD5zJ/vHGTWRmF/o+TacX57itYuKxQBO+46cU3ymDZKDhw+fHj06NEzZ8588803i4uLR40aBW2MW48xmVbRLytGRgCAAfPLSqY14Z07RI+5JVpCEBmfNmFS5uSmpvaoD+s43d1977lrwN2eJk9UiVLdizegbC92NMpOq0gn9bEKbRb7j3OQ2YyTk7FeDz2nJmG5w6cRMCA5oDmtUI/I0s7VeYdmRZEBeKrxlJbT81ggQBljB+r2z82c18ZguylTpixfvnz//v0NDQ233367+s/QuPX9+/e/+OKLAHDHHXfMmjWrZQ+EEL1e39pqJANW0nQugKUcQ07YOWh1eC6Kwc7XAvD0TUN+te4oTxRJpk8vHJyTdmHwFLpcn6At9EgH3SnoeJ2Ew6zOxyeSQv+1s/xwWaNW5N0+6XSNZ/HErK4p1tWDCMpZD/vWX1hYuHr16rS0NABYsmSJPco4ehWLllOY35X2T8xExjAz+qpkfihEoejCYR7gos9iEEUY9YYNGxYtWjRx4sR169Zt27Zt+vTpQQ3UYKTs7Ozvfe97AJCTkxMUEBU2xVzFI3veOfXWobqDjMHQpGE35S0KfWxoNBpKadgp7MFp2ifn9itzydlmMjj9YiAWQqjTQ6SuBq5eB92zOFvn3XPWadJwGCEtj7866Zg3JCXDknh/vISgnPWwb/1ut3vBggUzZszoyI5STOLQ/tVHPCIgkVGm15g/OP/GrNwoHHRvY2+P7NVwGgzEr/iuTR4bGiraGm63W522MhgMLpfrQochcet2u109TLfbHeSg1ajHsB52c/mmY45vTKJZluUTjuMf443f6XVzUBue5xVFCasx8sau8q3H67Wi4PH5rxuQfNe1F85FT1m4jjfa6aDbMlQJ+qfP52vjIkaCUPzyhUK3Kggjtf5sgpYE5ayHzVZ3u9379u07ePCg0WhcvHgxx3Eul2vVqlUAMGjQoHHjLlmQUKVEw2ZIDs/XlJ3lfYobI6ThhADFolYMGgVzHIcxDru5HvTPT3hhR9X2Bp8jQ5/5/9k77/CoqvSPv+fcMn2SzKQnpNMSIEgPCERAUREBQUAs4E8Qwb6rLCu6uyp2cCniKiyWpYlUsYD0Kr1IJwklJCSkJzOTabec3x8XhmFaEkiZwHyeJ8+TOfeeO+fM3HnvKe/7fXtH9ZFRtX3cDho06L///e+uXbtMJtNLL72Uk5Ozbt26yZMnz5kzZ9++fUqlcuTIkbW8lDtl1jLWEUmIqZ1Xd7gbaG8UXimXfbvws+NbTqZlnElM3wRp97XWB4YRt8MtGujaDFVcCktKSpp8E6P5kqBXWDhBIZPiu8BfUl41Hxzz64yMjIyMDL1ev3r16i1btgysKcutiTOxwLondtCw6iqulMaMSKDKbk7UJNXVZThEFjKy9Si73V7X9dmIiAhnv3WNRlOPfushshDOwFHXIwl7R/apfV286H/dzu2v1Opb5GW3PXOgeMjrBmtyNAQM9K1ziwa6NkMVl8LS0lKP5xQXF0uFzs5hUtyaD3kdiqIwxr79ySQJHh+HXKr786BeLaOmD2216XTZzpzyvikhD7UPY6jAAnQNeIxWz8/Pj4iIAAClUiktwmq12pdfflk66hzCfsWcv6Nkx6Hig7zIP538TNfQm0S1jBajhtaaeCMCUNDKguoCo8noYscVCgVN05JWokdYlnXXXGzaiLveEX1OVJ7IqjoHBBiK6R1eawMtiiEb1l2ig6QfrVmhjr98Jib4oQZr6V1B/a9Be9wKcCl0vNy+ffuWLVsA4MMPPwx2S9rmW3ynxhMUCoW3EC8pU4ZLdT/faE7QK57v0+Lvw/wp5ZWfcfbs2VWrVuXn53/wwQf9+vW7//77nWf90lLAsGHDvvzyS5VKJYria6+95u1SBMgnJz7SK0JDZCGiKC69sCRGGROtjHGcgACpGZVeqeN4jkJUua3OYR3+ydmqs2XW0mhVtCAIIginKk5GKGoX34gxAERo2SKDHSFC80LfdpGaOuZ1C+BC/Xx8HocqLoUKhcL9nHHjxo0bNw4AKioqKp28rBBCer2+qqrKm4VVKBQURflws9PpdEaj0eM+NQCwLOue1VuhUAQ2mps17iHszrP+lJQUaSngvffeq/FSVfZKGjEYro2IFZTycvVlZwOdoGpdZl3NWjUYEMPY7495oNHyWzYo5405KkZFUzQPPAAU1kUIgXphonL+ggRACGMi2pkh9zdYM+8WbtFA12ao4rJrYbPZ6mUTo14wcsaThhN2K9dK24rFAaMcwBUVrRbIjQwSAuHV9I14H0EkG4+JpPgxTnuWE4RYVcyAqAebopn1D4MZ4tBSQG5phsrKhU2bLBxHdewI7d1CcBkGRAEAAwIgIjSfyCO/5RY/wVoOVZwL5XJ5fYnv2Hnx7OUqQiAumFK5KbrVSL45/7OTn6gYtSjwZsH8QaePNLX2cArQEGRVZZ3OP2W32tN1HZM0XlWhGxMGM4/GDdmQv17OyDnB3l7XoU3QDVXbgkrrvguVQYoo2tiC5/nLJfzl1vZWEc0m6MkH9+g67S7aFaIIEUE02ozt45x0FErL7MNHQIjOzrJk8RI86QU8dIhzXWHuFygyCgHQNM2ZqsmOnWjE8MbuwJ1F83vEVVn45xedRAiAIIGIMx9vE6ery6ZKadnO3fNCFHZMG0lQEMOyu4p2PRw7qMHae7dAoM6KbhKnKk8tzF6glWlFQdxZtGNSm8mttK3rt223Rv+oAa1CW50qPRlC6zrruzg7afCii2QXEuq+f1FmLfs9a0O5qTxcHtYrvLec8gu3nCRN0hsdppw2naquNrXTdUjR3BAXFHfuRLoQkMkAY6TX8/+ezTobaFEEZ09QChPvu6MBaknzM9Df771i5QSGwkAIT8jC3fnvPtqytpU5Tvj6631dr+iqgRAzsXN0VISBq6q5YgDvVPPVa3PW7CjcJoji44kj67DvDwAAR8uOiES8YswnACpGfaTssJ8Y6AvGC7PPfM5ilhN5q2DtG5npONRCJ7fyRCUSGkAkxMIJiaF1c70w8+Z3//ynXqFHBJ2oOFFsKXkiaUw9d+BWiVfHt49uX17uuu1JTCbAThNWjIDnb6xjYEwPGyps33FNQtZgQB2bQR4MP6f5bWtcLDHTGAEAIKAwOlHgNYuHO+TCBXHX7j6nCY8BEAKTyWY2RioCkrW3xcYrvx8pPaSXh+pl+nWX156sOFGHyoRcLjpjsZkogmhEWXhzrjG3wVpaBwiQWadn6uWhWjYohA1Zl/fTZdONhtEYzRrVtktCUHGV9Z4W2hkj2siZuv2ULhjPM4jOM+VdNuVWc8Z9JXur7H40UDBzZjPvmmESp3eA60lziJ2jHn3UZZUZj30GZfYlV6/yBVeoKW/i9ICBvl2a3whaJaMIIdLeBSFQ1+x8BOC+42K1HB9PQCLBPdjkXuH3NkxL72ScPRS3F20PU4QCAMZYzWjyrJe7q1yDnqWchO5OMtYv/8PgSySOBhEQRQGNZYzc3XtSCslrzHDhSnsljRiHvJwcy66Yr8Spb6ihhmvYsRkxfx2cXlZWdguC/RX2ikquisEMIGITrHaR54lnj6NGhhf5NRdW7SreRQSxW1iPofHDFNT1FKDp6fi1V+3TP+KBnO85kHrgMVed36Ag+pWX0auv6PX6W/tYArjQ/Az0kI4RZ69W84IICDEY9WtTB61RlJRE9b5Xe+TomJ3sQ4cF3Do19JXnofkI2vkPNwVfEFF6ZIqiyIk8A6x7aAbDMFar1TV3VHm5/X+LY4dGFIaBQYkAhCBQxSpi3atjjN1zEjZoQIeG1ghOFpMjvEtSK14Q912sqjpj0NJCRnLwtVldrblu+on0x1KsCILvKo3DnuLdB0sP6uV6nudPVZ7UsppBsYOvHROES/uOa4AmFBW3Z+PMsHtQcEi7GP8Vs70DaH4GumtC0FsPJ/9xwSASuCdW1SvFQy44rzAMfv55WLUaG43RoaHcIw9DwPH5tnkq+Znll37QsBq7yBk5Qyddp1pWJBWVQFMZZ8S9begIAyGCaNJz90b4xYSGxvTopDErc1coKLld4DrpO7cOauM4KhLy9c783TkVZrugZPHh3KpX+sfXSVxQL9MHsyEiCEa7UcNoCCEKXP8pFm+BAvMVhyoIg5mNVzY6DLSwfUfwnu1VmmAEgIh6wLkdR/LuCRjoBqX5GWgA6BSn7ZoSUmQtQpxYV8lNFBZKvfC8x0CVALdG19BuUZqoc4ZziEOdQjvVPoUYahELNmtMmfiP5fy5FhRUVLWb8m6Q32wJZIT1TAtPu1h1UU4ULbUtneNQrlTat50rIwAMhe0C2XK27MH2YW0i6pDBOkXbsqMu/azxnJbRWHlrr4jeasYvLJ2CVhKeJ/ia6L5zOgty+TLPyiSRVIJQhzP7870EggWoL5qlgc4353124BMZJecFvndE76Hxj9UyFUWABiIlqGXb0FSjsQ4btgAALEt/8QX/4ktBpUz38zx+7z0cndwwDbxFolUxkYool1TfAHCptNouiI40vhRC54vNdTLQDGZGJo4+azlTWFUQrYhtX8e0bQ0EOX+h++pjW9MvqywChISaZaRX+A1RMxwdJRN5o8hQGBEAICQ9oQHzeQaAZmqgPz3xiV6u50VejmV7S/YlapI66u5p6kYFuBVwuzTmvwvwmTPKtLTqpMSmbo5rDklJ8sVdk6tFqMbZDVoEiA9VuZ+GMfYm6UUInLhsvlKVpGYSU6NCWKbp5ZKJKHL/91xoRMS7p6lz8YzdkNvupek6p31R3K+f+uif1KatdoIZi6Xg3Y9dk8hwnLDuZzh/waBRk8xMaNvG9T0C1JHmZ6B5kQci5pkuI8CEEDWjvGq52oTtIYTMnz+/oqLCbre/+eabTStF1uwQflguLPwGK5UGjoNBD1OTJ8HNa1akqIhs3WYhBHfuDK1bNVU7XUgKVfRupT9y2WCx80qW6pqgTYuuQ74rAFhztHDt0asaOWPnhVNXjM9nxsubPIdZSQkwLGCssUL3HMIbMZV1BZKchvYMQ015Q/XIoFCBR23aaN1SXgn/WySuXQsqtQ1j7seVzDcLUGLTP3SbNc3PQNOYNglmFjMACAipFswmro6ZCUvLhKKrYkpLkNXDDuHRo0c1Gs3EiRNzc3O9aTMF8AiprBTmL0Dh4ZK6IL/uZ9y/H2rjNOwqKODGPIW0WitFke++p6e8iQb0b9AmufiZyGQyURRdnU8AAGBin9hNp0ureUpOCQ+0DUVE4DhXNwyapj1W5wSy/MCVUDVLYSSj8dHLlYfOq7sn1WW7uy5IGQhdSuRyucvQnkRFGUQBYXxNf0MQ5BERjLtgZPduDMMQQqib73YiilWLl+CoKAAAjCm9jjlyVNbOTa8jQF3wFwMtObo6XvrQg+ZFXkUrLbwVI0yAyCmlRqbxOIv0qAfN/7TONvNzLJfZbHbmtVfpYUMdh25NDzo7O9tsNs+bNw9j/Nxzz0mF7733XnZ2NsMw8+fPdz5Zkjl1F1Z1QFEUwzDu6Tid8VHd25TcPyElpcA4PSNZlhSXOBtoYeMmQgDyrxAESKMRduykG9hA1x6tnB7eKTI0NPQWHH7NdkHKjyMSAAAKIZOtAR/tgiC4pLyiadpqtbqnvEL/9yy/aLGNVSCO47p1Y9q1s3sK11ar1e7XJKJICJE0ezHGokhsNht/vTpFUYHJ5S3gLwa69tCYxoBj1TF2kUMEESKGyWub91MsLrHN/ByHhyOEEEK2f8+iemagiNrJ3XqB5/mIiIjBgwf/9NNP27ZtkzJ0jBgxwmQyIYRcXHopilIqlT4U3CUVeY/J4gAAIaTVan1Ul8vlCCGXX05QUFDdutRY4NgYsFodYUdgtqCkm5SSyPGTqLoaaBohIGYz+X0jvP9u07TVEybedOjSwdKq0iRNciuth+WXKntVbkUusZNkTTKFbqwyBynotBj1sctGMycQAgqWah3pFy4c5Ikn1tv1xpNnq4NCD8WkjsiqejAttJZ1EcbUU08KP61DKhWIIqmoQN271VwtgE/8xUDzPC8IN2aI0i+W53mPY5NJbV766tyXSlphF7iOuo4dgtM9TkJ5nndZcyCXcxErk66JEEIyOXfxEtJdS1rsI4GLD+Lj4yXVApVK5UijmZqaKv3jIq5PCCGEeGythCiK3ubUcP1j8VGdYRiEkI8TGggzb84z5Ak2IVGTWAePGoWC/vQj4W9/JzKZyHH0G39FsTE3ncAy4LgBCEAdg0EaFCNnnHZkarA8mAiwuXDTkBZDe0fcJEKSY8yed3auklZyAt8+pMOoxNHOwrZHLxscncFABNEvgu5OFph+oWM1PRIoilLz/OL9Bf1a69haL45TY58BrRYuXmLVKtS3LyT7l09Oc8RfDHSdSNGkPJow5EzlGTnI+kRm0qi2vUDR0WC/kYqY2GwQfbtetxkZGXPnzv3ss89sNpsksnq3cdmUO/P0DCWt5EW+o+6exxNG1l5iG3fvjn9fT5WVqePjq9yeK+iejujgQVJRAQA4JAT6ZtZvy2+H4xV/ahiNjJLzhNdgzcpLK+6N6O38cJpzeraG1XKiHYCcrjh5UH2g1/UYnCoLz9I4RMlgjAkhVk7IKTHXVbSgIag0884hkTRCBisfqq71Vg3DUCMfRwgFBUK964lmaaB/v7JhT8luBa0QBH7mqU+npf8jTFa7VY6wMDzpBeE/X4NCLtps1MQJKOp2DTRFUT4yJ90N7CraGSILEYhAAXWy4mScKs5lLFkDMhmOj0cqFTil1JHADz8kfPkfFB2FKIYYqqghj9Rnu28PM2/GcGPVAiEQRMEhSSoSUSBCkfkqhSgCRBCFIusNXyMlS0lDZoQQIYQXSJDCL7YNEkMVVk5QsBQAEAJ2QdSp/KJhdy3Nz0ALdvvG3J9VVraaFRi1Qk1rTpafuC+qXy2rUyOG454ZdFGxsmWKUe0XC3/Nnb0l+6yCGSNMCFFSyhJLcX1dGWk07KbfyaHDMkKgfXu7tm6ubLdJlb3q56yftuRv7qrv3iOsR7I2xflokjppg/CbHOQAwItCz/BezoLRGGFO5GlMASBEgCBs4m/sHDAUGtMtesXhq2o52Hjxnjhtemyjds0b8XrF2J4xC3dfYShs54UPhrZyj9S18WJegRGBGK3BdY3jDVBXPBtok8m0fv368vJyxyTlhRdeaMRWeYVwvOmTmWJXMzKYaCJWKoMUkSEi1E0sHUVHUwkJWKGAQKh3faCX6a9a7AghAGIWLM6WqJYUmguzSs5aLNYOunTXyRDLop4ZMo2G4zi4WSypofkl/+cs4zm9PDTbmHWwbP87Hf6ll99Q5krWpjweP+qH3GWEkF7hvR6Medi5rkhEGWYsghUhBIQoaVXIzRHwD7cPSwpTXK1GCkro1ELjPzna72utz2wThhglsZnczW+x0f768jNKlhYBOsdpxvWMUdY9pVGA2uPZQA8ePDgqKio8PLyRW1Mj5MgRYdvOzjj4VDuasaOg6qoSG+WciyhA41NuKxNAQAQDIUpaoaJdRX+IKBLvGdMvGC/MPTtLwwaJgvBz3k9/SXszThXXwE2uGQNnOFx2MESmAwAESEGpLpjOOxtoAOgRnvFI6uDi0mLspquOEe4d0fdk1Ukp1YyFtySpXVN5tYlUZ4SE+Eht3FQwFNaq2XJPnkS/nSjRqVkpxv3kFeOm02VDOvqdlbiT8Gygo6OjlyxZ0shNqQ2oslKgqIy9dpmNVAYjud1WYeoTc29MzTUDNBg9wnrkmHIEkRcJEUGIUEQ6DhGOI9//j1+8tAwh6ukn4emnkJuP9sHS/cFMCIUpgeAgNnh/yT5/MNAMYkSnPS4CxNteNIUoj7thA2MeRBTsLdoriMKQuKFpIc0mZCO3zGIvF4Iozn0BetOZ0rDre4YMjYqNNrfaAeoTz/dccHCwxWLxR8fyVi0VdisFTI/9dkSI1lCqmO0X6pR3M70j+x44dUBJKziRv0fXqVtYd8chsvYnfsVKRFMIY/7HFZRGgx4f4VKdFwVHPBEGzImN7SPoEQWt6BuReaDsgIKWcyJn5qvbBNVNWSKIDXqm9bgn2zxtrbY6K+H5M4TA0gMFm8+Wy2hcbeVfui/OJb5xWLhAbV6ntFtyY1sfjW8frvEVURXg9vFsoLOzsxMSElJTUx05LDZv3tyIrfIKSkyU/e2v4R98bCWYEvgtr33wSPpthZncnYiiuHbt2jVr1ixatAgAzGbz7NmzKYqiKOr111+XwhEPHDiwaNGiyMhIAHj++efDwrz6ycSp4mb1nJ1vyRdsQrw6wdnVTNy/n5SUAMWICESeQ/v3YzcDHaGIOG04KakhWwVrtDLa+Sg5c0bcuLkaCO7YEXrfCz6jPWvTL4+FHhnc4tEEXcLFqosqpMoI76lwW7qpDTJKZkeew478kLNXq7eeLQtWMBRFySk0e2vu9/Fah2gfKSx8ZMZfC7CKUHT7E3taDhzebeSEpm3wHY9nA/33v//db8OFmYcfou+/X11tQaFhj/ONumt0x1BVVdW6devo6GumcOPGjT179uzbt+/KlSv37t3bq1cvAKiurh4yZMiAAQNqc0EFrUzVpXmQGy0owDRDAAABphkoKHCvmxl1n5VYNxdsIiJ5IOaBe8N7Ow6RrGxu8ssoNJRnaHHjJlxSgkcMv81+eSz0CI3p3lF9ekXc6y43eqdSZLTdCEtBwFK4wsw5hslkzx+UThfLyjgRABS9tqxg357YVE29S/BsoHv27Llo0aJDhw4hhDIyMp588slGbpZvEEMro8IpijLVUSUpgERISEhIyA2ngkuXLnXp0gUAkpKSTp8+7TDQhw8fPnbsmEajee6556Qwy7/85S9WqzUhIeH11193viDGGCHkHlNuSEy2nc1CNAUECC+wiclaT3HnT4U8/XT7Z3ied1kKMB86JIaHIZpGCOHgYHHef0Ke+7/b7Jd7YVVV1bx58wAgPT29f/+btD4kVSDfIi1qtdp9DZoQ+OXPwoU7jyOAoZ1iRnWPlbsJihICVRZeLpPCqAkLAAAgAElEQVTL5T4u36hEB8msnOhoKieIetWNKBVitQJGCIGUIVdAAKIIjZgo8i7Es4GePHmyxWLp3bs3APz000+HDh2aM2dO4zYsQNPgyOuakZGRkZGh1+tXr169ZcsWSWNk8ODBgiBotVqX9IAMw0j6Oy5XQxnd0eFDQAhGSARAGd3dz4Hr4mp2m+tSAG+1Sh4gUsQdIcS5ep0mee75ah2FFEXFxMQAQEhIiLPegHSIEOJS6IIgCO4Gek922ZK9uRFaOQBsOV3EUDCqW6zzCZdKzWuPFO47X86J4sS+CQ+084uVulYRqn5tdD8fL8aARSL+7cFkyimwEHfqJHz3PdLrAQCsNvzYsIB1bmg8G+iLFy9u3bpV+n/SpEn9+tUQBlJWVvbll1/KZDKFQvHSSy9Jez5btmzZt28fABQXFw8cODA0NLSWa5p3M+cqz+VWXdJgbWpQaqPtLCUnJ+fk5MTGxmZnZyddlyvKz8+PiIiA6/pNUuF9990n/eOiMXJNfMrmtqf/0INUVRU//78EY3biBPGhBz2cA8AwDMuy7ofEzp3EpcuQXg8YC1Yz9exY53M0mhqCOzz2y71QrVaPHTvWY78oihJF0UV8yhmVSmWxWNwN9PHLFSoGSzpQLIWWH8h/tP0NFz1C4C/LjuvVjE7NiqK4cGdubBCTGKpwXNN3vxoOk03YcLJUp2QxxhwvnCowdo7XOo6i1Lb0O2/z//yniCj2yTFk1Mimaufdg2cDbbPZBEGQdggFQfA9ggCA9evXP/jgg127dl2yZMnx48fT09MBoH///v379xcE4ZNPPunXr9/evXtrv6Z5d7LhyvqtVzfLsNwu2O7Rdx6VOLqBUnmdPXt21apV+fn5H3zwQb9+/e6///45c+bs27dPqVSOHDkyJydn3bp1w4YN+/LLL1UqlSiKtx7LTlH4yTHC6GHHqo8XGgojyg50Ce3qHHHnG5yezrz7r5wjG9cml57XMIjeM6m8Ywddh9vp1+TJk50Lb7FfNaFgsEiu6dcRIL1TbopSMVh5ikKOMDwFiy+UmB0Gugk5XWhSsZSCpSiK4inYfLZseOdIlVMoCu7bh92+zaPcaICGwPNPZcCAAb169crMzASAbdu2PfJIDRoIMpnMdH09OC8vTzLQEhs3buzdu7dcLve4pvndd99t2bIFAD788MMoN1kMHzqZ0rKgb2VkjUbjTa7Foy6z6D2YohEwcaYNV9aHKkIJITSiD5cd6qrv6hJeXF+0adNm2rRpziVTpkxx/J+SkiKpPr333nu3/16cyK289GOWMYsCyipY88x5jyfUwSxyGV1moG8IAEaUQIR5Z+d+1PkTnUzn8eRa9su5sIHomRy87uQVTfhxTnNQNLQOi+gBcMO5W8liZ/k6XiBBijqILrjMTR9++GGoi9eND+y86LzejgA4nkAg8X3T4fm2ePfddzMzM/ft24cx/uyzz/r0qUH7ZtCgQQsXLjxx4gQAhIbeEJAlhOzevXv69OngZU0zMzNTUuZUKBTOMsc1Ch/LZDKMsY9nuEajsVgs3sb+0pza5foelykbDSNnpNG1VMoAQCPKwBnqehELbyk0F1A8FSb3l/iuC8YLf5YfJ0jkRZ5B9B/Fe+6Pvt8l83eptXRf+V6z2ZwW3M7F+GYZzglEoDEDABiAI8Kh0oMPxAxs1D7UnRY6xaBel/aXnlEgnSyidI/xh86myAR1gnSUofDYjJil+wvUCrBzQuf4oPQWWp/XuwmXualUWCevG2+0jlCZbAJGGHhCiNAzOSRY2fzkeu4kXD/90aNH//DDD85D5l27dn366ae//PKLj6sYDIahQ4e2aNFi7ty5LVu2dJRnZ2fHxcVJS9Ie1zQTEhISEhIAoKKiwlnF2LceNFzXbvYtfOyuB+18fYZhXKrfmh50fRGmCLMKtlJLqYkzARAFpYxT1y2g7oLxwpwzs2Q0y/F874g+Q+KG+kN8RDVvrLCX05hGABZCKERZBKvzzOWyKXfm6ZlBMo0giCsv/Til/dQY5Y39NAqw8y2AAGjUDDamCJD9FTtC1aEIIUEQWKI6W3XGYaAB4IHU0OQwZWE1KCixQ7TyFrQ4HHNT6aX7DDUrK2vlypUAkJmZ2alTJ+e6Un4T9xGJSgV9W4dvPHXVxhOWxh0TdGpPgmLSnjDlc4ewCVfS7yRcTdKkSZMAoK5rjjRNz507V61WR0dHJyUlSYt9f/nLX/Ly8hxOqVqtth7WNAEAgBC4VGomCOtlosOLvtlDgACYOCNCiBAgIFJ1tESzTn8eqghFgEQs7i3Zm6JNaR/idbm20SAEEAACBEAwAgKEvvmu21e6VyeTQr2FYDZkb/EfI5zWQFpqW9MULYoCxlggIoWormHNIE+Hy+YBAcK4rbwnhym7tLpFLQ7nuamE+wxVoVBI3ilKpdJlKim5prjPL09dMey/UNZCp8QYC6IwZ9P5e1N0tNtPTMq1WKNzi/NL9+RzAWqD603Tt29fAHBMlERRNJvNHp+izoSGhn7wwQeOl47FPmev0sTExHpZ0zTbhaU7Lp49d8WgCu6YGDKyS2QdBMX9mFJbqYKWR6oiRFEgBKyCNbf6sstSgA/soh0j7LALMswUWYra17Z2AyKjZEFssACCyW5U02pArspCnMA7mo0Rtgk3OdvRmH634/ur81aeKDvRNrjNsLhhGqYOqwFNyOAWj266ulFNqwUiGOzGDiHpNdepNc5zUwn3GWqLFi0k75Tq6mqXxUCWZe12u3tmtculRoZC0rSViITB6EqZwT2em6IoH5uECCGVSmW1Wp2nv1Kyt1vu712L50n9V199Zbfbn3/++YyMjIKCgqlTp7oEJjQhp7/+YdjSrwnFUDy3YOTffpPTz/SIrrmaf5BfnX+m6JTZbEnXp8cqWzgfUtJKQRQQIIwokYgiERVUHbb1WcyKRCRAJGNnJ3yovLbZ5BqURE0iL/J6hV7H6jiBbxXUMlR2U8PCFGGnq04psAIAbKI1SuG6VxypiPxb579zHOfRh9pv6R89IFwTft6Qg3jULaxH/e4KOM9N69HrJkLD2vhrgSoEiF0QdUo/jSi+S0AeF3m7d+++a9euNWvWbN++/YsvvsjMzNy1a1eDtqOiosIlJ6HeU9YcMTunavwLFTKtNHQIqip99bnZiybc435BnU5nMBi8TR5ZllUoFFU360ErFIp6Xzhz9qu9YLww98ysIFmwKIpGu2Fy25da3pxpdHXuqoNlB+SUzMrbUoPTnkgc4+KRJn0sLr66Ds5Vnf0q60s5VnCivVtYj+HxI6RFEudt24boFwDI5XKGYTyEegMAQIG54GDVga15WzMj+t4X1T+Yvcl5hhO5X6/8vOPqDkLEvhGZg+OGuOvGaTQadwPdCP1Sq9XSJNLb+b6zeisUCpqmvX0sABDiSW603vvlPoIOCgqyWCzuI2hCYMXhq7+eKJExlNnGvT4goXO8B08q3252Hn+8FEU5B3kGqCWeR9BKpZJl2fXr1z/11FOSrEwjN8srF84TuZyQa+NEnmIGRzabvGeHSg8Gs9cWW4NkIYdKD7kY6KFxw9qGtb1syNXioM6hXWrvLyzROqjNjJ7/vmy8zIh0jDK2gXyo64zNFnW2aIw6bUSXRzlPMdMMZh5PGjUm9SmDwVD79JJ3AMVG25nSUjniE3QyP1mhRQhGdonMbBNqJUwww2nld9HX4Z94kbilqNdff33Pnj3z58/fv39/42eJ9gbSh6oQsdKU2S4AAizwfbs3iKdwfeE8JMc0oihKcsEGAIqm3AfsPXW9ekRl+HA+AZ/74wzD6FV6//m+oKTEPmJkQZx2b0f5vjQ2M37gfcmPuIygJViKvaus874LlV9uv6yU0Rwv9m4ZMjYjxk9sNABEB8u1Wq2Uqz5A0+L5J7FkyZJVq1b9+uuvLMvm5+cvXLiwkZvlDXRPR6r/faFbt/EyFpnN+I3XZOF+vWXk7GodJYs+ZD+sZlWiKFoEazgb7u7oXW4vv1yVqwZNlNJDNluBCDmm7JKKkgR1oobxEOisVCoRQi6XbUJdb/7HFZa4sM+fUSjthBVgf8EuEys8lfyMv4zumwiRkDlbc8PVLEVTIiPuzin3n7SEAfwKzwY6IiJi8uTJACCK4sCBA2v04mg8KIr+61/EPn2URiPdtq01ptlsDwJARlhPs2D+Ne8XQsQHYx521tWU2Fe898fcH2SU3M7b+0X1H9TipgBOq2BdcWn5acMpIoKFt7ya+nqSxjWLkt9hNF2IokUMZWqEAAi27S/e/2Dsw7XNwn6HYrAIDHXjIcVQuMToF5rRhOPJls32nPPmuDjSpzfyHqkboHFofl4cgDHu3o1RKCiKgmalN4oRfqjFwyNTR1VUVLgftfCWZReXhinDCCFyLN96dUsHXXoL1Q1PjwOl+89UnlXLNDzPyyn53pI//N9AI11IqZVYGaBFIIQghC2ixcpZoe6JOKQAy4ZGJrvRsjKT7cCZEoygQ4xa4301ViaTedsktBLrxfKLtEgnaZOcJw1hLMuLBF3HxomJ4Rrnt24qhPnzyfoNSKUy8wI/83Pmt19QIN6kSfF823377beSF0ePHj0kLw4/MtB3KBX2CgbfcGliMVtqLXE20OW2ch74UkuJKBIa0/tL9j2Z9FRTtLQO4JGPa388T1AhAYIoLNKUDFEI1219I786f0/e7n1X/xBE8ZXU11I0Dbjr4HAlulhq/vuqM1oFKxLRZBVmjU6LDPJsQD3KjQLAeUPOv0/OVDBKQRDu0d8zOnmM8/f7r0dbv7suS85Sdl4Y3imqdYRrLEkTYKomq9dAWBgghBQM0mjhyFHoHUgp15R4DsNzeHEMHz7cv7w47lz0cj0n3pjn2kV7uOImjWAKqHJrqYW32gSrkTN6XKT2N1BwcNKYV9SUSqMIksk0WkZLYzpCXgftY07kPj35cVblOZ1Mr5Ppvzgz+xYkSmoPf53fTxbp1CxLYzlDhSjp308W8Z5wruLCzBMzdHK9ilapaNXx8uP7ru51PtoyTL5wbLtPR3ecN6b9kPQwl2s2CcRiuSmjGEakqfXqli5dCgA7duwYPXp007akqfBsoB1eHH369PErL447GBmWPdvyOUmLo9JWMSj2kRjlTdnKCRAlrRKIIBBBJGJhtYf0UX5ImDr6iZZPCwgxFGMX7S+1fcV5IFkjRZYiFrPS+gACkFGKPNPlBmvsDbaeLSs32S+VVl8sMVeaeaO1bsNbkYgIkGNZg8FMmb3M5RwZjZPD1SFumbObChSqR/dlAi8AABBCjCbUvikzkZvN5pkzZwJA3759f/jhhyZsSRPSzLw47mw66u6Z1fueAuMVFaiDWNcAAZZig5hgvULH8TyN6Aq7h4Vs/6RHWEZmYmZh1VUN0tTVuVtBKURyQwZWFIVbS95aV5LDVCevmGiMAMBo443Wug1sMcLdQrudN+UgRAGAXbRFyCMbpKH1CELUc/8nKpaJP/3MPDoY3sxEbgrAjcnEiROzs7PHjh379NNPz5o165tvvnnqqac4jjOZTM8999wLL7xQXFzsUrJhw4avvvpq7dq1ADB+/PjMzMynnnrq008//e2331iWTUxMnDNnjj+s9dcezyPo4OBghmGk1MgJCQmJiYkN3Q65XK5yQgrbVyqVKi+wLEvTtLejKpUKISRFBnpELpdTFOVS6A8rORpWkxyU4m6dAaBDSAcjb8CIYjBj5quHxA1t/OY5oG8GY4wxpr2jYJRRqig5K/d4VHIP93goXB3eK/Leaq5aIIJNsHYK7ZQcnCwdatAORgSxKhnmRcKLRCOjtIo63xuZUfeV2cqMdqOBM3QJ7dZJ36nmOk0NioigXn9NsXuHdvp7qGPHpm3MtGnTkpKSvv/+e+nlqlWr0tLStm3btnv3bimxjnuJOzt37ty+ffv27ds3btyIMf7f//7XeB2oDzzf5S+++CLDMAcPHnz//fe3bNkyZ84cx8fUQFitVpdQb4VCYTabfQTRUhTlWzDaYrH4DvX2H3/h2hCtjPlruzdPmI4bqquSNS27hHZpwsa4PMykpLE+nnBSeI63E3xXH5UyOi0sLd+Yr2N1nUO7sFRjaGPJaaxTMXq1DCEQBNE5q0gtiVHGfnHvf4psRcRO7nK3wnqhf//+//73v6uqqh588EFJdNO9xJ3t27efPn1ayj1iMpkaQh6gQfGak3DLli1Sr6ZMmSL9E6DJiVPF3RN3jzctjsbEZcDiNSfhdRQKBcdx3jYzvOUkdNAyqJUSK1VETXhi46+dVmNOwtuhX2v9tnPlQQqGEKiycANSb8XCshSbqE30ocURoPa0atXq5MmTO3bs+PHHHz/55JODBw+6lzjL+0mDM5lMNmLEiBkzZjRdw28LzwbaeeBpsVh8DFQDBGhoDpTu/+HiMhazdsH2SItH+0X1r7nObZMUppw1sm1WGYcRpIbL6pSSSqLYaDt2tlIg0DpMluQH+QZrCSksFC5e4hIToEkXoAEAY+z8zF61alVsbOz999/fr1+/6Ohos9n8+++/u5Rotdri4mIAEATh4MGDAwYMuPfeeydMmDB9+nS5XD5jxoz77ruvc+fOTdenOuP5ths4cOCgQYMuXbr0xhtv/Prrr46cxwECNDLVfPXS84tDlWGEEAWl+DX/59TgtEhFY2y4hWnYxCidbzU7bxRU2t5ceTZEJaMwLKu2vzYgoVOcX2sSSIibNgsff4KUykqOh0cexpMnIU/6Vo2DJHjdp0+ff/zjHwDQtm3bCRMmSImQ3nzzTbVa7V7SrVu34ODg4cOH63S61NRUQkivXr2eeeaZvn37yuXyuLi4l19+uam6c2t4NtBvvfXW9u3bd+zYIZfL//vf//bq1auRmxUggES5rZx2jt9BbIm1uHEM9O2w+3xFkJK28gIAaOT0wUuVzcBAc5zwwYcQGQkIYYrif/kN9+oJ93jQ8m0c5HL56dOnpf+lFCJ79uxxPiE1NdWlhKKo3377zeU6U6dOnTp1akO2tAHxbKC/+eab//u//wssPQdockLYEJ7cWHCziXb/yYfrgzKT/UqFjcYIgPAEyqq5iX3qlmGyHpEcllxKJAlv50KxoIBjWWnDFgCwXM6WV7CeQr0lxxvsc3AdyJ9SL3g20IsWLXrssceCA1IpAZoaNaMenfDEj5eXyzBrE+wPxw5qnOGzSMjO7IoLZVcRQGqEvHtS3X4LFruIECAEAIgCEhvSlL637uL6NE1brVZXwX6VCmw2URAQxhRFCRazPSqK87T/VKNgv7sLlpSmth46c5fh2UDL5fKkpKS0tDSHU/fmzZsbsVW+IKIIx4/zBiO0bQNhzcx7qdxe/kvWL1azuXdkX71M735Cvikv15CrBk2iJtFdk9MqWldlrSgxlHQL6xGn8jAi23/1j52Fe4KYoJHxIxvHHa1mjCbxyBGbWg1paSC/FTvVIzyjS2zXfEOeBmn0sjq4SZWVlX355ZcymUyhULz00kvSwPDAgQOLFi2KjIwEgOeffz7Myy20I6t88f6CIDkLCHaeLaYp5DG3iDeClXSQgqkw2wGQVk4VVHp1UPEjaJr67FP+r28ChXlCqAnjUWrbpm7T3Y5nAz1lyhSX6Y+/IIrCrDnixo2iTE7M1eiVl6nBj9Rcyz/Irsr++MR0jGgAsi5/3d/a/a110E0/gB1Xt/+cv05Gyey8PSO857D4x5xtdIW94q8HXscIA6D1V357OmVcZkSmc/Wvsr7aX7wXASIgHije+2HXT9RUE+vEkisF3JgnkUZrorBQWcksXYJuSSE2RBaiDlbXNSfh+vXrH3zwwa5duy5ZsuT48ePp6ekAUF1dPWTIEEdaZG9kF5k1Mlr6+LVK+s98Y50MdKRWXmnmKIwQIKNFeCCtmbjfFhcThsYyGSJAiktAFKHpNgkDgDcD3blz52+++ebkyZMIoY4dO44bN65xW+UV8egxsmkTCg4GjJFKKcz8N/XA/dBMYjdX5q6gMYMQBkIQ4BW5K9/u8I7jqJk3r7m8OlQRSghhEftH8Z5O+s4J6gTHCSsuLacwRSEKCCGAtxZscTHQ+4v3AgIEgAg28aaF5xa+mvpqY3XOM8KqVSg8HCgKURSWycRVq6hXGm8bXSaTma4L0ubl5TkM9OHDh48dO6bRaJ577jmapisqKj755BMA6Nq16yOPXHvesyxLYUoy0BSmZTKZN7drz2rpdIVWQRutPAGiVTIsy3isjjGW0rzefmfrAY7jZ8zEjk3CTZtJ3z6oczMIgLyD8WygR48enZSU1LNnT0EQduzYsWnTJim8vekpKQbWaebO0FBWBtHNQ7bfwlscjvQYkJ2/aQWw0l7pnPOJoZgKe0UCJDhKKmyV+HpoPgLIr85zrl5uL5cue+N8e0k9d+AWMFvAER9IUcTcqOpogwYNWrhw4YkTJ8ApE2tGRkZGRoZer1+9evWWLVsGDhwok8m6desGAAkJCY5QmrZRql3nSoJVLCGkvNp+TwuNxygbmUzG87x7vGupwRaqZkM1MgBAADvOlbzc34NeAsMwPM+7CI02lVgEKS0F53kzy4hFRU2vfnB349lAa7XaL774Qvp/woQJ/fs3RmhAbcDJybzZjKTdBkLAbofwZrCnL6GX665aCzCiAEAEMUh205AqTB5mF+0OWXqbYI1W3PTgiVfFZRvP0cAAAEEkXh3vfFTH6hAQcBhoAsnaps/WiMLDiM12bYpjs6HwRt0zMBgMQ4cObdGixdy5c1u2bCkV5ufnR0REAIBSqZQCspRK5WOPPSYddURpdotTC/fGZJXYEELp0YrUCLnHBRa1Wm21Wt0NdJSW2WMXVDIaIWTnuAdSQz1WVygUNpvNRZCgqRIYofBwsNuBEGlzk1gsOCW5SVoicWsRs80umNs3ng20tAkrOcpUVla2aNHC42kOarMbo1KpZs+eLalLv/766759dLzSsiU98Xl+3n8IyxCbjZkzCxpYNKeWbNu27bfffvvss898nPNM0rhZZ/6db85DADGKmHEpzzkfZTAzqfXkr7O/YhDDCfbHE0dF3KwHPSJh5MXqiznGHBAhShX1RNITLtcflfTkDxeWSv9HKiPHJD1dHz27LaiRI0lRsbhlq4gxNaA/GjmyMd+dpum5c+eq1ero6OikpKScnJx169YNGzbsyy+/lBYWXnvtNW91EYKeySEPpKtvLVDlvta6/ArrjqxyjFCXeO0j7ZuD1aAoZs4s7tXXQKbgeY5+YSJq1armWgEaEuRRjahv374nT57s1KkTz/PHjh1r3769VqsFgF9++cXjVRYvXty6dWtpN6Zdu3bSYt+2bdsEQXDsxqxduzYkJKRv374rV66MiopyCX6pqKhwEUvS6/VlZWUem0eMRrnZTLdoUW33mslNp9MZDAbfYklVVVXOhZL6nbcL+qCysvLbb78tLy9///33XQ65jAIwjYv5q1VVxsSgROxJSlCmlBVVF8kEmYL24JOEEDLSxvzS/BRNikfdTpEWj5Yf1qHQRM2NCXVDjClc+iU51XoWnSCEXL2qDQqyarWcl6+DYRiVSlVZWent7TQaDcdxLoPQRuiXWl2DgQ4NDfV2lwKAWaAIwkrEecvYHRISYjQaXe7Seu9XdXW1i0tcUFCQxWJxdbOT4DhcVBSUkFjBe1WBr9HNzv3HS1FUSEhInZodGEGDtxH0tGnT6jTCrc1uzKVLl7p06QIASUlJp0+flgz02bNn8/PzASA9PV0ulzsuKI3BWdaLo5hMxrIsxljmPVU9QohhGG8CaZJCpsti3y0O6gG+//77p59+evbs2Y6SlStXFhYWUhT17LPPurxFa7atVeXVG4Fl2Xgm3ttzBSGkl+sjWK8ZSRiG6a++378SLCCEoqKo4GC4+xRd9GqWpmmj0Z++jhphGJyQgLQaKC9v6qYE8GKgMzIynDedCwoKon1uxNVmN8b5fIfl3bdvn3Toww8/dH/A+vBsl4ypjxMQQnK53NvQRlK/dKl+a5vpu3fvbtWq1R323A4QIIA/4NlAd+nSZf78+X379gWAJUuW/POf/8zJyfFxldrsxiQnJ+fk5MTGxmZnZyclXUtHPW7cOMmHr6KiwnmGK82SqqqqfOtBm7xn9dbpdO6TRwfelji8jtm9c+jQIQA4d+7c5cuXf//994EDBwLAiBEjpKMu0zRJad6HOiDGmOd5H5NHuVzuo7pSqUQINS+d6wAB6oDNRrKygWVQSgr4QYaNhsazgV67du3kyZPT09MvX77Msuwff/xRw1VqsRuDEJozZ86+ffuUSuVIt80iSVDY+SUhBHlfwXCc5u2QZNm9nVDL69cGx0bTO++8I1lnHy2s8X3rpdn10q9beIvbbJgf9sv31yGd4LtVNX7dLnd+A+HeL9/vezu3mce7tF76eC3uSakEQlCf3vQrr4C65k2jRYsWfffdd3K53GKxvP/++96k344dO7Z9+3Yf+8ZNgudNQgDYs2fPyJEj1Wr1zz//3CqwmRsgQIDGxX2TkP98Ftm799rA2WqjHh+Onxzjco7LYuPhw4f/9re//frrrzKZrKSk5Isvvnj55ZdfeOGF4OBgg8Hw7bffLl68eOvWrS1btrx06dLFixc//vjj2bNn63Q6Qsi8efOmT5+enp7+wAMPPProoxs2bGh8F3XPBnrChAlZWVnffPNNWVnZxIkThw8f/vbbbzdyywIECHA3426g7Zn9UeS1HXJCCO7ciZ7ypss5Lgb6o48+io+PHzNmjHNJSkrK448/PmvWrJCQEI7jcnNz33///ZUrV+bn51ut1vj4+CeeeGLGjBnJycmDBg0aOnRocnLy6NGjm0R12bPfQtu2bbdt25acnNytW7e9e/e6rNUGCBAgQOODHx2MHM64NjuOiamxCiHEZQyam5sbHx8PAImJiXl5eQAQF3dDd+zSpUtLly4dN27cnj17KisrWZZ95JFHDhw40FSa+J4N9Isvvrhw4cJ33nkHAKpbrz4AACAASURBVE6dOjV9+vTGbVWAAAECuEKNfFwsLoYqA1RW4q6d8ZAhNVZ58MEH58+fL3myFxUVjR8/PjEx8cKFCwBw4cKFhIQEuL4+jhASRTEhIWH8+PHffffdvHnzRowYYTQaf/7554ceemj16tUN2zcveF7iGD9+vJTV+9ChQ59++umpU6caOqt3gAABAjjjOVDFahXPZSGWQa1aefTicHd4Xbx48YIFC6S46A8//DAuLm7SpEnBwcFms3nhwoWLFi0CgPHjx584ceLJJ5/84IMPFi9erFAoKioqFixY8N57740cObJHjx4DBw5cvXp1XWNtbh/PBrp///5SVu/t27cDgOOfhqOsrMybS1yjoVQq6z1RdFFRUf1e8BaQnB3rl0C/Go5675fRaLyFaPX6haZpvd6DALoPApGE4D9ZvY1Go+fA00YEY1zvBtoflu8bwpAF+tVw1Hu/rFZrk/eLZdm6GugA4G0N2jmrd6dOnYYPH97IzQoQIECAAIGs3gECBAjgp3jV6szMzAxk9Q4QIECAJsQvxJRvAZPJ9Oabb+p0uszMzPvvv99jSfNl3bp1CoWiufcCvHTkjumdxK+//goAgwYNauqGNCy7du2Sy+Vdu3Zt6obcXTQPA33gwIE5c+YkJCQQQmQy2VtvvZWfn9++ffvY2FjHOe4lUuGcOXOk/APTpk0LDg5u9LbXzOHDhzdt2jR16lRCyN///veJEyf6Pl8QhBUrVixfvnzNmjWN08Las3//fik7msViqaqqGjZsmPPRnJycY8eOuShSuXSHEDJnzpyKigqbzfbOO+9I3lF+hUsfHcJY7vj57efSkW+//dbHyb179/Z2yP+/suaLq4H+7rvv3E8ihLjoGjc+vXr1mjRpEgDMnz//jz/+OHDgwNmzZ4uLi3v16lVcXDxjxgyVSpWXl1dcXCyK4okTJwoLC//5z39yHPfmm2+GhYV98cUXFy5c6NTJHzNgdu7c+dixY5s3b66srMzIyEhMTDxx4sSuXbscvdiyZcuff/4ZGRmZn58/ZcoUu92emprq8ijyE7p37969e3cA+PDDDydMmHD+/HnnjixfvrywsDAlJaW8vNxR6NKdgwcParXaV1999eLFi03ueekRlz5eunTpyJEjp06dys/P/+CDD1asWJGcnNy1a9e33npr0qRJ/nz7uXTkzz///PHHH9VqtV6vP3369KxZszZt2rRjx47p06d/9913V65c6datm9VqPXnyZHh4eEFBQWJi4pUrV9q3bx8aGurnX1nzhfrXv/7l/Pqrr77Kz88/cODAihUrOI7Lzs7+/vvvbTbb448/3qDtqKysdEmd6cyVK1cKCwul6dXWrVtbtWqVmppqt9tbt27N8/yKFSvefPPNhIQEqYSm6RdffNFisVy+fLl79+4VFRXvvPOOIAhPPPGEb0mtW86o4oOysrLanJaenj5//vyKiooXXngBAM6dO+fcCwBgWfa5556rrq7Ozc1NT0+PiIhYv379ww8/XJuLN4R7k+9+LV++PDo6unfv3i4dadWqVVhYWGhoqHOhS3e2bt1qMpl27dp17ty5nj17eku50CT9csbRx+zsbITQyy+/XFRUJAjCww8/PH/+/Ozs7OHDh6emptb+9nNQ7/0ym80eMyJKODry22+/dejQYdy4cTqdLjc3NzU1dfPmzRRF9ezZc+XKlR06dJDJZKIoyuXysWPHrlu3btSoUf369fvuu+8k4V/fXxlFUXWdQNya7/YdNn53dbP76quvvvrqK7VafebMmcWLFy9btuzMmTPeFO8akz179rz99tvTpk0LDw+XMrNILF++XCaTOXunx8TEAEBYWFhFRQUAxMbGzp49OzExcfPmzY3f7FpisVgQQgaDwfFDcumF5Bur0+nK/T7PxdGjR3Nzc4dcD8N16YiPQgmO4yIjI//617+2aNHi999/b6xW1w2XPkqJNxUKBc/zNE1nZGScOXOmXbt24Pe3n3NHHn/88ezs7FdfffXIkSOdOnU6efKkxWJJSUnJysqSdMylKjqdDgBYltXpdCzLchzXLL6yZopnP+jc3FyHsJ5arc7NzW3EJnmmV69e06dP/+CDD8aOHetc/uSTT8bExDjf/VIwWHFxcWho6OLFi48dOwYAer2+EcJtbpmZM2dOmDDhySefdCRTd+4FABQWFkqFfh4oVVRUtHTp0ldffdW5BK53xKFc49I7Z5KSkqRzVCqVj0lVE+LeR2fMZvMff/zRvXv3nTt3+vnt59KR/Pz8iRMnzpo1a9u2be3atdu5c2dISEi7du1WrVrVvn17H9dp5K9MdJU/qhtr1qxpRk8Rz5uEycnJ/fv3z8jIQAj98ccfjgQofgjDMM8+++wbb7wxdOhQACCEFBYWzp49u7Cw8O23366urv7888/Xrl1rs9n8VjF19erVrVu3TklJAYC9e/fu3LnTpRdbt269evXq7NmzCwoK3nnnnVOnTi1btiw3N/ftt99+4IEH+vTp09Q9uMGXX35pMBgc62ZpaWnOHSkpKfn++++Tk5Mxxo5Cl+707t37s88+e//9961W61tvvdWkvfGMSx87duyoVqsdRxcsWDBmzJi0tLQ33njjpZdeWrBggd/efi4d6dOnz/fffx8cHNy6devo6OgLFy7069cvJSVl3759Y8aMkRLaeaTRvjIrL648fHXDyRIgMKJL5KPp4bimVaMNGzZs3rx5xowZAHDs2LEZM2YsXry44VpY73jW4hAE4bfffjt+/DghJC0tbfDgwY4JTgNx6dKlJg/1DgkJCQsLq99rZmVl3f5FbtMvrSHyLdRLv26TQL9qSUlJiftSUiPDsqwkHVd73LU4Vh25uvlMmYzGAGCy8WMzYnu3dFUvcpmTuRvoe++9V61WGwyGnTt3JiQkZGVlLVy4cNmyZc4vBUFwFvW3WCwTJkxACCUkJEydOnX8+PHBwcE2m23p0qULFy7cs2dPbGzshQsX2rVrl5OTc++999psNuerLVmyJDQ0dPTo0dOnT+/SpYtSqZw5c2ZQUFB0dPTHH3/s+0PwqsVx9epVq9X6/vvvHz58WBCEhjbQAQIECOCb1UeLwtTXfDRVLJVdXO1uoN1ZtWrVyZMnAcBoNCYmJkqFGOM2bdr861//WrBgwapVq1xelpSUjBo1ShL1X7lyZV5e3jPPPDNs2LDvv/++oKBg2rRp3bt3f+qpp86ePYsxbtu27dSpUwcMGDB8+PDY2Njhw4cPGzbM+Wou7dm0adOIESOefvppH5MSB171oI8cObJ+/XoA2LJly/PPP1/jhQI0HI8++ugdE9YRIMAt07elzvG/SEDO1Cpp7PDhwzds2LBhw4Z58+Y5l0uy/ZGRkdIGj/NLF1H/vLw8SdR/7NixwcHBCxcufO2116RNVLi+RSyXyyMjI+Vyuc1mc7+4M6+//vrRo0f79Omzbdu2Ghvv2UBfvHjxP//5j7SyNmXKFH/YJAwQIMBdTrfEoPJqOy8QOy9WVHN9ajF89sHFixcBIDc3V/Ipcn7pIuqfmJiYk5MDAHPnzp0+ffrIkSNnzZrVokULURRrc3GZTCZZ7fz8fADIzs7++OOPd+zYsXz5ch/ujxL+IjcaIECAAL7p2EL73pBWx/IMNEbdE4PDNGzNdbxz8eLFl1566fz588uWLfvhhx+cXwqCMGnSpK1bt0qi/kajcfz48cuXL4+Li3vooYc++uijNWvWpKWlzZo1q1+/fjVevLS09MUXXzx//nxxcTEh5MqVK++++254eHjnzp3lcrnvRnreJPzwww/37Nlz6tSpESNG/Prrr2PHjp06dertfBY1YjAYXB5HGo3GaDR6O59lWYyxj+ePSqWyWCzeHnE0TbMs6+IJL5PJFApFHRteA5WVlc4vKYqSy+U+HnhyuVwQBI7jPB5FCKnVat8fC0JIelw7aIgIY5d+MQxD07Q04/OISqWyWq3efLAoipLJZD4CEyQXY5ePpRH6JZPJCCE+tq81Go3JZPLm9lWbu9T9Y6n3flksFpdbQqlU2u12b1F/GGOFQuH7LhVF0ffH4nKXUhRVV7H1BhXsl6I9nnrqKY8vb5N6vJq/yI0KguB8myKEKIoSBMHbrc8wDNw80neBoihRFH3cggghl6PSNesX9wZgjH00Wwo283aC9LH4qC7JXDRCuK3LW0h7yL775ePrQAj5/lgAgBDS+P2Sy+W+31f6Onzcpe63mTMYY0EQGrpf7p+876+Dpmnftxn4/Do8/nj9IditOVIrudGSkpJ69z8LECBAgKZC0lTw9rJ+L347eN4kjI+Pl2SuJBpaiCNAgAABArjj2UBrNJrZs2e//fbbPrYp/RlCoKLaLoh+NqsihJSXg1+GLzctnCBWmps4TMkj1Tbewt2B31eVheMEP/t1BPCE5yWO4ODgTZs2TZkyZdCgQUuXLm3kNt0mF0stb6/NYmiK44UX+sbVxpW9ESCnz3CTJiOGsQkCensa1d/z5u9dyMbTpf/be4WmqG4J2qEdI6KDZU3dIgAAs11YdqBwR3YFELg/VT+6axRD1UqLzs8pNthWHinaf8kgCOKoLpGD08ObukUBfOF1DZqm6c8///yHH37o27dvk+dsrz2EwLS1WWFqlmFoQRD+uysvMVQRG1KDL0uDt4rj+UmTcWQkYIwxFj78iGrdGmJj6nQR8cBBOH26OjISenQHP5N+v2WyiqqXHigI08gwxmevmn76Eyb1jWvqRgEA/Hq8+PBlQ6iaBYDdORVhGvbBNL+WqaolP/1ZfKbQFKpmRVFcc/RqnE6e3kLb1I0K4BXPSxwOxbjRo0cvWbKkTZs2jdik26LUZGfpG7q7cpa6WOrV96vxuFoIcjm53iyiVAnnztXpAuLKVcI7/xB++bV6wX/tQ4bBzd5gzZcLpRYley0eDCO090Kl2e4XSwrlZo69PmRW0Div3A/uotuGF8QdWeUUvt4vGXXBH34dAbzjOoIePXr0Dz/88NNPP/30009N0qDbRKOgeafFNUEUtfJaxYM2LMHBhOMcM2TEc1iv83W+C4TwX8xDkZEAgGgagoOFnbuoRwfXfzsbHa2cct4qEASiqF38bkNDYSQSIo1fBEIUjOehTPOCprBIAK5/3oIAfvHrCOAdVwMtpZV67bXXGrkdHiNqfCRHoGkaIeSeAEUF8HSv+OX781UyZBfEjJTQbi0jaMr110VRFEVRLtVrmfDiFkAaDT1uLL9kKShVIs+h+zKRT4FdV3ge0I0uIJpCDRDbKYri2rVr16xZs2jRIgCoqqqaPXs2y7J2u33KlCk+Qp42nyn79o8rGMFD7cIeuydCXhdb1jk+6Fie8Wiegaaw2cY/d29sg30JdeO+1vrtZ8u1SgCASjM3oO2dsL4BAC/dF/f1jjyNEjheNFr5jGS/2KEJ4A1XA/3ZZ5999tln7ucNGDCgQdvhEk+FEJJSbXrzb1coFBRFeQx2GtgmOCGYKbYgFS12iFbarBab2zksy7rHStV7GKEz+JmnmfQOcP6CKjHR3L4deM/k5AGGwYMeInv3AcMAADGYoE72vXZUVVVJQsDSy0uXLj322GPt2rVbsmTJ8ePHu3Xr5rHW4dyqpQcKIrQyhNCu7HIao5FdImv/pjIaRwfJdmYLGAkiIclh/pKvKDlM+fmoNtmlPEaQGiELUtwhao49k0Oig+V5BlFOkQ7RSkm6M8CaNWuUSuXAgQObuiGuuN52HsfOtU/U5ie0jlRl6HQGg8GvUlii9HS6c2eZRmOuuzgv/eyzAsbiz78IAPTfp+J2afXevJCQkJCQG+Op9PR0AOB5/vz5847kh4cOHRJFUaVSOXK8ZpVYNfJrd5Gcodb9WfRkRgv3iyOEPCrWniowrvuzODpYjhDiBeGtNVk/TurifhrGmKKoGkM9azMJOHDgwKJFiyQFsueff95HBFa4RpYUpRdFsRltkteGBL0iPSnIYrE0uQJ7XSFAjpf/eabqDI2oe3SdkrUpNVbZsGHDyy+/nJaWBgAGg+Gtt95yGWseO3Zs+/btjb9mUEtcfzOO1h87dkyKhbfZbO++++6oUaMau2kBnNHrqL+8Tr/+mj4s7NY0Cm6Bqqqqr776asyYMQ7D/fXXX1ut1sTExH/84x9SiVYpJ4AwxgCAER6QFukx8S7GWAqbdikvNFaq5AxCCCFEUxRNYULL1DLX21JakqrRQNdmElBdXT1kyJCGnhEGaAgOlOxfcelHNa0miOwp3v1Sm1dqY6OHDBkiCfbv3r3766+/7tKly/jx43U6HSFk3rx5M2bMuHjxYnZ2dkZGhtls3rVrV2Ji4sGDB5ctW2a32521+X3kL244PE/cXnnllV27dhUUFLRp0+b48ePTpk1r5GYF8AxuvAmp0WicO3fu5MmTpSShEgsWLJD+cTwkOsXIl+21KVkaY2yxca3Cwis9eZgEBwdXV1e7i0DJgLNxHI0ZjLHAC5zw/+ydeXxU1dnHn3POvXfmzpaZTHaWhAQCgUAQ2fcliKgI4gpqN7u80tq3+rb0batvq63WtrYVbV3aulLrhoK4I/siu2watgAJZN9mX+8957x/DIRkMgkZSCaTON8//DAz5557Ms785izP83tY0Ouy+8L3oY1Go6IoYa5DbW1xOrMI8Hg8+/fvP3jwoNFovOeeewRBaGpqCtWjmjx5cthEhBDCOe/4h8FkajdMLWT5kpSU1EEDg8GQ8KnoJKXOUqNoBAAEyCSaD9oOdkag33vvvdLS0tra2uTk5BUrVjz33HM333zzkiVLnnjiiQ8//HDRokUVFRWh1RXGOD8//6GHHnrkkUd27NiRm5vb0ps/NA2PMZEFeu/evQcOHFi0aNGaNWuOHDny0ksvxXhYCWLPsWPH3nnnnYqKikcffXT27NlnzpxpaGh49tlnAaC4uHjChAkRr7LoxTEDk/aWOwCAMd7fEl2aydicpH3ljh2l9pBE/Xh29iWrzEVF20XApEmTJk2aZLVa33333Q0bNsybN0+W5cWLFwNAVlZW2G/AJd3sRFEMBAJX4mYXDAbD3Oy63LQLY9xcA7r5mZCRU3vtEUJhl7SEENJxA7jg29VMl5zAt+wEAXDeqTzn0Ax68+bNL7/88uDBg8vKynbs2PHpp586HA6r1RrmsZeZmQkAOp3O5/PJsvzXv/719ddfb/bmjz2RBTr0EfH7/YyxkSNHhgrGJLhC+NmztLxczc2FftGlqMSGYcOGtVwqTZo0aenSpZe8avOxxpN1nswkLUJIUdRPv2r43rQIe9DtEVDYpqMNKkccOHAoqXZPzuuyHJyIi4CKior09HQA0Ol0oSMKWZabdzzCto9EUWSMhXl1tsRoNHYg0BhjQRA6uDyi7We0tpyXhHMe9hvAOWeMdVCBu+0lnb88JKOMsZZvC+6KxV+WLutQ00GdoOPA3aprWFJB56+dOXPmb3/726NHj+bk5MyfP3/hwoVVVVVGo3HdunXtGVo8+eSTt912W3Fx8YIFC3rK9CKyQA8ZMuSpp54aN27cokWLcnJyet0hYRxC31vLnv4b0unsigI3XE+W3QtxElB2ZdS5leYcaIzR5hNNUQn0OwdqVYYEASFAHOC9g3XfntyvOZMiWjpeBFit1rVr1950003PPPOMXq9njMXt0VDX0tYaNKS/HR+hd/AqY6xj89jQ5S0Fuks2cKelT0eAKjznAGBoUkGhJbpYpoceeuihhx76xz/+ce+9965evdpms/3zn//Mz89/+OGHi4qK2oZwTJs2raU3f4+YXkQ27FdVtaGhITU1deXKlVVVVXfeeWeoxFb3YbPZwsLsrFZrY2Njx2F2bre7vQ6TO4ziCIXZORyOsD4jHnBdCaEZGfd4lBtuROnpIeNj2thI/vRHPLKwbXuj0aiqanvrqdDb0sEhoU6nQwiFhQ920sI8KprHsK6k4d0vajFGAAgjGN3f8N1IAt3eHvQTn57ZcaoJY4wAOICishe+NbK5MGgzndyDvnLC3luDwdBxFEdKSkrHn1JBEDoosGCxWFwuV9intMv/Lo/HE/aJSkrqKIpDEASTydTU1NRehwaDgVLa8ac07G0hhLQ8HugM3WrY31uIvO6w2+2ffvrp3/72N7vdrtPpVq9eHeNhHW469Pzh536864cfnvsgwNpdIfYaGhqg5ZacJPHa2p4bTVcyMdcsEFRp81favGcbvVdlt3sgFpHhWQbGL8yXOQgEp+ivqI5RggR9ichbHAsWLBg1alRPmfSXuc+8VPqCVU5J1lh31O+gQG8csLBHRtJVoKwsCPg556HVH/f50KCcnh1SV7HzlF2hrH+yDAAY2IGzzqsHRmG+c21hyoFzzt2n7QghgcADc3L6xMZPggRdQ2SBHjp06PPPPx/joTRzzHFMT86fk2iwtKFq/Q39F2DUK1OezmcnyrK04knPD38MGFEG8s8ekAoj7G/AhfPx9noLvdRBxmPodLdbUyLDqHUFNQIWCEYIUQqbjjd+d2r/zl+OEfrVdXk1LtXHSKqWGTQJa4juxR2gaw/VffzlkWlDkscMMIzNiW7FkyDGRBboYcOGffbZZ6NGjWre2o/lzo6ABA6tNvWiVeegys42egWqans6Qbd525QeOsx1OhAlDCx44gTzeCJmewuCoKpqhMAsr1d98y368qvK4puC06fiq66KeLtQgFTY5V2+sd6SdKMUVJlACAAwzmcNtV5GJwOSZb1eHzGAmnM4cNZxsrFBxDAhx9gvVm7RCuXvHax972AdR3DH2IzrRqZ2bfxfT/HuFzW7ztjTTJqj1a4dpY3/d8Pg+EmvT9CWyAJ2/Pjxxx57rGVwUllZWYxGBFBkHf3+ubWSKHIAr+q5cWB0+xsl1e7ffXhKJwkBlS4dnzm/sCerKYbOSbjTSV9+BaWlIYQQxnTjZlY8B7UjshCpwiZ94UW6fj1KTQnu3KmsWSO+8E80aFC7t4th4sPMoclljb49ZxwYI09AjdY0mTc1sbdXcYeTJ5ng+uvbemRvOt74711VZr1GpezdfZWP3zw0Nu7en3xV/9nRhlSTBgDeO1hn0Agzh0ZjQBiXUMbXlTQk6cApfAmCXSslH6lKSQh0PBNZoKurq202W4+kNgJAqib1F6N+dcRzuMnVmGcccnXK1Z2/ljL+6Ien0oySIAiU0jf3VhdkGnKssVvyR8bhgBbZB1wQWJOt828uV1T29ioA4C63AhyZzWzPXhJJoGOPRsDfm9b/+tFZHOE0mUdnvsMY/fszbMtWSqkqCPw//5E+/BAMreb7L2yvSDVKCIFAkFkv7jptv+XqKMyYLpsqu7/Z+FSvIaV1nj4g0Bghhak2eYtoPMu5gJFaEnAshHsQxOPioI/FY1wekQV68ODBPZt+mqnLLBxQ2EEAU3s0uoMtSxNpRXK2ydfzAp2Ryf1+zPn52GevBw8d2vmrEUbM50MAIAgIIW53QGVlN430MsAIDU7Ti6LYQTxZZCoq2UcfQyAICBgA1mr4wQNo6tSWTVoqBwYIqjHKF8AI+RTmU1QEIItYig+X6isEIeBik5h0GlQZACgXK9UjNd6aTF1mTw8tQWTa3eLIzs4ePnx48yT6k08+ieGoLh+LXlJaGMArlFnjIGwLiYL43DPKfy1DgsiYKjz0EIqq3hVjgAkoKicIcQ6coxgeA3YfrLERvF5ACDggAO72qqfKxNYCfX1R6kdH6jkgxIEBL+zXxVl27WGShWpHQCAAHDV5WFZS1J8iv8oOnWpiHA2yCGZdTx+GAACASplGoxLAHCMAwACI4wBrNxO9PbyKt9pTLXPZJCbKZXUvkT83v/zlL7vcEKDzNHmUT79qCEKdhNR5w1OS9VGMRCTou1P7v7Sj0qhFflWdNiS5ILMbj8g6DyookDZvJC6XqX9/m9MZ3cWiiLUSmM0o4McCYUSEnJxuGWVsQYxyAMQvzJMZRyw8sUgihFLuCVIA0Ik4Zv7FDq+aZZb8CkeANCJU2KILxnf41Htf+8qoETDBTm/wkYVD4mGrVyB4YlbefqQKABwQ44zhQJYuOuOBEvtXz594XkNEharX97+hOGtuN402AbQn0GfOnPnOd74T46GEUCh/Y291SbVbK4m+YNDmUb4/fYAQTe7vrKHWoemGxiCRkZqXoo2js3eEUHJydFb9F8APPkh//wdIMiEGePxYPHNGl4/u8uDV1fTd1X5/QM1Ihxuuh/ad2yJgMmGtzBUFICTSDF9wCm1m9Rc1aSZNyFVOUenBc86hGTH6xdUKRCdhAGCMqVFaMWw81pgkE8aAMm7WCRuPNcaDQAPAoqKBvkPfLPHu4vqjg+Qx3xl5nYSjWByoTH3u+LOpulTgwAj7uPKjoUnDBuijSO5PEBWRBXrlypWLFy82d7p0dJhRetjDlmzatOmjjz6KWLQlRHmjb3+5I+QBL2K8v9x5ttGXG+WHO8usKYw/w/4rgRTPwbmD4KsSY/9+7hEjQOr5fRsA4G63umQppKRSSaLBIJw9R37+s7aeqJxDg8uPGQt7AeXkgCSCTgaHAyeZOKX46vADYY6AA1cpBwQAqPvKkoUxMFm7r9xp0GIAcPqU4ZnRba3UOAJV9iDGgDhQ4I0eJSqLku6jn1l739SrdjXiJv+gLDktQ47uxNUWtIlYbA6ClbCmxledEOjuI7JAa7Xa3NzcESNGNDsKrl+/voNewozSwx42Y7fbDx482EF1uxCtDwYv86yyxlNT5axMEVMNouHyeog3UG4uysvTWq3uWBn2XxJ+9BjoDSAIAIA0GnXTJnL3XWGhcmeb/O9+Ubuv3MGB3zUhq1XUoygKL73I3n6brvsMAIQn/wop4WHUN41Of2tftUI54yAJ+OrsGG16zh2eojD+5t4aQPDtyf0m5UbnsefwqRiAIAQIgEGmKRahgZ2Bcbaq7M0S51EBCbtp4LTr9O2D7uh8noFZMqvsoqGKwoPJUq8PbolnIgv08uXLo9qDDjNKD3vYzCuvXw5m3QAAIABJREFUvHL33XevWLGi+ZnHH3981apVAPDWW2/l5uYCQJKFTT3tPnTWBgAc4SlD06/KH9AyMKMl7Wn92yfe+vD0ByIRAjTwwJifjk6LHHEcFsfT1sonwSVgrGWcBQLEOQv7X/XTVcf8ynnnyRe2V+RY5YLMFj+ZSUlgMiHONbfeqkaqdO70KXoNCcVuEIyq7IHY7BUQjBaMSlsyOffySl6lGEW9VnAHVADQS6TWFfVBXDdR5as80HTArDUzxmSi3de4d1bmrAy5s1EcIhaX5t715pnXNYKs0OCUtCm5prxuHfDXnMgCPXny5JUrV+7btw8hNGnSpDvvvPPK77R9+/b8/PwwTfzJT36ybNkyAFBVtdnU9KZRFp3AFC5ISJ03Itlpj+CqJcsyxjhi0dhS58kPT31gkS2UUg3S/nHvH56c8BRBrXZ+JUnSarXO1od1Wq22B49GeyN4xAjV40KyFiQJAkE8awZqbXXt8lNvkAKc32T2K+zjL+svCjSl9B//4F8cQJmZwW3b6Ntvi++/h1q7IW843pRqkEJ70JSyMw3eaUN6QSHqQSm6vWWOZIMOABhl4wfFS0a1n/pxi+8CQcSnRmdFPyF14qiMonJnuR70ic2N7iayQC9btszn802bNg0A3nvvvX379j311FNXeKd9+/YBwPHjx8+ePfvpp5+G3Fe1Wm1oFmyz2ZotsS06ccm4zGbHwoih0B2kzNX56yR8fmcGARKxaA/YkjXWTl6eIAoMeuE3D9Pnn6Olp8TCEXjBgrANaJ9CL+5RcQCA0w0X5YBXVvKt28BiAQBECDLo+VdfoYkTW/YwfbClpOa8qWyQcouud/yCTh9iqbT5NxxrwhhNyElaODq9p0d0nn5yvwD1cW4AAA7cT/1Z+uiiOE7Xe4/WBQnOGN2vL8R6xjntRnFs3Lgx9O9777139uzZHfcSZpRusVhaPkxNTV27du0DDzwQavzQQw91a3nzVG2awoIAOgDgwBWmmMR4mb/0NWw29TcPI4sFZ2Ywh4P98EfC+s+QePFDJYQdGCKwtlBYJAicXdwS4QyQEK6/0/KTt5XaknRIpczlV2f0knQ+keBvTOp3x6RsDkTigYhHmw3u4ImmRg0oAy2amMUayYLugcKf7bbt+rxq+zjr+BlDZmpwFPYmB846/7q+LEknAkcrPw/8/qb8gckJme5GIgt0IBCglIayVCilHRS/CRFWLQkAwh42qzMA/Pa3v73ksA40fnGy4uT2im1z+10zJ6NYFqL4EOQZ86ZlTN9WtxVzHGCB7+Z/X8BxkSbQ96BHjyHGeHk5xwgYB4MBzp2F3NzmBsl6oZ9FU2n3n08m5nxB0cU9Lp6RgWfP5rt3gyzzYBB53GjE8LBbDM80/PW2gnIHFRAvSNfGLA66S0iSRUEQXK4IMdS7T9v/tvmsXiMEFDpzaPI3JvaLmUZn67NHZY26K/fu9gz7FcobXAHEI9T82VvmSNaLofpVyXpp+0nb0gkRvpsKTaxNu4bIylVcXDxlypSZM2cCwKZNm2644YZYjum069Srpa9Y9dZkTfLOus9VqizKXtz5yxGgGwcsLM6dW2mrTNekJ5KduhFbE3c7QZAAASLAnU5g4d/MX8wf/PfN5afqfABsyfh+Y3Mu7iAjjIX7fsSyB6KKSqlfVvCaayBShmSqUcrNilBRpffCOF+xsTzNIBGByCLeeqJpdH9j0YC4+KBuONrw4ueVGkEIKOpvF+XnprT6P7LlZJNJK/iZG0S7jE0+JTz68ESt5+H3SwnBKmW/WTA4Pz0u0sR6L5EF+uGHH545c+auXbswxn/605+mT58eyzGdcJ7QC/rQlqWEpc21m24cuChax9H+xv4mbuozcdCXxudjGzf5nU5hxAgYWRibgodYp1dlHQooQAAYRzoZ2iy2cqzaP908lIs6TAOctVmKGfR46RJRFPV6vRLJbrRP4vRRAV90KJIEXO+Oiwiiskbfq7uq0owaQoii4AfXnPj3PaNa+qxOzDVvrfrckL0eEPUxUitMBrin+VVPkD7yfmmKURQFUVHVR94v/cc3CnVSX7Ax6SnCBbq5yt+4cePGjRvX/KTBELtoYglLLf2gOee91K0/dvj99M9/YXv2co0UfPXf6M4l5K4uCLy5NDnZSKtDBgyqirVa6vWidgqWW/SSx6MobQW673Ki1rP3bC0gPMQqjssxt/zFNMlEZaFjagCAgML6xcRD9ZKUNfiaPfwQAongJo+S0qJEJMbUMGA9B444AQyl6rYS28ThlhGhV882+SUB1zmDKgsKGMkSKm/0tYqqTBAl4QJd2LrSB0JIVdWKiopYBjwUJRe9V75aJIQD8ijem7Jvjtmteylsz166azcyGABjZJHYCy+S226NQbYhGjSI3PMt+sKLRKvl/oDwy1+EmYV+bTlZ5/ndh6eSDRJGaMOXQW+QtXQrxQgtmzHgr+vLVAYc+Myh1oJY5a93jFknqC02qVTGTK1rXuysPCENZIhfmBRz/JX9y2aBlgg0eVV6IRzLF0SymJhaXRHhAt3SmJ9z/uqrrz788MOPPPJIzAbEq6qSXnr5p1+U7h2ucV09avT0u0ZaRkXbydkm/xfVNTKmQ9O0V1IIIyxn3eFwrFixQpKkYDC4fPnyUICg1+tdsWIFIYQQcv/99+M2ic6xwOkEcvF/JScEXG6IlPfRVTTbHJK77+LFc4SGBmnIEF/7OaKhcubtOYyHCsF04D/e8eVxyN4zDo2AG1xBQCARdKzWHWYnfbjSnWGWEUKI80NnnWebfLEMh6j11lbYz5mJJUXbKi+hMMswLse0r9ypFcHlU+6e2E9qfSp7bX7OBv/5Kr8cOMY8SbqYY1ntCFDGQramHIByXmn356TEhQlJL6Xd8IYDBw788Ic/zMzM3Lx588CBA2M2IPrv12w79/kDctFuJG/adcIxEX9zdFQ9fFbS8NqeKr0WB5hnck7WtycNuGyJDstZLysrW7x4cWFh4WuvvXb48OHx48cDwLp16yZPnjxjxoxVq1bt3LlzypQpl3mzKwANLwC3C2QtAHDGyKyZ3arOcKH44XkGDhTz8gghYvuHeAghQRDac9IIVWLsIEsopM4xSCMKKw8mCALnvOOaYXq9vu36st5D610BASNAyMP4xmNN/zO/oPlVu1fZU+ZI1ksYY865AeCsXS0Y0O5dOuN10/mJwsbqDR9VfiCAEOTKTQMXT0u/eMIkEPzdqQMm5HoCXEyVWdgJIQDcOjr/8O6Cen4MEMLARSxOTZ/W/KovyDAAJsBDGs64N5gI57giIgi0zWZ78MEHt2zZ8uSTTxYXF8d0OJSqH35sl5IIRgiQIuuq9hypvWluuqmzq/WAyl7ZWZmUdtxv2gyAtylqTtl/zx5UcMkLIxKWs15UVAQAqqqeOnXquuuuCz1ZVlY2duxYAMjNzS0pKQkJ9LPPPlteXi4IwkMPPdSyQ4wxxthobNd5RxAEQoggdBQXGOHyoqLg737r/sUvOSHaG27QfPMbuP1bdAkRAyo6iLLQarXBYLC9ZHpRFEVR7OByURTbRnF0x7lIWG6qwWDoONVblmWPx9NWoBVVBUDNR7V5KbqWPSPGVcoYYwghxpiiqhKizQ3a1vztjNdNJycKjYGG98+ttcpWxpjM+bvl74y0jDRLFz/kBKOxOWaTydTUFCGDVyPgRyc9sK1x6/GmYxYpeX6/63TCxQny2JwkBkAAEYw450Hg8ZNC2UsJF4J//etfjz322L333vvkk0/2QN4zIazFZ52oqlefZPMqnRdoh1cRtA3+pK2YmjhwzNnb1U/PzPlbVx0zOhyO5557bunSpRHNRqQL274jRoxIT08nhIRJUmiC04HpByGEUtpeA4SQRqOJ+CqaNdO463MRAGs0gUCAtmjT7HjVS6lxBj4v80gEhqdre0tIQIZJSjFIfpUBAhGjbGurzR8Bo9vGZq45WGvQoqDKRg9I6jjGrjNeN20nCnv27Hn00UcB4Fvf+taNN94YalbVWKkVNKENJc65hkhBKdiyN8r4/jKbrbwmN1U/JD3yT+CtqbdFTPG1WOAPd4x+fsuh6uDhFDO6uXB8TtZ5bywWpV9rghDhAv29730vNzf3jTfeeO2111o+f/DgwdgMiD34YNKvfxeQdQLjGr9r96Axt0VTyDnFKFGxgdDzQsk4krBoD9qTNV2w5He5XE8//fSyZctaltPNy8srLS3t37//yZMncy/kaDQHJja0dp4TBEGSpI6nipGregMAAEJIr9d3cDnW6Viby2MZgdPlHKl0/fGTMyadSBl3+pRn7xyRJPeCtKOrs5PWlTSmmjQIgcOrtDV4urEoLccqV7u5TuTjso1dm4ATmigUFBQ8/vjjAGAymZqrkRm4wU8Dem4IKWyABg3M0PyqStk/t53dc8auEQWPT1k6sd/8kWlt+9fpdJTSQCBCAk52sp/3f3GY1ow4fFxz0KR3TkqbDAAY44TRzWUQ/lmvrq7ukXE0Y7hmzmk5dceararedKBfwbJrh4adI3cMRuiucXmvl+3gTGAcrAZRRT6jeJnr/bAU9jNnzjQ0NDz77LMAUFxcbLVa165du2zZsqeeemrXrl06ne622267vBslaI/PT9mtBjE03cOIbz3RtKAogmTEGwWZhuXzcvedcyOEcpOlqYMjrLf6WzQ6vahBirYr1LntRMFoNBYUFACAx+Px+c5boJhI0s0Db3n37DsiEgMscMegJTqsb04XOHjOufu03agVCCEC4q/srJgxxBx2Tnisxn2srg4jPqa/vm2F9X11e02CUUM0qqoaRePKk6+OSx4PLU6VE0QFihPDIJvN1jKhPEg5lww46G7PaFSWZUJIc9R2Syinr59+/ZDtsIhxgAYWZd80LS080UaSJFmWHQ5HWJ8dHwddBm1n0Eaj0WaztdfeaDSqqtr8dWoJ37efffmlITPTN3FCe4VLdDodQihsI7U7qiOH/V0hI8AOisaazWaPx9PBHrRer7dHSlS584VDmVqkAeaTZFWlY3OSvjHpfKh1DP6ujvegj1Z7nFQwYGV4piHi8acsy4IgRHxb9pQ5nt5QrtMKikJnDk2+a2JWc7hR278rNFEoKSkZPnx4s9dN88OQ101oosAY0+l09913X8vz2JYCHYJp2Dn7WYuQHJZnu/l40xt7q2WJEEJUVbV71T/dMjTVeHGDcV+586mNZRadxDi3eYK/W5QfVpH5o4oPd9Xv1IiakOjbgk1/Hf8UAkQIibgrmKBj4nS1qBGw1SI3Nnov4/eDILIkd8kMNr3aXp0l9+uv6x+xmTPo9FGfTHqH1Qt95136j38io9HDufrY78X3VqNO17vpvXDGfnJuc+6n73KMvxw2ce34BXlp4VUgeoo391a/f7ieYEQZu2ZE6t0TsjofLMQ4X7G+LMUoCkRgIt5ywlbUYap3J71uli9f3skBWLQWbZK2rRdHTorsV6ksEQDgHIKUWQ2t9iX2l9uTdSLGiABK1ovbTzblWFulJuUZ8zZWbdCIGgBQuTI1bRqC+Ck61/uIU4G+QggiRamjB2lyI6Z6e1T3G2Vr9zbsZZROy5hx44CF8e6mxDl96m8oMwMAkCAgs5lt3UZuXNCqjdvD1q8PuN1CQQG/ajTqkXDsroZt3DRy92dN1lRPgA4s+/KeNNPw3Mk9PSgAgHpXcNUXNSrlGCPG+PuHamcMsWRbO/tj7/RR4Xy1FQAASUBxkuqdY5W/MbHfizsqJEEIKOrvFuWHpRFsO2GzmgM+w4Gg7qDgHd5EJwC0EuihScNuyrn57fI3OIMpaVOv7X9dbP+CvkZ8C9MVEKCBpkCjARvbxm+sq/rsQMOXEhhFEfY27EmVU9vugcQXqtrKZ5kIKKxSgdcbvP4GZDBwQgJBFW6/Rfj2t2I7xG6BHz9ODIZURlMlgUs62LkeoV/09KAAAE7Ve4MqEwhGgDCGoMpP1Ho6L9Ammagt/N4CKmu7mdtT5KXqZg1LUTi2yijNEH6sd/PV6R/WvI60VZiaFPHscXzcHsw3S60Wc1PTpy4cvrCuoQ5DX5gl9Cx9U6C31257Z+/bGIjClP8Z8dNsQ07zS0GVfVz+WTBgQKBygMwkTYW7AuL82EkU8fXz+a7doep/4HJC64x8tncv4gDVNSpGiDH04kuw5A64VO3H2MC2bmO7drk0Gj5uHEyeFNW12GxWa2vB4wYAbDTClKndM8ao0WkIA2CMczhvG2PQRHeU/Yv5ub//+LQsEYWyBaPShsVHqrfNq/xy9YkUo0YUyOFA0O4Nr3U7ZZi4znvG59MCcKteEkV82nVqjDW81C8AEETi5HyrV9MHBbrCe+7ds++kyKmUUsbZn7/605Pjn26eR285YfM15SNdZehhld07JaN7czq6BOFb36II0Q8+pADC//4cjWwl0LykhLvdIAgIARDCXC5wu+NBoNmWrfTRx8BiUQihH31Mfvm/eMaMKK4XBHA5ARNAiDud4I+6NmA3kZsiCwiFZsEcQMQwNEqFLexn/Oc3Cj1cI/KgWRsvM82jVW6DVsAIGOcSwdtP2m4bm9kyrlEnagTMk2QBENKImCEm4bgoMN9XiReBjlj+VadrN4s/lDccMeii3lkfym7CGCOOJCwFhaBVe77k1eGqswHbMF3SMU61AICIb3Z2sV7WA0B7ichxQYqV/M8Dwv0/saalNbSp6o20MjTPVjhHGi0/n2zbw/A9e7jRiJxOjjEymvievRCNQPPaWjAmcZcDAYDBwPbs77aRRofDp+o0xO1XESDOuV4r2rxKsj66OF+dRPpZjC6XK35McTFG/iCtcQQQAr2GIEC49cfoULnqbhiKjacQF50+VacLDDYN6aHBfi2IF4H2+/0tw+wQQrIse73tRnGEwuwiFo3VME2QKrIoM8Y45wpTiUI89HxLVVW9rrTA8SWioRI4oZ6B2hnaUD9tU2zjjnaCSdHIkcicxO0OQABJZkQVlBwXpaG43Q5nzgAmDAGnFA+N8svc2AQeFxIlhACCAZSd0y2jjB6/wrQCSU2REBY4U90B6gv2BSdVi160eRVRwBghb1DBiIRt3XxZ6TR5ZlCcrpI6gRrG6CZqSc8v1Pow8SLQXcjQpGGjk0cfcRzGHPtU3y05t4r44tTGrBcRAqYYArahHEDE6Ers7uKFMVehxTfxDz7EksQ8XvK737Un5bHG4wXAHGNAAJSDJ8o9iiQT1+uRx8sxAkqhqoezqJrpb9H6FKqXsCRAkHK/Qge1yRXsjdQ6A2kmSTXtRuZ9CCFuH1Xrys8wXVynIkAICZJ3lATAGMPmuNg678PEr0A3+ZtqfDUpmhSCotMagsgdg5ZM49Or7VVZ2vA46BS9mCQLLr+CENJLhANnnPd2jQ7VjoJr50luN8kf6tPHjVhkZIA5CRwOQIDMSZCREdXVaMAAbLGA2YwAQKOBMWO6Z5RRoxHw44vzP/myYXupfcpg89zhKfpeYhLSMQaNAKYSYv4Sg4kzrhpO7Hduvd40v7lBP7NmX7ndoJWAg8OnjuwfF2W6+jDxKNAc+Hvlq7fVbwMGo5KLrsmalyG3+mIzzs81+QBhs8gEEuGABSNcZC0aJA1qu7s3NN0gkvocqw4QooxdnZ3U29X5IkOGCDodQggi7fz0CNxug8Z6AAQIeGM92NtNoYwInj+fHz9Od+zEksjqG4Sw0O8eZWCy/P3pA365+KrGxsY+E64wsp8xpbypjgdV7AAOWqxr8Ne2bDBvRArj8Na+mhnDUvLTtGOzIwj0oaaDxyuOX17F5wRhxKNAf9Gwf3P1DgHpCYLTztINQO7Mu6v5VV+QvrqzcvcZB8L46oHGO8ZlJOujOEcu7GdYOiHr5R0VBKPpQyyLRsd5hF0vp7wciACUAgcgApSXR3e5QY9/vhwdPCRjDAXDAu0fGifoEkSCUpO9DfYAAgEh4ChQ5ato2UAgeEFR2pIpuZTSiIYEp12nXz750mVXfE4QRjwK9McnTzh8gCDIODdphT3B3UtylzbHya0/1nSwwmXWSwBQUuX+4HB9szlDJ5lbYJ0/KkPSaL3udr0jEnQNKgNBBEEITaJBjdpzEokiGjdWMhoVRYG+UtU7nkkSDQAMYYw4p5xVeiqjuvyE87heMFxhxecEzcTdG1dpD5RWIUwoRohg5PQrlLUqGlvj8GsubGsIBH1aEh5zBgCgqrxD/1mMkBhpbyRB14JyBwGl5yMYVYpyB/X0iBJcghRtWqYuw6xJMgjGdDl9Stq0S1/TAglLHC5+9RIVn6+QuHvvHD5F8gzWO9IAeQEFQXDfmPG9lg0sOlG5UNeSMV5c0Nr6y++nf38mWHxN/VVjlRdfhkgybfMqaw/WrNxR9mVlBDO8BF0I+c2v0dVjIBjggQAZN5b85tc9PaIEl2BK2lSH4tZgSUO0bsU9JS26Em5FyUUuxakyhXPuUd0LB97UTeP8mhB3WxwDXHW3fPr6yHOHzmZLBwvHbEu/ZdKEES0bXDMi5d0DtTqJAcK+gDJveCuBVl9/g3/2GcrIIIKgvvUWsSbj61vZtTR5lPte/8qYUgbaikAZL26ccOeo8bH4w76WIFkr/uM5UBSz2expv+RVgvghVZv6h3F/PO0/5XQ7C5KGh/lsXBKrJuWh0b8+4jnc6GwcbBoyylLUTeP8mhB3Ai2/8/ZEz7kayZRcA9ef2Vv8wAxja8N+WcTXFqZ8fKQBYTZjiCVJ1+pV9spKlJEe+jcyGFhJSZhA7y1zGFJOKpatmOsI5581HZ3gsgw2JrKhuhNRBFGENuaWCeITo2icZp0esSZhZ0jVpt3a7/a+FNzSg8SZQFPK1q2T09MHaUXABAVF5KgKa7LpeNOOUlumWQsAhypc5kN1t4/LbH4VX3ct23+AYzjaH2wiDEiGsILkPoUyTTVioXgABFR/sPFg9wl0WD3AUPnqDooEYowFQWivQSgZvYPLQ9Vme3sRwgQJEoSIM4EmBDgDzgEhASM1GMSpqWFNzjb5ZfF8UoAk4LWHWwk0mT1bWffpuwvSDg7mYhD8GWU3122fknbRBW1YhuG9SghdzzmYNEK3+om3zF+HCwob9mRLOOeMsfYaXPLyUKHoDhok6EIa3UqFx6blwZQ2tpwJEnQJcSbQAMLjv1d/8SAYDZwDnjgeF88Ja6CXiEq5hAEAOIdZQ60tX0Vjr9728P073GsERbDpZSPIb515c0LqRAGd/0uHZegnD8j7vLGUU61JFojgHZ40vPv+nLaZMpzziOY43OXiq9eAP0CKZ6sXis+GERLoDrx1QgIdP+Y7MYYxtmbNmtWrV69cuRIAHA7HihUrJEkKBoPLly8PGXJ5vd4VK1aEyqvff//9+HIrG2w42vDKriqtKPgVden4rGtHdH39re6AHzrENm72iAK/+mqYOAG6IUvLG6T2OrdEqSzGXQxCryPuBBpPnCj+ZyU/8mXSgP6uIUPOOyC3YE6B9YPDdSYZIcSdPmVGfqtCZyplKyvdUppRkSQAbvcqJj12Bp0tq3rfM3L+iEZzlb8yEAgWWgqHm0dAT8MbGoLXXY9UpiAEzzwj/O//kjtiXX82TN26SshiicPhGDp0aFbW+bJYZWVlixcvLiwsfO211w4fPjx+/HgAWLdu3eTJk2fMmLFq1aqdO3dOmRJdlML5G/nUl3dWWfWiIAg6Eb2+u2rMQFOaMd6NN/mhQ+oDPwWrNSgI9P0PhAfuR/Ou6dpb7Dhlf3Zzeeh3a9nMgZPzEnUIr4i4E2gAQJmZOCtLY7W6I50zpBmlZ+8a8VWNn3HIT5FSW38rmjwKUVMAggAiAGAEQaaEnURjhGdmzWpbNLYHYU//HTPGCUYAQET657/EXqDD1K1LhCzGWCyWlpVJi4qKAEBV1VOnTl133fmz4rKysrFjxwJAbm5uSUnJlClTmpqaHnzwQQCYPHny7bff3rLDUDVxUQzfwajyOLUSCVWqJoRoNdypCkPaVPLFGCOEktqp8BtqYDAYYnaYxrZsBasVMAaEUHIyPXhI6FKBtnmVZzefTTFIgiCoKn5287kRWcaWdtIJoqVXvncmrTC7IDViVe9kgS3YtFWnK/t4vlnFWp9WvK3fj+M/VJ5XVnDKgQUBEAAHQMAYxHbSGqZubYUMAJ5//vlgMJienr5gQStbDEEQMMYd1ETHGGu1WkmKPMfEGHd8eah/Er1Fn8PheO6555YuXRqxpHRoPLIsL168GACysrL8rZMVNRoN57xtcVWLFgWClEkkpOD+oJqiw/42iY6SJGEc4flm9Hp9MBgMOzNo+3vQZVDWak+jq38Yqh0BrXixf42IKu3+JNnQtXf5WtErBboj3nyzuPJgbVC895SX4qbG4qXTpxX09JjOc7reu/mkjRDRILJrC1Nb+Z9ptEApnHdHR5BkjrE6d0x7whrnuFyup59+etmyZckt3LHz8vJKS0v79+9/8uTJ3NxcAJBlubi4OPRqWDEEURQZY4FAIKxnmcA3J/d7ZWdlaC2/ZFymWQNtm4Victo+34xOpwsGg2FnBkZjd5X4QePG8o8/htBvlcuFBud1bf8pBimocrgQQxSkPCXKIgYJwuiVAn26wbe3vJ5yGJWpLezX6tPMXlmpy0gfQLnKEQZpWKAmTrzq6lyB/3u/NEUvEYK9AdXhU78z5aIPKhpeAPv2c78PceAYIaqGQll6cMBthQwAfvCDH4T+ESZkWq1WFMWI9RNCiKLo9/vbS1QRRbG98gshMMaKooRNRdsWWDh27Ng777xTUVHx6KOPzp49+8yZMw0NDc8++ywAFBcXW63WtWvXLlu27Kmnntq1a5dOp7vttsvfR5ozzHrVAJOHa2QIXHYUhzugxjJWGE+dIi7/Gd27T9RoWF4uv+H6iM3K3eUl1V+6ve6RyaOiikBNM0qLx6SvOVAra7gvGFh8VVaaKRHxeUV0jUCHnS+FPYzY5rI5Xut+cPXJIOWAYDXB/z07e+qQi6uLP3FxAAAgAElEQVTXUBy0QJBWEGgwCHHjf1ZS5TFIJCS5GgFtPt54x7hM3YVJNMrJ4WmpBGMADpIGxoyJvTqHqdvcuXO7RMhiybBhw371q181P5w0adLSpUtbNnjggQcAYPny5V1yu2S9mJ+SfHkZGRU2/9pDdbvLHKrK/mvGwGlDuvEwjRByfvuI84Dfr65bFwAkf/97kixDm+2UUkfpn4/8KUlrBsa3123/r8J7R6dcFdZGEARCSMRz4zun5BLr0U8qVpkQVq3TVPGmJKndLfgEl6RrBDrsfCnsYQdPXgZv7q1RGRcJAgDK2HuHalsKNJk9m33yKZgtXKW8oUG4bn77PcUUgYQJbqtKLviaueSrr9j6jUQSaEODdEsPODSGqRt0nZAlaMvP3zlu1YspBg1j7IXt5wYma7Ot3eWb3GwNytZvoH9/BtLTMSG+198IcIaXLglr/HnlDpNkEhBRuWqSTHur9w6R88PaGAyG9uxGS+xfba1dm2VMV1X1cMNBprLbBt0OAISQXlBSLv7oGoEOO18Ke9jBky+//PKGDRsA4LHHHsvMzAx7NeLxt9PPCEYACAAwgtMNPrO5RZBG8Rz6xuvBHTuwKIqzZ+F2fg8QQhjjVhcCsA4N8K6Qwiyjy69KAsYYfAorLrBqW0aJiqLws5/yRYt0CHhenj+eNqATdDkOnyoQhC8UZJUlUlrv7T6BboYfPgymCxb7eh07e67t50xhCgKkMIUyKmAh2sVBmbtMJueXrQQJn9dvv3XQbahbk8H6ND28Bz1z5szhw4cDgCzLLbcgEUImkynipmS6STpV5w55hVIOwzMN4c36ZcFtt+qNRq/XS9vZ1hRFUZKksAu79SjMrBOeuHXYxuM2FXCaDs0ZZg1vgRDKHyIYjaqqQqS5SYI+g04ilF0UPpXyJDkmh2mSBIxDaDHXziFHtiF7W+2WIFOAc4lI41MmRHUHvaCn/GJQCuM8oc5XQg8LdE5OTk5ODgDYbLaWJ0jNKXNtf8CXjsvcc8YWUDniXBLwknEZ7R09qaraXk4dQkgUxbALhTZJMV1LRpKUl3em0l/R5Pfvbsyekja1Zfwf/Xwn37LVo9VCZgbctAgi+Wn4qf/zqh319vp8U36qNlELprciErR0fNbb+2sMWhRU6VUDTUX9uytyoyV4bjF7/Q0QCEOYqar4Xz9o28atujVYE6BB4CAhjU+Nrs7vGOvV75S/zYAyRhWu3p33zS4a+9eUrpGksPMli8XS8mFqauratWuvu+66lk9OmjTp8u7Vz6J55s6CNac3NypVGQad2ZwKcDkf7iZ/k0/xGcTYBWnua9j7btk7Jo2JUnrIdoggMvmC2S7/qoQ+9H8oJUUVBObxILebfPeesMvdivuX+39ukpM45W+rb30v/wcj4iAHMsHlcd3I1EEpcq0XyZiOGWgUw48ougVeV881Wo6AIIxEkTc0tL1rva/erLFYdSmhyc2W2i2Lc27p/C1kIo9LGb+vcS9jnCOeJiemEVdE1wh02/OlsIeh0/OwJy+bPbb1Z9TtsiiXedUnvtrxq6L/S9WEeyp1gFt1f1C2dm/9Xsbp1PTpCwcsEnAsVhKnXKV68Xwuhl7Ql7nLmgWa7tmDLJbQkhPpdPTf/yH3fCdsBbqnYbdJNMlEVrkqSdKBpi8SAt2rKcg0TLZYXC5XzLxT+L79KDUFIYQJYYyxU6fb7kEbRaPK1FBOEOdsSvrUtv10wP7GfV/ZS9J06aHl77bardm5d3fR8L+O9L7DKA78s+pPQ6WCEcIGwfhl05Goelhfua7E/pVFazFLln0Ne3fWf949Iw2n1WYcgpZRHEgUOWu9mdNmf9CluPxMqffWn/OccwQde+p3d+NYE/RJCG6VPRjpAHBa+jRH0O5RPD7qawrapqdPj+oO9f56CZ3fT0cI7WvYwyHhCn359L5EFd5mW5pB6+iLQIAfP6EkJ0P/yMVkN9VssmrPn9FpBW2FpyJisy5nVHLRnobdZq2FA3cGnIXmkc0v4alT2AsvQkoKYAwOB/mv77e9nCBiVxoJEgRE3Kp7kDGy412CBO2BZkyH99aC1Yow5k1NZEx4gDMAmCXLXyatqFAqHE5HnjFPL4Tn33O7ndrskB557yJdTg/yoAY0AMA5H5cyIXFIeCX0PoHGCM/OmLO3YbdG0HLO3aq7oIVfKK+qUm65HQCaECITx6Pf/Bq1SZydlDbpuPN46N8qVY1iLM5nAKAgafi9BT865i7x+/0jzCMLzBdz0FFOjvD8c+yTTwQAPGqUOi3iupIbidFN3ZyDXtBVe8NLGSRI0DG4qAj+8gTftEWURDJmDJsQudibBmuuSr2qiYRXVOGM8RdfUv/zulMQpdkz+dIlaGBYPQy4KnnMafuJ/Y4DwJGf+qdFWXM2QRi9T6ABYH7/60xaU0OgXlXouNTxWbqLwc70j09AwA9E4ADKps1Cair535+HXT4pdfLOup1GjZFS1aN6pqbH7jM0zDxs3IBxNput7UsofwjJH6I3GlVVVSOF2YlYMkhGq5CiqApGuCnQ2P3jTdDXwEVFUFSkT0ry+XxtTaAuwY7P1XdWo5QUjJB64BDnIPyi1ZeL19fDCy8t+mzd5FQhsOTmATfcrSHarhz9149eKdASlq7Lvj6imx37fCcQAUKBeqLADx1ue3m2Ieex8b8v85X5vf7hlhEyaTdBoDMp7Bs2bNi1axcA1NXVzZs3r9nWsssZnXzVRxUfWgUrQsituG/J6R3p1wn6DKz0FAQDvLSGIoSMRv5JNfzsf1o6trNXV7K9+3BqWn9BUJ9dTTKKoJ1JeoJO0isFugNQXh4/VRrKM0SMgz6yF4dFk5xl7ndJP+jOpLDPmTNnzpw5lNI//OEPs2fP7qC3fWWOJzeUI4Rm5JsXFqWnRunvni6n/7LoV195v2pyNg5NGlZoGXnpaxIk6Dq43Q42OwgiIOBeHwfeqp4GY/SDD1H6+ZLNECrZnBDoK6OvCTSeM4sePQqEMARYFNGtt15Jb51JYQ+xbt26adOmhYoqAcCqVauqq6sJId/+9rdDz5Q3eJ7edDYtSYMRPlLpAdT439cMbttPyPi4vfIleYbBI7SFET0QQoSshDswVk6Q4LJBBgMy6JjXjxAAZUgng6pe1GjcOkREVXE7X5YEnaf3hdl1DPnWN4Wf/wzPmiVfe630m1+Trq7oExHO+fbt26dO7Shi9FiN26AVQifaBKNtJxpc/q9p5cCvCdzpZKdP8z6UtY/S08CcjDIzcFoazh0EAgmrSCf88he8oQGCQe7xcJsNz5rZQyPtO/S1GTQIAl5yB15yhzk52el0xiYF4OTJkwMHDkQtIpdvueV88lWzbzLhqqJSiSCMMWOMMsYUv4eGRyBhjFVVbW+O7PRTlQRF6jVqI/+P0+l0CKEwj5GEi1jsYWveU1c8rWokFAjgPzyOx4/r6RF1AXj2bPXPf0FGE0gS2O3Cw78Jb3DNXHHgAH7osDEz0ztmDDckVnJXSp8T6C6lMynsDzzwwLlz5y5po1rU3+gOUIKRRkRuP118VYaAo4sP3XC08eWdFbIoeoNKohxnPMNPn6Z/fwalp2GMEYC6fLm07lPonVVpWmHQS59+zD7fqVEUPLoo0Lzd3AI0bBgaOFDOyvI6HF1eUutrSEKgO6KTKexz5sy5ZFc6ifzj7sKdpx0+ivub8OgB0QVf1zkDL++sFDEKUqoVyDObz47sZ2xvHp2gZ2FnyrhWPv/zixBIGl5djbKze3ZUXYNWi2fP0hgMlNIInov19eq/XmSffVbDAd/7A3zbFZ0AJYCEQMcSg4bMH5lmNBojxkF3zDmb3x+kTsoZ5whAI+JKu39YRqIcZzyC0tKQEgQ4H0GEFAWsbdxl+yLqP//FPlsPDgcD4M88C9kD8YTo3EoThNHXDgn7Kk6/6lNZSJ05gC/IGE9k0MYpuHAEuv46brNxj4fX15P//jEyfA1+Shmj760FtxsEEYkid7nYxs09PaZeT2IG3Ttw+ykGxC/s6mEEjZ4gQN85hOHAGWctDbJ7MQgJP/ohmzVLstulYUO9KSk9PaBYEQiAFPIxRwAYbOHJ4gmiJSHQvYOByVoEXMAIEALOFcYHmPtIvWSVqR+WffBZ5TrO+dysa67tNz827q/dC0K4cIQoy0QQwOXq6dHEBIyRTg9+PycYOAKm4sLCnh5Tr6dPTFi+BgzPMk7Ks2hEzBiXRDwrPznbGi8Fy6+QzTWbdtRuT5FTkjXJO+q27ajb3tMjAgBgmzcHZ86yjZ3gf+LPEP2ZwdcT8pMf42QzNluI1cpNJhSTLIS+TbxMVTQazXkbUUUJrl5Dj59wGvTCNXOFEZE96UVRxBh3EOGLENJoNGKbqvIhQgl7YZeHTMq7FcZZpbvS6XOmadOiWs6LBN03J3vL8SaHgq1aPiM/OVI9uV5Jra9We8FSR0vkSm9lDw4mlIRJS0qcD/2aezwAKPDm25LLpXvk4Q4uaa+yauhj1kFiZ+hD2K3VimMJufUWlpUFhw/rUtP806ZApDi8BFERLwIdDAYppQBAX3hRXb0G6fUcY/Wtt8WXX4wYnxQqy+33+9vrUJblQCAQ6rMtjWrjcdcxNaCOSi4yS+drezcnancTXtW7+sy7B5sOcMaKkq9anL1YL0RxdqSXyPWj0qxWa3PyS99AwKRZ4BgwEcekfGo7hHJ86DurwetBIdMJnzfwzmr+wP0Q6cc+VOw4gkCrKtu1W7TZpIIC3+C89m4nSZLP5wtLp+rFiUUI4alT0LSpBqs10NgYbUXwBG2JF4HmIRhTX12JMjIAADAGs5nu+Jy08ZwNtW/+b8fdtn3yuOP4c8f/btSYqKq+XfbWQ6N/HVXFrMtmc83GY/ajSVISpfSE4/iG6g03DlgYg/t2B5rWNW0FQSCEaCIVug2BMQ4tetq+NCVr2s6GXWZsopw5g86pWVPb9kMI4Zx30H/XwhobLtS+BkAIAgGgNKJAR4ZS+tcn2aYtTKsJ+nywdAm5+64rGk9rG0Wv17tixQpCCCHk/vvvD72re/bsWblyZUZGBgB8//vfT02NxUc6QXcTLwLdDGq1dEfdkYy0v3GfWWMhmFBCzEjYWbvjxoGLuvwubbEF7M3TQwELrmAvPjsKW5qEBLS99QoAcM4ZYxEb5Ohzfn31r0scJcFgYFRyUbqc0bZZB5d3B3jUKPbRxxwLGCGuMtDKXJI6v6XEv/ySbdwESUkIYyTL9KWX8cIbkcl02eMJs1Fct27d5MmTZ8yYsWrVqp07d06ZMgUAPB7PwoULi4uLL/suCeKQ+BJohDG5cyl9733Q64AxbrehbrAr3F2/q7nkFcbYS2NkZ6MXdJSrGCQAoJxqhV7sZR62KhcEgTHWgfNJSL7ba5CmSR80KNdut7ftOQRjrOP+uxY8/1r09N+AMuAcyRrywE9QO/6CEeFNNi4IzYLORRFsNmgt0LypCb444DcY+KiRoLvEeW+YjWJZWdnYsWMBIDc3t6SkpFmg9+/ff/DgQaPReM899wiCUF1dvXPnTgAYNmzYwNbLUIyxJEntmSZijBFCHez4EUIwxh2vX8OWO6jPnJnElvgSaADA37ibGwxQVi4ZDWj6dMhrd//usrmm3zW76ndqsBYA/NSfbYhRDu6MzFmbajbqRT1lzEd9M9Jnxua+CaIFMQYYI40GIQScc0WJ6nI8ZAjyeEBRmEqxVov8fmht1cJOnVLv+R4ymdwIUbtd/M9rqN8lvFzaQ7pg8TFp0qRJkyZZrdZ33313w4YN8+bNs9lse/bsAYDk5OS81t8jhBAhpD3RDD3f3gE7AITUuYMGHV+eoPPEnUCDJJE7bkcIJVmtjd1zzjA7ozjAAttqtjHO5vWbNyFlYpffIiIWyfKXSSsqlUqXyzXYmJeoBtSMLWjb07Tb5/ONMBcmSUk9PRyg27YjiwVkOTRxps8+h2+9JYpJdFoqDB3Kd+1CCKmcCwsXotZqxde+D6mpQAgiBEkSW7OG/HBZ54eXl5dXWlrav3//kydP5uaerx1cUVGRnp4OADqdLrTUGD58+OOPPw4AHo/H1ToWO6nDkleCIJhMJlf74dsGg4FS2p7nYiiAyu12t/zydnxEkaA94k+gux9ZkO8YvPTuEd90Op0EdXtoXUs0WFOUUmQjlxNXyzg/UuHylPvMolqQYegzS8YKb8UTR/5g1Bgp5W+cef0XI3+Vqcvs4TF5PNAy5hJhpKqdt6Njhw5D+VmUn484F0VR3bYdNzWh5OTmBjwQRBf6R4LAXeGV28IIc1WcO3fuU089tWvXLp1Od9ttt5WWlq5du/amm2565pln9Ho9Y+wnP/lJdH9v57Hb2cZNAUVBRaNg2LDuukuCC3wdBTqEgIUYq/OVwDn8e3f1lrJjQtJJhQWvSi340fg5faOg/ed1OywaCyECBSpiy+f1O27OvqVnh4RHjWIvvHje4UhR8PXzozML9XqA4NA+AgAAwcjjhRYCjVKsPHghK9rnxwMHdNxfW1fF5cuXN/978ODBIVfFRx55JIpBRg9valJuuhlZzH5RYi++RO77Eb7h+m69Y4JEJmHv4GyTb+PpE5C1ismnsO7cF56175/5rKcH1TUoVEEXcnYwwn613dj2mIGGF5CfL4eaalZdI0yfLnzn29FdXlAATievq2fV1ay+HgX8kNVqTUBuvx1NmAgNDay2jsycjhff1KXD7y74lq1gMYNWBlHEVit94s89PaK+z9d3Bt27sPtUYjiDqA4AA3Bg2nU1a28c1BdSaa1aa4mzRMZaAAjQYIYuLtLPcPEcXDzHYDAwxrxeb1TXIlnHqcqdTkAYDHqYPh3C9q+NBuHnP4N7vpOUbPFIUsyiU64UlwuRi4rBEWpVkzBBN5B4c7sXIaxomyAghIT2P9OhDMm2DXLTDCpVRYSAAwBwDgSH92PzKJ+X1QNCw9O1KYZeU79jduYcp+rcXrONczYtY8b03h/cQo8cQWYL6j8gFK+m7trN6+pQ27znFCu2WHqRlRIqLOSv/QeFAv4Uhdy4IKHO3U3i/e1ewvw9QpGnHZh+hAS6bYMUI1laNPn1swcR03GOrCaYN/D6ls0qbL6f/OeIWacBxO3e4B9uGZGX1jvMSN2Ke0fNNlmQGWfba7fOy7o2HgI5rgTMOQOkYtg3FJ9NA+I0TvSdy4G4WBlcCWjMVcIPl9G//IVjIi5ayO+6s6dH1PdJCHT3EggEWj4UBEGj0YQ92RJJklRVjdhgXu6IDPMPvnId3V2zfV7/G2alzW7Z7OND1VaDKBAEgKx68dMjNfdM7R96yWiMrrxWjNlUs9GssYhEpJRqsXZzzaaFMUns7D5Q4QhwuzZN0W8ZBXKA81zrrrpXf57Wr+ejU64YfOMCfOMCvUbLMGovzC5BF5IQ6N7EaGvRnPzZDQ23t33JrzAMiJJGKtUAlRQW2QUwDvGr/uZwGgELbuUSMWe9gKQk8sqLn57+naXeg61WbjYbEf/SfqQPCHQIJAoQq7T7rzkJgY4dHPi2mm2V5RUBv3+gMXtK6tQuLCDSz6zZ17iPWjcgJjGgNdK5ILtHwr1gJ9ogGlSuSiABgMqV3r6/EQJlZ0ONTIYNQAhRSoFTxvuIp2iCWJIIs4sd+xr2ril751jT0VJX6Qdn1+6q39mFnV9TmIJSP6NBHaWCQdD7hDOHmg51Yf/dx6zM2flJQ51Bp1tx55uGzsqc1dMj6gIQoLlZ1/hVHwBw4G7FNcLca9Y0CeKHxAw6dpxylerE8wd3OkFf5i6bnDalqzrnoMqSYJFRgAYIUgkWHUF7V3V+SRhn9b56RVGMYtT73SbR9I0h37SxJpfLnaXL6iNlCQHm9bvWJBtrfbVUpWOsY/vrL5GNkiBBWxICHTtaJf4hwF2arC1hKV3OOO08RTBmnNOgmirHyBG4wd/w0ZkPv2jYzyidnTnnxoGLohVZgki2KcfOYveLEgNELM4bMF8QhA5MLXofnPPjx1XGIX9IIsYuBnTNW9wZQ/HKyspXXnnFZDI5HI777rvPdAX2uL2UUclFexp2J2nNHLgz4Cw0j+zCzjnwKk+lTtR5FS8HbhSMXiW69IrLZlX523sadoecuz+u+iRdzpyUNinaTjyKx0d9MulNxUS4ywVJfWHHvJNwRWFPrmDrN7hFkbs9wtMr0MhEWdjupWsEujOG4ocPHx43btzcuXNfe+21kydPXn311VdyR3vAftZTjhWca8rrLZYUBUnD7y340TF3id/vH2EeWWAu6MLOVaYShK1yiqqhwDll1Bcrn+t99Xsh5FHJQaGBTdXroxLoAPW/Xf7mzrqdjLMpaVMXDlwU/2ebvL6e/etFun59DefoW98kd98Ffca8qn34xk1s6zawWBDG2GhU7vuxtHljTw+qj9M1At0ZQ/EZM2Y8+OCDX3zxhd1uv+OOO0It16xZs2vXLgC47777UlJSwro1GCKX7DtqK/nTF3+UiMg4TEyf+I1h3xRw+B+CENLpdO25lYaSQWIfIDzMPGzcgHG2bqgSLWJxYtrko84SAQmUUy/1DDHld/ldIsKAXVQnhKKNk9tYvfFQ46FkbTKl9GDTFxaNpThzbpcPsmth/36N7d+PUlOJIKhvvIlycvD0aT09qG6HVVXBBctQjhAkUr27n25/c5sNxd9///3FixdPnTp1zZo1W7ZsmT17NgDk5OSEShoLgqC0tkXXaDRKO0bpj+//vZ/6fSriHLZWbRlsHDwpY3Lb+6qq2l695FC55bD+Y1DVu1u5vv/12lrN5qpNjPNvD/7OgFidSgmIqEARcA6Icx7taVhToEki5z8kEtbUemu7YYxdCuf/396Zx0dVnX38OXeZfbJvJARCWGIQWQxbkJC4vYCtCypCi/atIrSobd1wt9Vaq4K+am1RrKUgblUEioogyCZLCFCQTZAEiSQgkGQymX3m3nPePwbTYTIzmeXezJ2Z8/18+Hwy955z5/kNc56595zneY74709QwY+ZgXo9OXIEUsBBM8XFotMJ3tsmghEh1DvLjSyfb8CC4jabzXtHbDAYOjo6vAeHDx8+fPhwADCZTL5bdCOEDAaDy+XqegssYMHusfMMjxACIE7Bsffcf0ZkXOrXTKfTud3uYGVoVCoVy7J+m4LHfTflVlfLylPLNzVtGpU9enxBVV99ZFu9GPm0nw+6dUbZbd6tqXuMKSU3LfvuQ4QYQMABd1O/qRF15xkeE8wAAwAiwQmwE5h3NoeQ89Maggf5PD4mMUxNNd5/AK9ZQ3ge2+3c63+Lt0XJjzQOOpyC4jNmzHjrrbe++uorq9V6zz33xPJ23qerH1+c/5foYII/a/rsO+vxbE32sY5v61p2PnPps2l8AiylTi66ZmDmoF0tdTzhLy+4IludHVH38fnjt53balQZRRHbBOtleeOjtsRvsdrvpZeIdr8+4zjT2NGowZp+xn6+Sx3sM38UnnoapRmJExGTCV2dGlu1chx3/73kxht0Iial/ZwpMO0ed6Rx0GEWFPdrEx1s/XGtBzkZF0IMMIyG1QzLGhb7ZeNOi+vc/rZ9GZpMQghCSMtpT1i/G5qZGNKGZA0ZkT8iuniyQl3Rn0c+32Cvdzgc5RmDY/lN8lus9nvpJfzdr3e11L3/3XtaVuMS3WNyx95cMrXTRzNV47nHH8XrvlTn5qCfTUcZGRHbijFpbhY6LJAZed+4gkpKWINBFEWgtTjkJ9GmkFpaPbPn/GZo3t+u5TkRA8+OLq0aljk83maFxYlWx8ajJpbjDRyeNCRHp7pgylvFqLHPfA4BomZSZQ+3DHXGhKxq767eseC3WO330kvX3a/b2tqeeOIJABg3bty0aefrnAhYeHfXO7naXEKIltftad09tnflkOzzUWXudeutz72AMtJdR46Kqz7JWreW6bLEDT9uj53eJRQPm0zWp572bNzUBqC++mrjU79nlF3QihIvEsxBi19/DUZj6Vn0zHvit0WMsfls2fyrUZcQDgXSYnU/sfLbbIOKY1m7y2N2eG6/rLdvAyOf1osd/p35AAsqNY+H5gwpNfrvaN7mattxfFurua0s46IBxgE9aH7y0HX3a61We+ONNwJAYWFh57JEm6uNBca7BIIx5hj2jOWHAfrzn7n14YchvwAhxKhZhJB11Seqn/+s63upVCqGYfyWOgDA+ezz7k8+QxyHEDhWrBSNBs0jD3eepfthUzpJANfmC+I4BPhcOlp3KbuvBAikTzJ/NTHnBuWHQh86ZTWoWW/2oJpjNn7bNm1UL9+b6LUHW789PEKdZRDYcxaHfmjxZJ65YKC2ulqf3veHTG0mFsmGH76c1m/66JwxXd9Iqm3QkzWxqOvu11qttnPGo6WlxfuHDnQe7MEEI0CEEIfgzOFzO+u7EoKQzYbtDsRzRKMRWltJoAqxZo+50XaCuGGAcYBvJKjnk0/O7/ONAPGcWLfLt3KswsvDUnqSRHPQI4aDxfLlJYaGfEi3YjAYN5i2FpsGXpyp9IwmBiHi8ytCsP9Pyns7T+UYVaxjKCGEF/HB793DL5g7hb1t/0nj01WMSsBCGp/2bsM7vg4aE7Jy79kVe88QBNcNy5syPJ9nY/rRkjaxqGfwW6zOzMz0fZmbmxv+7tcI0G8H3/faN6+oGY0bu3/a+9oSQ0nnWebii/GO7cBxGIC4PahXgDqiR81HXz/6Nz2vE0RhSOYlt/Sb3jlnhUpLyfGGzsVtwiR2fCdFPhLNQaelwXtL9xx7KtPJIbWGpBnVQJocTTI56HCiArxs3Lhx9erV8+fPD3apiwsNNqeg4RiGAacHX31xjlYVdFgSbyjXhTgEBxu8xsXGI23L951m0r9B6nOrT/ICU/3zEYPDEhmEgIlF999/v9PpLCkpue+++3wbB5ts7YRlWb1eHyxvCCHEsmzo7t69DkLb3HWx2u9lRLtfDzAOWFC98Iz9jEpQGfgLcqbwgf0oPZ2YOwgByM4Ga4DcnNzGh+IAACAASURBVL8deS1Hk8MwjIjEb8yHd7fs6gxQYavGC0ePIIYDhoBHZCcqPTGHEi8SzEEDAF/YG5/UoMwcBIhgLIiudF6uegjhRAUAQHt7+759+zSaUAG8WXr++ZvKNh5tExGXo4WrBvuvKd06tnDZf86ka1kCYLZ7Kvr6TymUGvtv+WGzilcBgAd7agpqfM9uazCJ6Tu5jMOEqAjgDZb9k1zPZqmzIhd9noCJRddee60oimlpaX7zqjzPcxzXdbK1E71e73a7xSBV3lmW1Wg0IbprtVpBEPwSi3pgrlbNqnvre/tvGksIMCzk56O8PI7jBJebdAk8986NdP7K8ohvd/83fZSZNZMVBPHDDxFC/J23okDz1xQKJKKDBoCZA+9c0rBYx+kE0TM4c8iIbP8slRDgxkb82l/d23Z4aibg2bOYfv1CNA4nKgAAlixZctttt7366qudR7Zs2dLS0sKy7JVXXtl5cEAvTVnvbLVaHXCX6Osrio16TcM5BxAytn/m0N7+DrqioMJGrO/VvwMELi+68tq+1/nmdJhdHnX2PuLx3ugxIGrr7ccmpFeH/DBCETCx6PLLzxdr7pyr9YIQQgiF2MpLq9V6PJ5gqaE8z6tUqmDdCZB667GTHSfT2PTB6YM7S+XFba4WIWbqTfiTT8EjiBwLgsiMGOHXhEHM6Jwx9bZjLLAA4MTuAo3PNIhKxf7uN+zdczKzsix2u9y7ejMM43f3wDCMdwEzWHuEUIgbDpZlGYYJ9jzkxe9xp+sTISUcEtJBD8sa/ofMp49bG1iBG5wxmENhq3A6hVumgygCYlzr1pMNG9QbN4BOF4sxW7duHTRokF8hkUOHDjU2NnIcN2nSJN/j3q9+sFu/SUMLOY4jhAS707yyz1XXDPxJQEdWkqNrwUAAEAAB4DkWIxzLPeZPfvITqRKLYuSzpk+/OrNFxahcomtkzqib+07tmZrRrc7W5U3LtpzajAmZU3ZXecZ/p4yY3Dzc0QFOJwYAjQYKA8xBX1l4Vd2BnWpGLWBPVf6ES3O6TOJzHPRIdQFCiN9Po0aj6fpE0gnLsl27+MLzPMY4WAOvLxYEwdeDB/sxoIQmIR00ABToCoqMRdZAc38hwDtqiduNeBUgQMCCx4O3fMVMmhiLJbt37waAo0ePfv/992vXrp04cSIAzJkzx3vW706T4zij0RgwoQMTsvFo2+G2Jic6MyQ3f9KAoV1DUxBCarU6YPcJpZm79l7CGusBc4QQhnOUqPt5W3Y7dRuQ/Px8SRKLYqTdbfry1PpsbTYhhENc3bmdY3LG9PVZr5OP1c2fNlgbsjU5IhYXfvvG40OfzNWcTzsUFixAffoAAMdxgt1ONm1GP5vu171AW7Cg6o02T6voxBmqeGajdP3JJ4RgjAPeB5BTp/B3J9wlfcWiohAXDNYdfnTQoiiGvsWmhEOiOujoIHa7f1nI4POeEF5UgHfdCQCefPJJr3eOjjUHWz6uXwtZtUD4wyeFk67KWRf/LPzwwWHFaffCLaub1n8vfnWxceRPSqsKtAVRG6McrIKV9Qly4BjWIvTErrIdno69rXsNKoNTdDKE0bG645aG8w6akAuqCzBs1znoH63lCvVFFpwwBfvxF+uEF+YxOr1ZEMjkiew9dyN65xtXUstBM+MqEccBwYAYIBg4DsaHqvwQZlSAl2eeeSYW297bfVzdfzsjGgEAEdVe085Ga2WJIdQUuR+XFueML7sDoZk9XCxJVvI0+W7RTeD8vZhTcPbW9Q7dRRLUjMqFnRabBSEGCOYZtYb7sZYWQszUm8j6DaBWAQDpMKMuc9AJiccj/vk5VFAACDEsK6xeA1XjITmkJSyp9fOIMjP5l14ClgVAwHLcvHlMTmSVfeQDsXYg/71VZBFn6sFNBRWLilH9tvx3LY6Wdpep1dV6x6A7e2a6gEWcSPD5slwIObEd+Tyvc7/4BbrqCvLDD8KpZu6B+5iKCJapFQtpaQHfRQu1ipz+IX7mUABS7Q4aAFDVZfyG9fzJJu3Fgy0yr55HxPQRZctMLmAFwjgJIRjpinT+8XzdcsJyoqGjXoVVl2QOVf6+JGEyIG3gP678Z5utjcd8j6WMWgSLjtWpObVLdDHA8IizCT7PJUYDd/ddcPddOTk5ra2tyTHZinJziduNOsuoOp2oX0lcLaKknoPGm7cIf3hKUKudbg/zhyeYmpp4W3Se/xmc9+9aJGAnAgQMIEaM1MPWntvxUeOHOk7nEYWDpoPT+01Xs4qvrRweCFCayj/4WlYyVBkC8WSwGTpOhzHucHcU6oMumiUJHMe/9KLnwbmg1WJBYG7/JSqXclc2ShSkmINubxefehoVFCCEGIYRnv6TauhQyIo+m0NCWt0taWp9mqqXgAWGICd2Ndq+z1CFWwmeAHnv+Lvenbw54I6Yv/na9HXAYh1xocFc39zenKfKK9AGiEhTIAjQb8vvfe3Iqyqk9hDPdcXXR7p/QiKCRlaoVn/KnD6dVtKvnU2t+U9lkloOmjQ2gva/N5VIq8XfnWCU4aB1nE7EIoMYnuExxoTgiLa49mCPb3Qwi7gOd4cMZkYMAbKycXltyw4WcU7BOaXvjVX5E+JtVFgMSBv4evWb5xxnWQ/nl+qdzOh0TFkZk5YGbW3xNoWiGAft3SSw86U3lJILvuOZN5cpdCIGx3F++UukVy+PR2DQ+RxcInhUhYXox4vEN5Y+jU8bn1+1u223GqncomtI5tBSQ2n43VWMalT2qHprvddNOwVHiTGCCBD5+N72/baz2zI0GRhjNaP++MSyiuyROi6m5KAeQ8WqeukKA2Z+Uig9gFIcdM+AiopUt93qefc90GqJ08n/bDrq00M7q4bDDX2mXJRT/n1HYxqTNip3dNetykPzP0WTmDNf7Dq7S8TiTSU3K6RgdJuzlWNYu2D3iB4ecTzDt7tNETloh+j4qnHLKcspI2usyq8yJsI2YBSKJCjFQQuC4JuYFDBb1BfvzXWIbFRv9wBVDn5xGzdqJHvqlHbgIFufYt8rhLhh7xlYxI4tGDsyZ6Qjqs2EcjW5M8tnTR/4c+zCLFJKBcsCXa92lxkDRgAiYA5xOZpQ2wD6QYAsP7HsoPkgABCCW10t0/r9LFECVM45zn5n/Q48UB6oIEGbq+2dfUt/sJ4uNZReW3y9X/lvCgWU46DDh1gs+PM1ro4Orrwcxo6JopoBKi/nhg3jtFowm+WwML4YeIPNraBEFbvHpmJVdtGOAAEBnuHc2B2+h21xntt+brsbuxEgAnjnuZ1jcysHpg2S1WZJONR+6K1v39Sr9B7R4xAcL1TM13L/XVSwCtZH9zyMASOEjrQfabA0zB3ycIirUVKTRHPQDof4yqtkzx6PWuP+9yp0zTXsnF/F2yZpEES89lDLOfsZQRSHFupG90uwvUSDYRWsOk6fo81xix4OsVaPtcPdYeDCXXPrcFucovP83SVBTtHxg+OHhHDQC4++nqvNRQjxwHOI3dO6e3x+VefZrWe2YiKyDAdAGMQeaT9yznE2V5sXR4MpCiTBImnIf/bi2jrQaIFlkdGIly0DS09UZugBPj/Y8u+vzx5oMh8+ZVmw+fsDzQlTwCE0RbreLtHJIEbF8ADIjd15kbghBjEqRgVA4Md/vvehisVbD7rzJYc4s+eCvFCrYLlg8g5Bu0ATRyn+JJqDttuRT3gmQQxxJMkK+792ne7cojBNw+07mSQOOkeTc03vn560nmy0nDjtODVz4MwIysMCFOgKeIbTcXoBC1pOq+f1ffUlshkrGQxiKvMqRXJ+WcUpOosuLCEyIutSQnDnDw+L2H6RBO1QUoQEc9Do4sHEYj2/cCgI7OXVKDeCFSclUzXogpwUlkmSAucWj+XTk/8uMhT1NhTna/L3m/ZjgsPvrmW1MwfOIgRnabIAYGrJ9NxI1hjjyJW9rh6UUWZ2t7e7TBMKqodmDvM929/Y/+aSaQDgEQUA+F35vRH9blFShAT7TqDCQn7+C54HH8TAqG+aIt50o3/50IRlQK6+7jtzhp7FmLTbhdElcu3j1cM0Wk9oWR0DDCAgQPa17ZtYNClPkx/+FYZlDf/LhL+dtp7Sg14f9uR13MnV5N5x0cwW1/XghoBz7pN7T542ZNrpttM6Rqf8bekpcSHBHDR4s1E3bdRqtSzLRlqwX8lcflGWSGBXo4Vn4c7xvQfkJUYqR7fwDI/hv9OthBAORRxPpuN1fQx9e7IWR+x0eDqWnfxw+w/bBCxO6XPj5b2u6NqGRWy6Kl3uLa8oiUuCTXEkMcfO2N/e0dRscjScs//58wazI0kGbT9j6ZDMIW7sJoQ4RdeY3DGZ6nALjCQ0a5o+P9B6IEuTna3O/qz500Pth+JtESXxSLw76MSCvTBM2/uSDRS7vaXelGNUswxDCOEY2HzMNGWE/5Yo3vydgN29ePc8DNGg51Exqhv73rTX8p/THad7aXqNza1U8uO8Xq/3fendItLvoC9u0S3yopH3374WE7z93NYcbS4AMAxj4AynXM2j9aP9mjEMo9VqMY5gUl5u8NdfCw3HXX37kKFDkfz7plNCQx20vPhVC2FZNtimsZu/bcszqgEAIaRi2XaH2LWZ10EH7E4IrDt0pv6cg0Gob7Zm0pB85UzOGzjDtf2us9lsoTM/lYDfZjQGgwFjHKwWx/pT6z5r/gQIujT70sm9r8lRX7B6iQkhhCCEMMYe7FERVdedblQqlcPh8Jvi0GrjFkcovv+B+M8ljEHfIQikspJ98H7qo+MLddDy4jdtynGcSqUKOJf6P+XZdSfMap4jhNjdnqI0rmszhJBerw/YfXtD+5JtTelaHhBs/daDReHKi85vFmMwJMzCWgLxjfnw2uY1OdpcQRDqLfVrm9bO6H+rb4P/HfDL946/a+ANHtFjFSyXZvvv6t1oa/y4edlXTZur8idcWXhV+KVl5cLpxG/+HeXnA0KMTid8tZVcXo3Gjo2zVakNddBK4bph+Ta3WPedWSRwdXl29aDIiqAePmUxaljv5IFBzTactXc66ORAwMqalD9pPckgpsXRgjHmGK6udee0ftN961tVZI8sSiuqtxxDHmZ49gg9d8E8idlt/r+DL+bocrI02V+bvraL9lv7/yK+kz/EbCYc32kB4Tgw0dyZOEMdtFLI0HG/ntBnZo2aAcyRiKcCWN/8HSDKmd+Ine9t32//fuvOM7UixveU/2ZQWlm8LQIAEIjQ6mrhGB4IcYiEQahr9cF+aaUDswZZLAFyjo5bGnS8DgEiQFjE7m3be03RT7M1cf1Nzc0Ftwt+3PIK2W2oLAFS6pMb6qAVBEKQbVAJguBwROygR/VN33ikNdugJkDMdnF4sbw1ObsupjEME2IxjWEYjUajUgWukcQwTLDubtH9Ut28HE1utiYHE7zgyN9evOz/0lXxDxJngSUEvEk3hIgMoxaJGH4RQZ7hMbkg+pBng872YoxXrly5YsWKpUuXAoDdbn/11VdZlmVZ9r777vPWMQ94MCIQw/B/f1P817/Ipi0iFtlHHkalNLkxziSkg8YNDYLFigYNAl0ClGXoGYYUGR6d3P8/TVYANKSXdlhv/7gCafFb79JoNDzPd10E64TneafTGWyRkOd5lmUDdm+yN6kYFUKIEEIwUbOaI2e/GZJ5CcR1MQ0ANJwmX1dAAAuioGLVNsHiu6NNtwxIG+gQ7BpOxQLnws5xeZelBa9zbTaby8rKCgvPbyL8xRdfjBs3rrq6etmyZTt27LjsssuCHYwUNGgg9+QT7H3W9KKitmSs9ZhwJJqDJkRc+Hdx+XKsVtltDvbJx5nLa+Jtk1Io76Wv6J+LEArhKBMOHasVfaLQMBH9JnPjxeCMiz/87gMXdgOAhlVfWXhVRDPIGlbz6CWPrmhe0WI/N9A46Ce9fxqicWZmZmbmf5cQT5w4MXLkSAAoLS09fPiw1xd3PVhXV/fss88CwC9/+cvrrrvO94IMwxgMhoDF1rHVii0WMLVnZgddBWEYhhCi0YTakjgj44JyjIoKJUwgpHHQ4TyC1dXVLV26tKCgAABmz56dG1UNDbx/P165EmVlIYZBxjTh6T+qxl8GNBIoeclSZ1+WP3532y4Vo3KJruGZI/oaSuJtFACAxdPBM7ya14iiyDGsS4xsVsohOJ478FyGJpMD9pjl28+aPp1acksUZgScNfIeLC8vf/755wEgLS3Nbx7cYDC4XK6uDzRi3S73/Q+CVoMEgbvjdu62WyEQOp1OFEWXyxXwLEIoPT3darX6/gB0u0EdJSDSOOhwHsFsNtv1119/1VVXxfROp08TlRpZrUTESKMBnodz5+DH900Cvm0/2mhuNCDD4IyLI3pkVjKY4L3n9p42n8pX5fdPi3gjrhv73nRJ/tDvzY2ZXOawzOEK+VgaLA0G3igiLBCPilXXntt2c9+bw9+lrMFSr+V0KobHGKsZzfaz2yYWTQoxy+FL//796+vre/fufezYsdIfp4m7HjQajeXl5QBgs9n89ughhIii6J9iLgju++6H9AzkcSOtzv3PJWTYMDS4vKsBGGOMcbAM9YDbISkqeSqBkMZBh/MIZrPZ9uzZs2/fPqPROHPmTO/+UrW1tUePHgWASZMmdQ3X7foMJZSUCufOEY8HMUgUMeI5TZ++iA+gAiGkVquD/Wh7F7X8JjHj/h1a0/z5xh++VLFql+CqyK64pd90JSfdhQkB8tGJf+017eUQ5xJcVxZeNalockRXQIAqciuGZgxVVC0OFtjT9tMswwIAcYs8o/b+HSYe7GF8Qm0QQh7RA0FuMY8cOfLxxx83NTU9++yzV1xxxdVXX/2Xv/yltrZWp9Pdcsst9fX1q1atuuuuu3wPRqGInDsHgkCamxDLYkxAo8ENx9lADprSY8g+B935CFZZWVlZWZmdnb18+fIvv/xy4sSJANDe3t7c3AwAGOOu/rHrEex2IY4jLhcGBAQTjmMJRkEcqzfvOcQpv+sHa9wz2ATrmubPc7Q5hBCO43a37BmVM7rU2D+OJknCd5bju1t3p6vTMcY8z69p/nx8XpWBT/zcGQQIEYQQECCAAEhEv6alxv52j13H6wBAJOKIrEu99VQDctFFFz3++OO+Rx566KHOvwcMGHD//ff7HYwCZDAQmw2p1AQBYhmw2ZCFrhPGGVkcdMBHsKampvz8fADQ6XSdD0eTJk2aNGkSAJhMJt/SdAghjUZjs9n81jHw6VOQlYHycpGIkUaNW1utTU2oV6+uNgRMovU9q9Vq/YrhabVatVodvezY6HBbOJ8gLY5hzO5kGB4dng7Wp9Ixh7gOT0cSOGgBC3maAgEEQRTUrNohOgQshD/Fka5Kv3/Ig7vbd33VtLmqoPrKXlfG/WmJ2GzImAY2GzAMIQQMBpIR7+TGlEcaBx3OI9iUKVMWLFig1+sxxvfee290b4QGDiQ2O8rJQWoGCCFuN8qPoLKwksnV5rqxp/MHySk6iw3F8TVJEor1xS7RYQA9ABBCIt3ySrEUG4o9xJOhyRAEAQMeknFJ+N7ZS1993+G9h0/rO10h5UZRXh4wCJX0BbeHVasEs5kmqsQdFDDUpucxmUyiKHa+RAhlZ2e3trZ2NQ9/vkZ8YR7ieeLxcAtfR2WB88qysrI6OjpC30GbL4z01Gq1IVItoqOlpcX3JcdxRqPRZDIFbHzc0vDqN6+wiBWw8L/9f1mRM9Kvgfdj8bumLzqdrmuYXU5OTrTmB8XPBm8cdMCUOQDY07J76fElDLACEe4dfF/XeRue5/V6fXt70MRio9Ho8Xj85qB7QFc3xZJOr/usKWixJADQarUcxwX7WAAgMzPTYrH4fUsl19V1kTA9Pd3hcLjdbr+W5OhRz+xfI16FsIgefIC9JvBqgcFgEEXR75qdBBy8LMv6LlNRwiTR4qABmMmT0FVXad1uLi/XmkQBvwBQauz/1hWLTA4TK7Dh56Qpn4qckTX9Lz/TfkYDGoXEYEjCVb2uvnHwTafOnQp/k3KFg8rKVJs2sOaOtOJik6Uj3uZQErNgP+I5lJOdNJtd+cIgJl2Vnkze2Yt365Bk8s5eVKyqazHoxAYhlJMdMDKK0vMk24ChUCiUpIE6aAqFQlEoSlkkNJvNftn6VqtVr9cHi032eDwY4xBRcTabTavVBqvpJYqi2+32S1RRq9U6ncRbtfqtB3oTZEO8i9Pp5DjOm8XTFUKIzWYLUYDfu+zjl/4rx+KMny5BEERRDPHf4XA41Gp1RP8dvrhcLo7j/OLWe0BXwM/Tl26/paIohqhZYbfb1Wq13LrsdrtfWrbD4VCpVMEyszDGDocjxIK5y+UKnbpttVr9vqUMw6Snx78GYeJBFInD4aioqHC5XMEaLF68+E9/+lOIK0yePPnYsWPBzn755ZezZ8+OycSo2L9//5QpU0I0eOKJJz744INgZ81mc0VFRYjuCxcunD9/fvT2RcvHH3/80EMPhWgwbdq0PXv2BDu7e/fu6dOnh+g+d+7c5cuXR29ftLzwwgtvvvlmsLMY44qKCrPZHKzB+++//+STT4a4/pQpUw4cOBCTiVExa9asjRs3Bjt79OjRa665JkT3Z555ZsmSJcHOOp3OiooKp9MZi4UUL3SKg0KhUBQK+9RTT8XbhgAQQkwm0/jx44M9FDscjoyMjIEDBwa7Qmtra0VFRbDHNLfbzXHc0KFDpTE3bLwVaryFSgJisVj69u1bGKT8E8bYbDZXVVUF626z2bKzs/v37+kEcafTqdfrvaV5AmIymYYOHRrsIVcQBO/daLDuFoultLTUWwqxJ7HZbIWFhX369AnWoLW1dfz48cGmpBwOR1paWlmQUH0AaGtrGzFihNHY03Eg7e3t5eXl2dmBN3DxTsSNGTMmWHer1VpUVFRcHDSRqq2traqqKopNAyh+KGUOmkKhUCh+0J84CoVCUSgKddCEkBAJsrE36La7TMhtNtUlLampS+7RRwkfJTro3bt333PPPd7aiYsXL96xY4e0DbrtLhNym011SUtq6pJ79FEiQokOesWKFS+99JI3GnTq1KkrVqyQtkG33WVCbrOpLmlJTV1yjz5KRCjRQXMc1xnbHzAMI8YG3XaXCbnNprqkJTV1yT36KBGhxJIoBQUFixYtam9vX7t2bV1dXdegsRgbdNtdJuQ2m+qSltTUJffoo0SEEsPsCCG1tbVHjhzhOK6srGzUqFF+qbQxNui2uzJ1xf6xUF1UVw+YHS9dSYmyHPSiRYsCHr/jjjskadBtd5mQ22yqS1pSU5fco48SBcqa4giRcyVJg267y4TcZlNd0pKauuQefZRokKfEh5SsWbNG1gbddpcJuc2muqQlNXXJPfoooVHWHbSXQ4cOLVu2zBvoLgiCIAgTJ06UsEG33ZWpK/aPheqiunrA7HjpSkqUWCxp/vz5M2fO/Oabb+655x6EUGVlpV+1mhgbdNtdmbpi/1ioLqqrB8yOl66kRIlx0BqNprS0FCFUWFh48803r1+/XtoG3XaXCbnNprqkJTV1yT36KBGhxCkOrVa7ZcuWnJycRYsW5eXltba2Stug2+4yIbfZVJe0pKYuuUcfJSKUFWbnxe12t7e3Z2RkrF271mQy1dTU+D0ixdig2+7K1BX7x0J1UV09YHa8dCUlSnTQBw4c2LRpk91u77TtkUcekbBBt91lQm6zqS5pSU1dco8+SkQocYpjyZIlM2bMCLHNRIwNuu0uE3KbTXVJS2rqknv0USJCiQ66pKRkxIgR8jXotrtMyG021SUtqalL7tFHiQglTnF8/vnn69at6927d+eeZvfee6+EDbrtLhNym011SUtq6pJ79FEiQol30Js2bZo6darBYJCpQbfdZUJus6kuaUlNXXKPPkpEKNFB9+nTp7KyUr4G3XaXCbnNprqkJTV1yT36KBGhxCmO5557zmazFRcXdz4izZo1S8IG3XaXCbnNprqkJTV1yT36KBGhxDvompqa0AVkY2zQbXeZkNtsqktaUlOX3KOPEhFKvIMGAEKI1WoNEanTbQNlQnX1pFWxk5q6ElRUUqLEWhzSbht88uTJ2bNnR3dWWiTU1a3ZVFfspKYuCQdXOA0o3SBzOdNoeOyxxxwOx6OPPkoIsVqtc+fOjbSBL4IgtLW1RXdWWiTU1a3ZVFfspKYuCQdXOA0ooVHiHbQk2wYTQrwVaVmW9e4AH5DQZ6Uldl1higqngYRQXcEaJKIuCQdXOA0ooVHiImHs2wbv3r37n//8J8b49ddfX7x4cVlZmW/cz2efffbpp596PJ7OI2+99ZZ8csI3O3SD0KKA6pKa1NQV4+CC+OlKTuJ6/x4YjPH27dsXLVr09ttv79y5E2McaYPQj2mPP/64zWaTVUJAYtTV7bMn1SUtqakrxsFF4qcrKVGWg/7LX/5CCPn73/8edQMvv//97wkh3u8QIcTvO/Tqq6/GaGekSKIrtChCdUlHauqSZHCReOhKYpQ1xXHixIm5c+c2NzcfO3bM9/gLL7wQZgMvoR/THA7HQw891K9fv85A+l/96lfSi/FBEl3dPntSXVKRmrokGVwQD11JjLLioEVRNJvNixcv/sUvfuF7PCcnJ8wGXgghtbW1R44c4TiurKxs1KhRvpHzO3bs8AukHzt2rMRKLkQSXaFFAdUlHampS5LBBfHQlcQoy0HHzqJFiwIev+OOO3xfkoQKxQ9TFFBdyoDqSixdSkZZUxxdOXny5DPPPPPmm2+G2aCsrKzba3a7DN0DRKQrHFFAdclJauqKYnCBMnQlD/GZ+g6b6CLhT58+vWLFCu/fS5YsOXPmjO/ZiELxZSIKXaFFEapLTlJTVxSDiyhDV9KgxEQViDkS/uWXXy4oKPD+PXTo0Jdfftn3bDih+DIRi67QooDqkoEU1xXF4IK46ko+lDjFEXskvCiKnesSw4cPf+edd3zPdrsMLRMx6gotCqguqUlNXTEOLoifrqREiQ56xYoVOVgQlwAACyxJREFUL7300h//+EcAmDp16tNPP+03MHbs2PHSSy/pdLpgVygqKlqwYMFFF12EMd6/f7/fV+TXv/51bW0tQujs2bMTJ04cNWqUTEL8iFFXaFFAdUlNauqKcXBB/HQlJUp00N0+IuXl5YX4AgHA7373u61btzY0NLAsO27cuNGjR3uPv/baa7/5zW/+8Y9/3HnnnT2/cBGjrmCigOqSh9TUFfXggnjrSkqU6KBjiYR/9913Z8yYsXjxYu9LQRAOHz58+PBhbyRQmKH4MhG1rtCigOqSh9TUFfXggnjrSkqUGAdNYoiEr6urGz169LZt2/yuedlll0HYofgyEbWu0KKA6pKH1NQV9eCCeOtKSpTloOWOhPfeAnR9l67Xlxaqi+ryReG6ohMF8dOVxChrikOqSPhgK9EDBw4M/10kRBJdIZbXqS5pSWVdscSuxEtXMtPjkdfdE3sk/F133dXR0RHs+h999JEgCN6/bTbbG2+8IZnpIYlRV2hRhOqSmtTUFePgIvHTlZQoMVEl9kj4goKCECvRoig+/PDDhw4d2rJly2OPPdZjcZox6gotCqguqUlNXTEOLoifrqREWVMcXmKJhF+4cCEA8Dz/wAMPDBo0iGVZ73HfgofTpk0bO3bsww8/bDAYXnzxxYyMDHn1/EjUusIRBVSX1KSmrhgHF8RPV1KirEVCLy+//LJare6MhNdqtXPmzPFtQIIvQ9fW1ga8pm/BwxUrVmzbtu22224zmUyrVq264YYbJkyYIJ+cTqLWFY4ooLqkJjV1xTi4IH66kpN4zq8EQRTFzZs3L1q0aMmSJTt27BBFsfNUmJs+EEIwxsFmyj744AOPx+P922q1LliwQAqruyd2XSFEEapLalJNlySDi8RPV1KirDvobsN0HnjgAYZhmpubi4uLfRv4RcJ3uxJNCOno6ACA9PR06WV0QRJd4VRxpLokITV1STW4oMd1JTHKmoPuNkxn3rx5ASPh/QhdbWDPnj0LFy5Uq9UYY1EU77777ksuuUQ6EQGQRFe3pSGoLqlITV2SDC6Ih64kRlkO2pvX35mY1JUPPvhgxowZGRkZq1at8j3uFwkfeiX6ww8/fPHFF9PS0gDAZDLNmzfvueeek8T+YEiiq9vldapLKlJTlySDC+KhK4lRloP2EnskfOhqAyqVyvvtAYDMzEyO66EPIUZd3ZaGoLqkJdV0STK4IH66khIlfnarV6+eN29ewExT7y3A6dOnp0yZ4o3ysdvtS5cu7bwpWLly5YQJE0IXPCwoKHjllVeGDBmCMT548GBhYaH8mgBi0BWOKKC6pCbVdEkyuCB+upISJTroMCPhb7/99tbW1uXLl//0pz/tPNXR0fHYY49lZ2dXV1dPnTrVYDB07T5nzpza2tr6+nqE0Lhx48aMGSO9hkBErSscUUB1SU1q6opxcEH8dCUlyori8EbCm0ymH374IUQkPAA0NjaGiISvr6/funVrXV1dUVFRdXX16NGjVSpV59kDBw5s2rTJbrd3an/kkUfkkgQAEukKLQqoLulIcV2xDC6Ih64kRlkOWvJI+Pr6+o8++mjfvn3/+te/Og8++OCDM2bM8H3EGzBggBTmB0VaXQFFAdUlHamsK8bBBfHQlcQoa4qj84tCQhY8dLvdzz//vHfxYdSoUW+//XbX79C33367devWXbt29e3b99577/U9VVJSMmLECBnMD4pUukKIAqpLOlJZV4yDC+KhK4lR1h20l1gi4b3PX9u3by8oKKiurq6srOw63fb555+vW7eud+/enXtGdP2SyUHUusIRBVSX1KSsrlgGF8RPV1KirDtoL7FEwi9cuHDChAnz5s0LUaJl06ZNIZY45CNqXeGIAqpLalJTV4yDC+KnKylRooOOJRJ+/vz53V6/T58+cdnRMmpd4YgCqktqUlNXjIML4qcrKVGig5Y7Er6jo+OJJ54oLi7ufASbNWtW7GZ3C9UFVJcPytQVe5pJvHQlJcpy0D0TCV9TU+O3LabcUF1UV1eUqSv2NJOe15XEKGuR8O23396+fbs3En7cuHHBprEwxp2R8AMHDhwzZkwsX4i1a9dOnDgx6u7hQHVRXd2iEF3SioIe0ZXEKMtBe5E7Ev7QoUPLli2zWCwAIAiCIAh//etfJbQ/GFQX1eWLMnXFnmYSL11JiRIddCcyRcLPnTt3zpw5b7/99uzZs7dv396rV68QdcvkgOqiukCpumJPM4m7rmRCWXPQncgaCa/RaEpLSxFChYWFN99889NPP91jXyCqKwqoLsmRNY0rjrqSD2U5aL9I+OnTpweMhO/fv//9998fdSS8VqvdsmVLTk7OokWL8vLyWltbpbE+OFQX1dUVZeqKURTEQ1cSo6wpjrlz506YMKGqqip0JPzDDz98ww03+C5xhLllw2OPPfbnP//Z7Xa3t7dnZGSsXbvWZDLV1NT06dMnVtNDQnVRXb4oWVfUoiB+upIZ2Xc9lIG//vWv0XWcNWuWtJZIC9XlB9XV80QtiihbV4KirCmOMIk6Et5qtb7zzjtdj996661S2hctVJcfVFfPE0uaiZJ1JSgJ6aCjjoRnWTY7O1tye6SC6vKD6up5YkkzUbKuBCUhHbRfpv/atWvD7KjVaidPniyDRdJAdflBdfU8UYsCZetKUBLSQXeNhA8zValrOQVFQXX5QXX1PFGLAmXrSlDYp556Kt42RMz8+fNnzpz5zTff3HPPPQihysrKMJeJx48fL7dtsUB1+UF19TxRiwJl60pQmHgbEA1+kfDr16+Pt0XSQHUlFkmpKylFJS4JOcWRrJHwVFdikZS6klJUAhPvOL/IePTRRwkhLpfrzJkzLpdr1apVS5YsaWxsjLddsUJ1JRZJqSspRSU6CXYH3dLSAgAqlSovLw8Arr322nhbJA1UV2KRlLqSUlSik2AOOlkj4amuxCIpdSWlqEQnwRx0skbCU12JRVLqSkpRiU6COehkjYSnuhKLpNSVlKISnQQLs0vWSHiqK7FISl1JKSrRUVa5UQqFQqF0kmB30BQKhZI6UAdNoVAoCoU6aAqFQlEo1EFTKBSKQkmwMDuKwhFFcdasWYcPH+7Vq1d6enp1dXVJScn8+fOdTuett956xx13/OEPf/jyyy95nh80aNBrr722YcOGN954Y+XKlQBw55131tTU5OXlPfvss/3797fZbHa7/d13301LS4u3LAolPlAHTZGSzz777MSJEzt27DCZTOXl5TU1NTzP19bWNjQ0ZGZmbty4cc2aNdu3b2dZdvr06UuXLi0qKvK7AsMwBw8eXL16tV6vv/vuuxctWhTprtIUStJApzgoUrJ///6qqiqEUFZW1hVXXOE9ePHFF2dmZgLAzp07L7/8cpZlAaC6unrXrl0BL3LppZfq9XrvHwcPHuwp2ykUxUEdNEVKMMadO9p5HTEAqNXqgI0RQr7b3wmC4P1DFMWuV6NQUhDqoClSctFFF9XV1QFAe3v7xo0b/c5WVlZu2rQJYwwAGzZsGDt2bFpa2tmzZwFAFMXOG+q9e/eazWYA2Lx587Bhw3pUAIWiJOgcNEVKrr/++vfff3/cuHF9+vSpqqriuAu+YNXV1ZMnT/bOcpSXl3vLpGVkZNx0001ZWVmDBw/25rVecsklv/3tb5ubm/V6/e233x4fJRSKAqCp3hQpaWlp+eKLL37+858TQsaPH//KK6+MGjUqoiusX7/+lVde+fTTT2WykEJJIOgUB0VK0tPTV69ePXLkyHHjxtXU1ETqnSkUii/0DppCoVAUCr2DplAoFIVCHTSFQqEoFOqgKRQKRaFQB02hUCgK5f8BGcPE6IYjap8AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"markdown","source":["* Do the number of DE genes correspond to your expectations from the PCA? What would you conclude on the difference of Tamoxifen effects in male and female? Are some of these genes described in the original paper?"],"metadata":{"id":"BNK_45RBKhpn"}},{"cell_type":"code","source":["%%R\n","\n","## See Fig 4e and f\n","data.frame(res[rowData(dds)$gene_name %in% c(\"Egr2\", \"Fos\", \"Dusp1\", \"Nr4a1\", \"Sik1\", \"Arc\", \"Egr1\", \"Plcl2\", \"Galnt9\", \"Per2\", \"Zbtb16\", \"Map3k13\", \"Banp\"), ])"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"f9p0dT1UKkak","executionInfo":{"status":"ok","timestamp":1718912452847,"user_tz":-120,"elapsed":938,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"6b4fdd4f-d6e8-4cf4-e2f4-3364b8baa708"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":[" baseMean log2FoldChange lfcSE stat pvalue\n","ENSMUSG00000055866 1502.2350 -0.4609004 0.08358010 -5.514476 3.498206e-08\n","ENSMUSG00000037868 349.9354 1.0836466 0.16775092 6.459855 1.048033e-10\n","ENSMUSG00000021250 1608.6033 0.5798797 0.08335440 6.956797 3.480950e-12\n","ENSMUSG00000022602 8859.8087 0.3186190 0.08046486 3.959729 7.503498e-05\n","ENSMUSG00000023034 3315.9279 0.4635517 0.08029831 5.772870 7.793254e-09\n","ENSMUSG00000033618 2228.9591 -0.3017350 0.05564475 -5.422524 5.876325e-08\n","ENSMUSG00000024190 1209.9096 0.3230613 0.08355055 3.866657 1.103377e-04\n","ENSMUSG00000024042 671.6219 0.2326045 0.10027011 2.319779 2.035285e-02\n","ENSMUSG00000038910 2458.3888 -0.1593573 0.06097903 -2.613313 8.966902e-03\n","ENSMUSG00000038418 9691.4256 0.4367312 0.11062756 3.947761 7.888547e-05\n","ENSMUSG00000033316 3574.2651 -0.1516976 0.07406778 -2.048091 4.055109e-02\n","ENSMUSG00000025316 1183.0364 -0.6665160 0.06401430 -10.411987 2.186107e-25\n","ENSMUSG00000066687 1775.0417 -0.8416029 0.11192186 -7.519558 5.496163e-14\n"," padj rowData.dds..gene_name\n","ENSMUSG00000055866 2.326161e-05 Per2\n","ENSMUSG00000037868 1.701430e-07 Egr2\n","ENSMUSG00000021250 1.111050e-08 Fos\n","ENSMUSG00000022602 1.164305e-02 Arc\n","ENSMUSG00000023034 7.278405e-06 Nr4a1\n","ENSMUSG00000033618 3.751211e-05 Map3k13\n","ENSMUSG00000024190 1.531199e-02 Dusp1\n","ENSMUSG00000024042 3.491293e-01 Sik1\n","ENSMUSG00000038910 2.365335e-01 Plcl2\n","ENSMUSG00000038418 1.198984e-02 Egr1\n","ENSMUSG00000033316 4.659142e-01 Galnt9\n","ENSMUSG00000025316 3.488808e-21 Banp\n","ENSMUSG00000066687 2.923776e-10 Zbtb16\n"]}]},{"cell_type":"markdown","source":["## Extracting the interaction term\n","\n","We would like to identify genes reacting differently to Tamoxifen treatment in male and female. We need to update the design of our DESe2 object. See `?DESeq2::results` explaining how to extract this effect (Example 3)"],"metadata":{"id":"XJpFc6t5Kse7"}},{"cell_type":"code","source":["%%R\n","\n","design(dds) <- ~ tissue + treatment * sex\n","dds <- DESeq(dds)\n","resultsNames(dds)\n","\n","## Select last coefficient\n","res <- results(dds, name=\"treatmentTamoxifen.sexmale\")\n","summary(res)\n","res <- cbind(res, rowData(dds)$gene_name)\n","head(res[order(res$pvalue),], n=10)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"4HdznQfQKvGf","executionInfo":{"status":"ok","timestamp":1718912566105,"user_tz":-120,"elapsed":49311,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"629d1085-4b13-4a83-b691-2405b3d37ee7"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: using pre-existing size factors\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: estimating dispersions\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: found already estimated dispersions, replacing these\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: gene-wise dispersion estimates\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: mean-dispersion relationship\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: final dispersion estimates\n","\n","WARNING:rpy2.rinterface_lib.callbacks:R[write to console]: fitting model and testing\n","\n"]},{"output_type":"stream","name":"stdout","text":["\n","out of 25314 with nonzero total read count\n","adjusted p-value < 0.1\n","LFC > 0 (up) : 3, 0.012%\n","LFC < 0 (down) : 0, 0%\n","outliers [1] : 45, 0.18%\n","low counts [2] : 0, 0%\n","(mean count < 1)\n","[1] see 'cooksCutoff' argument of ?results\n","[2] see 'independentFiltering' argument of ?results\n","\n","DataFrame with 10 rows and 7 columns\n"," baseMean log2FoldChange lfcSE stat pvalue\n"," \n","ENSMUSG00000004328 262.7627 0.996614 0.1662446 5.99487 2.03654e-09\n","ENSMUSG00000056673 610.3640 3.800710 0.6739355 5.63958 1.70470e-08\n","ENSMUSG00000025952 34.6641 25.644635 4.6820234 5.47725 4.31975e-08\n","ENSMUSG00000030168 3687.4690 0.223268 0.0542939 4.11220 3.91904e-05\n","ENSMUSG00000091462 34.0167 -1.339289 0.3349684 -3.99825 6.38116e-05\n","ENSMUSG00000052040 6658.2761 0.291482 0.0729475 3.99578 6.44803e-05\n","ENSMUSG00000037754 4999.1823 0.277067 0.0695490 3.98377 6.78306e-05\n","ENSMUSG00000032846 1792.3669 0.338061 0.0871774 3.87785 1.05386e-04\n","ENSMUSG00000025386 29594.0578 -1.676026 0.4442314 -3.77287 1.61383e-04\n","ENSMUSG00000031431 3227.1025 0.334079 0.0927399 3.60232 3.15390e-04\n"," padj rowData(dds)$gene_name\n"," \n","ENSMUSG00000004328 5.14613e-05 Hif3a\n","ENSMUSG00000056673 2.15381e-04 Kdm5d\n","ENSMUSG00000025952 3.63852e-04 Crygc\n","ENSMUSG00000030168 2.44859e-01 Adipor2\n","ENSMUSG00000091462 2.44859e-01 Gm17084\n","ENSMUSG00000052040 2.44859e-01 Klf13\n","ENSMUSG00000037754 2.44859e-01 Ppp1r16b\n","ENSMUSG00000032846 3.32874e-01 Zswim6\n","ENSMUSG00000025386 4.53110e-01 Pde6g\n","ENSMUSG00000031431 7.24782e-01 Tsc22d3\n"]}]},{"cell_type":"code","source":["%%R\n","\n","df <- assay(vst)[row.names(head(res[order(res$pvalue),], n=3)), ] |>\n"," as_tibble(rownames = NA) |>\n"," rownames_to_column() |>\n"," dplyr::rename(Gene = rowname) |>\n"," pivot_longer(cols= colnames(assay(vst)),\n"," names_to = \"Sample\",\n"," values_to = \"Normalized expression\") |>\n"," left_join(y=as_tibble(colData(dds)), by = join_by(\"Sample\" == \"sra.sample_title\")) |>\n"," left_join(y=as_tibble(rowData(dds)), by=join_by(\"Gene\" == \"gene_id\"))\n","ggplot(df, aes(x=group, y=`Normalized expression`, group=tissue, col=tissue)) +\n"," facet_wrap( ~ gene_name, scales = \"free_y\", ncol = 5) +\n"," geom_point(position = position_dodge(0.2), alpha = .8, size=2) +\n"," scale_colour_manual(values=myPalette[1:3]) +\n"," theme(axis.text.x = element_text(size=10, angle = 90, hjust = 1, vjust = 0.5))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":497},"id":"ZZTtFy7dLHGC","executionInfo":{"status":"ok","timestamp":1718912583902,"user_tz":-120,"elapsed":1446,"user":{"displayName":"Davide Cirillo","userId":"02251345906240842812"}},"outputId":"e7dd9078-311a-43b5-dd73-694311f68007"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOzdeXwT1fow8OfMTDLZm6Y73cvWsioFtCxlBxFRBPSieOWqoBdFr3iVi4L3FUSvCirgclFBRcDtp6yyylJklV0WQVpokVLoviVplpk57x/B2gsFQibNpO3z/fhHEpInT2L65OTMmecQSikghBAKPozSCSCEEKofFmiEEApSWKARQihIYYFGCKEgxQXgOcrLy0VRDMATNQHh4eHyg5SUlMgP0kzIfMPxrfYSy7KhoaFKZ9H4BKJAV1ZWulyuADxRE+CXAl1WViY/SDMh8w3Ht9pLarUaC7QPcIoDIYSCFBZohBAKUligEUIoSGGBRg1ox44d+/fvt1qtEydO/Pnnn5VOp8n68ssv9+zZ09APQYEXiIOEStm0adOGDRvUarXT6Xzsscc6dOigdEZN3L59+w4ePDhx4kQAyMnJ+eabb6ZNmwYAp06d6tixY2xs7JQpU7Rard1unzZtmtlsVjrfRqb27S0oKHjnnXemTZvmzWG33bt3L1y4sEWLFgDw9NNPR0VFNXymyG+abIE+ffr0xo0b33zzTZVKVVFRsWLFitzc3EOHDsXFxR05cuSNN97Q6/Vvv/12165d16xZExsbW1VVNWjQoPbt28+ZM4cQEhUV9dRTTyn9Ihq91atXa7XaX3755dSpU5GRkS+88EJERMT7779/9uzZ5OTkOXPmGAwGl8s1ffp0lmWVTrZxKCwsnDt37ksvvRQaGlpYWDh79uyEhISioqLk5OQ1a9YcP348MjKyoKAgOTn5woULHTt25DjuvvvuGzp0aO3D6z5E2deCbqjJTnHs379/6NChKpUKAMxm8yOPPMIwTHx8/GOPPda3b9/t27dLknT+/PkzZ86MHDly8uTJlFJCyOrVqwcPHjxz5sxWrVq53W6lX0Tj89NPP02ZMmXKlClz586tvfHOO+9MT08fPXq00+n8xz/+UVRUdOutt1ZVVT300EMvvvgix3G///67gjk3IqWlpf/617/++c9/WiwWAFi/fv2IESOeeeYZg8EAAAzDJCYmPvbYYxUVFZmZmc8880xWVpbVat2+ffusWbPmz58vCMIVD0FBrskW6Hq79EVGRgLAgAEDtm7devTo0fT09LKyMs+NSUlJAFBcXOz5DThkyBBPcUc3JTMz86233nrrrbeeffbZq/81Li5u3rx5ycnJmzdv5nl+3bp177//fm5uLi6T99KFCxdGjBixZMkSz9XS0tKIiAgAiImJ8dziKdxqtdpisajVarfbnZmZ+fzzz0+fPj0yMnL9+vVXPwQFsyZboLt37/7DDz84HA4AKCsrmz17NgAQQgDAbDZrNJqVK1cOGDDAZDKVlpYCwLlz5wAgOjr6woULALB8+fKamholX0CTs3Tp0iNHjgBAWFiYzWb77rvv+vbtO2nSpMjISOx566VOnTqNGDHCYrF8+eWXABAaGuo5UyY/P/9aDzl37pzn+0+v1wuC4M1DUPBosnPQbdq0GTZs2NSpU3meB4Dx48efPn269l8HDRr07bfftmjR4s4773znnXf27NnjcrkIIcOGDZs9e/a2bdsiIyO1Wq1y6TdBgwYNeuedd1auXOl0OqdPn37gwIFly5bt2LEjKSnpu+++mz59utIJNhqPPPLIq6++mpWVdccdd7z11lu7d++22WzX+pIzm83vvvuuTqejlE6dOrWiouKGD0HBgwTgf1JeXl6w/YbdvHlzTU3N8OHDi4qKbDZbcnLye++9N2jQoNTUVGUTa9Omjfwgdb+K0PXJfMPxrfaSWq32zCKim9JkR9DX8dVXX504ceKVV17xXJ0/f35kZCTLsm3btlU0L4QQ+h/NsUA/8MADtZcjIyPfffddBZNBCKFrabIHCRFCqLHzcQQtSdLKlStXrFjhWfFjt9vnzZvHsizLspMnT2YYrPsIISSXjwW6srKybdu2nvNHAWDTpk09evTo06fPd999t2fPnp49e9a9c3h4uDcN+wkhOp3OZrP5llIthmE0Go3dbpcZh2VZlUrlWagnh0qlYhjG6XTKjOM9L0/n5TiO47jgeYE8z0uSJP/8II1GIwiCIAgy43jDy7faXy9Nq9W6XC7521/odDqHwyFJksw4er3ebrd7s9AAzxT1jY8FOjQ0tG4fgLy8vK5duwJASkrKr7/+6inQc+fOXb16NQB8+umniYmJ3oQlhJhMJt9SaqA4arXaL3E8q/0Cw8tCwDAMIUR+1fCc0SM/Ds/zlFK/VDG/VENvePksGo3GLynp9Xq/xGFZVhAE+YWe4zi32+1NgZb/ZdA8+f8gYW1F+9vf/nbfffcBgEajqaiouOEDCSFms9mbe14fy7IGg6GyslJmHJVKpdFoqqurZcbheZ7jOC9/GeCuEwihWv4p0C1btszJyYmLi8vOzk5JSfHcaDabPR3LvNyT0HOan/xvdX/FYVmWUio/jiRJfomDEGpufCzQp06d+v777/Pz81977bX+/fsPGjRo/vz5e/fu1el0999/v39TRAih5snHAp2amupp9VtrypQp/sgHocZEr9d7czeO4xiGkX+gzHMAXH4bL88Beb/MC+t0OvlB0LU0xxNVEPIXLw8tMAzjdrv9smDG4XDIb5zA87zdbpc/7ebZfsHLVRzY3MYHuGAZIYSCFBZohBAKUligEUIoSGGBRgihIIUFGiGEghQWaIQQClK4zC4QcqtyTxb9alQZO5g7ckxQvOc1LnHfuVI3JclmroU5cH1CUFNidVt/Lt7rltxtTanhmnCl02mCgqJYNG0/FWz/9uw3GoZ3U7GD+diY5AdUjML7hVc7hCeWnjBqVCqWVNrdkwcldUnwQ28p1KxUuCpe+fFlLasjhPk/9zeT2v2jlbGV0kk1NTjF0bAkKi3LWWrmzSpGrWO1v5YfP15xXOmkYNeZihAtp1MzvIoNM6je3pSrdEao8dlTtNusCdWwGp5Rm3nLz0V7lc6oCcIC3bBqxBqW/HmCL8NwVS65bfbkq7S7OYbUXiUAuL9zs3Ky7OSXZ5YuO7NkU8FGl+TjeYnV7ura+ToCsK/kZ/8liC7DAt2w9JxepAKll5seOISaBH2CsikBQFKYtsZ9+TRfQaID2oUTcv1HoKbjgv3Cmwf+c6riVE51TtbFrRsurPctTrwhvkao8VwWqLtvdF+/pYj+gAW6wf07fUYrc5tKd2WZs3RE4r3JxhSlM4JuySF3tI8otjpLrc4OLYx3d4pUOiMUOKcqTxrVJk9XXp7VbLm4WaK+dE3qHn5bRkyPopqiYkdxkj55UOwQf2eK8CBhw4vVxz7e/om7Yu7SsrogWcLBEDI6PXp093jKcMRdo3Q6KKAYYGwua4WzAgAMKj1QSnz6AVXlrtp8bpNJZQBCjlUc7VPTt5Wxtb+Tbe5wBB0gRpUpSKpzLZ5jQrQKrydBgWdQG8scZQQoAFjdthhdDAFfCvSeot2hmlANp9OwWrPa8nMRzkH7HxZohJqXC7Z8BoASAKAA9HfbOUHyZYNdq9vK4kHCBoYFGqHmpdRZyjAcRy7/5xBcDONLHUgwJNS4aw8SCv2i+/k1TQSABRqh5iZKEyWCRCmlACIVNRzv29Yq3cNv6xffr9xVXuEsTwtpN7DFYL+nioJrVhQh1NA6hnbcVriFIYwoSizD3h6R4dvREYYwY1If7BPWzy26dRxufNUgcASNUDMiSvT8pZBW5D6zlCpQsXdU5tDYO+UErHJVVrkrfVuoh24IR9AINSNf7SvYnl1u0EQ63aHtY+4YHBOn4Xwcpbkl96LjC7f/nsUQppOl811xwy28xb/ZIhxBI9RcWJ3ippOlejXLMsBzzJHzVb8WWH2Otqd494HC/SHqEKPKmFOVvfXiZj+mijywQCPUXDjcYt0FzwwBh9v3qYlLNRd59nKjWpawOwp3yMsO1QMLNELNRZhefVuyWZQoAFBK7S6xVaTW52hmdagguT2XJZAyIjP8kyWqAws0Qs0FITC6S9Qt8abCSkdajHHq0JaRRt/3augZ2bPCUVHprqhyVpY5y3tF9vZjqsgDCzRCzUikiX+sV9yCJ1Iik34+6li9p3i3SEVfg5HbYjIoBYlQnxt6oOvDVRzBrrS09MMPP+R5XqvVTpo0yfNnYLfb582bx7Isy7KTJ0/27Uwwq9v6Xd7/bf59EwV4pNWjt4Z18XfuKBgVO4pf3z8rRBVCCDlSdrjCWTE0zpeVdruLdp0qO2lWmwGAUmlH4U9jkh/0d7LNHY6gg9369evvuOOOKVOmWCyWo0ePem7ctGlTjx49pkyZkpiYuGfPHt8irzm3+mDRfgsfZuEtS89+kWfN81vSKIidqDgewpsYwgAFHafbcGG9b6uYy11lKvZysy1CmD1FPn4O0XXgCDrY8TxvtV5eC3X+/PnOnTsDQF5eXteuXQEgJSXl119/7dmzJwD84x//KCsri46O/s9//nPDsIIk7Li0PVwbQSkFAANjvCDk32K+xYcMPeN3s9nsw2OvjsPzcnew9fyw0Gp9P/zVtAmS4GmVdBkBCr5sqBOpiTpWcZQDFQCIVOwVhXPQ/ocFOtgNGzZs0aJFx44dA4Dw8Ho2Tlar1Z4LjzzyiMvl0mg0NpvthmEpUA9PHwZRFIhIvHng1XieZximpkZuX2mtVitJktPplBlHr9e7XC632+3NnUNCQmQ+XaOTGpK2rmBtiCoEAFyis19Uv7q7snmvZ2SvSqj46fefCCGdLJ37Rw/wd6YIC3TQq6qqGjFiRHx8/Hvvvde69eWG6C1btszJyYmLi8vOzk5JubxFyy23XB7/lpSUeBN5ZPLotb//wDMaiYpV7ur2xg5eFrUrqFQqAPDtsXXxPC+Kovw4kiT5JU5TFaePeyF9SlZe1t6iPUPj7uwX09+3OCpG9WiH8T1DezlFV5QmKtjanTcN+J4GO47j3nvvPYPB0KJFi5SUlJycnNWrVz/55JPz58/fu3evTqe7//77fYs8MG5QrCn2WOExPafvFt4tRN3sxpLNVvuwDnFc/AOyj+kRIBGaSIpbDjcYLNDBLjw8/LXXXqu92qpVq+eeew4ApkyZIjMyAXJrRJeWfCuZcRBCDQRXcSCEUJDCAo0QQkEKCzRCCAUpLNAIIRSksEAjhFCQwgKNEEJBCgs0QggFKSzQCCEUpLBAI4RQkMICjRBCQQpP9UaoGaEUfsmvKj5t1XNi1wSjmsMhWlDDAo1QM7L88KW1x4qNGrXDLfxy3jihdzzH4FZVwQsLNEL/Q5KklStXrlixYsmSJeCn3cWChN0lLj9cyBCSV2Izati9ZyoyUsy3xJuUzgtdUyP+tCHUECorK9u2bduiRQvPVb/sLhYkqh2CS5BsTlHFMjVuqcIuXKyQtT2C1Sn4KzdULxxBI/Q/QkNDQ0NDa69evbuYJEmeTch4nvd+K2tCiF/2vZYTh2MZp5tyLJEoBQDKXA7oQ6iDv16avfWcm1MDpS8MTrm95Q02PMM9v32DBRohb3l2F8vJyXnwwQcBYOzYsZMnT/bysTzP6/V6+TkYjUYfH0kprP3q06WzqAT/lz58U2ofjUbdMjY8LCzs5sJUVRfPfjv+q/+bD/Bj+wEr0+98a9PZ5c9mhhmut5mkKIo+pt28YYFG6Hqu3l2sTZs2Bw4c8Pyrl7uLGY1Gt9vtcDhkJmM2m+12u8vl8uGx0oaN7tdf1ztsADDmwCqGZdel9rHZqktKbm5sK378SfWmzSW6UEKgV/auYqNla5seGw6eHdI+4jqPYlm27u8S5CWcg0bof5w6deq1117Lz89/7bXX9uzZM2jQoH379r3xxhuFhYWeuY5GSlyxglitDJUYKulcNX1y9kaZ+GrHTU8ii19+zQBE2MostjIXwyWU/g4S6NS+bDuLbghH0Aj9j9TU1GnTptW9Rf7uYkHhbB5QSoEQAAI0orJIEKU4s+Zmw5C0VM2uXRpgKIEQe9WpqFaEQPekG8xBI99ggW6+nJJzU97G/PLzDGG6RdzWyqjw5oQU6G8Vp85VnIvSRrU2tSGAh5X8Sq8FoAQIBUqAaB3WkekxKRG6mw1DL+QDIRQAgAKQpMqLBg1XUSNEqdR+TxkFokBrNF59S3uO88o/kMIwDCFEfhzP0lf5cTiOYxjGLweI/GtN3qqfi/epgKOU/lzy8wsd/hWri1Uwn+/PfLf1/GYVo3ZLrtsjetybOBJrtB8x3buLeeeBAQYAKDADBg3vdL1Z42v6/TxVqUVRAgDKMDrJreWY4mpXlAkLtP8FokA7HA5vjuESQjQajc1mk/l0HMepVCr5cdRqtVarlR9Ho9F4n49Wq5X5dF6SqLTlwpZwbbgoioQQA2f4rfKUggW61Fny4++bzLxZkiQ1o95VuPO2iNuV/cJoYtgnnhDXrSeEIQQAqP65ZySf4pAu6XD0F5EwhAArSZciExyC1MJ8vSUcyGc4xdFMEUIAaN1bWKLkcZ5KVxXH/pkAx7DV7moF82mCwizqLT9KR48RKll6964SBPBp6Rs349/Cc8+rs3MohbwWLT/tNfaxXnEWvcrv+SLAAt1sESB3JgzLurhNTXgKtNpd3T60vYL5RGujHYJLz13+znBKzlhdCwXzaXqoJEnLV0gffUwB7BMn0vtGgU+nrZP4eNW3X9PcXBtlIxPbzBXtBh6XcDQULNDN19D4YeH6iN+KT6kZdUZkj3DepxlJP9FxusmdJ79z5B2OsAIVHm/zhFGFPSL8SdqwUVqyDKKjCYD9q68YAuT++3yMRQhJSTEAhIcbS0tdlNIbPwT5pMkWaIEKQIFjmuwLlI9juL6x/boY05VO5LIOYR0X9PmoqKrQqDIpO9/SJNETJ8Bo8FxmDAaad07OEdgSq2v98ZJNvx4b3C7sjvbhEUY8QtggmmD9coqOL06u2Jz3IwU6sMWgobF3YpluLFjCmtV4vlmDYHhevLwMGoBSkNFlVJDotwcunbxYHRWi+Tm3Yv3x4s/+1pHH1tINoAm+pz9e2LTv0r5QPtTCW3YV7dpTvFvpjBBSHhk4kBaXgCCAIIpFxUyfTJ9D/V5ac/BcJcswAMAxRKtiz5XW+C9T9KcmOLQsd1bwrFoQBADQsPwFe77SGSGkPNIuTfXJR2JWFgMQMmSIPSnR5wZGDEPqzjpTKjHYrK5hNMECzTIM/WMBGaWUZ3CFJkIAAKRVS65VSwBQWSxQWelznFgz3zUx5ESBleNAEKWuSeak8ACt329ummCBvi3i9r1Fe7SsHqhULVgzInsqnRHyVm7V2fOV58P58GRjitK5oGtSscxDt7fYeLy4RuK0rDi4XTjum9VAmmCBbmlq9Uavt/ac28MQpmNoRzzoFPwEUVp/ouS7M59qI3/RsCoVSzOj+wyPv1vpvNA1mTTcfV1jwsPDS0tLcZldw2mCBRoAovUxfaL7Kp0F8tbGEyVrTmRzLQ6KLkOlRCMM6qyL27qFd4vWxiidGkJKaoKrOJCXiqqdeSU2t+hbSwZ/ulDh5DVOAiwAsAxxuCWO4cqdFUrnhZDCmuYIGl2fKNFl+y5uOVnCsYzDJc4enap4sxsihEjgZkELFICAU3LG6HD4jJo7HEE3R3vOVuzMLrXo1WadOsygXnusSNl8OsYZq6wqXeUwka0WiU1iKv+a8rBZjT3gUXOHI+jm6HyZg1dd/l/PENj+W9n4XvEKrmTNSDFrVcyJS9HAdGkb7e4UE6Nm8NRhhLBAN0U33BwgNswgZJerORYACGH6pkUaDL7vJ8BxnPwdEnqm6vt2VFFKPWcYycGyLM/zHIefbdTo4Ye4Cbrh5gDdE/THzxsOna/iWNZqd/XKjJWzL4FOp2MYRv7OBgaDQRTFmhq5Jw2zLOt0Op1Opzd3DtgOCQj5AAt0c6RRMY/3jjtT5hYpE2skIVr8GCAUjPAvs5niWKZTnInn+aqqKqVzQQjVD1dxIIRQkMICjRBCQQoLNEIIBSks0AghFKSwQCOEUJDCAo0QQkEKCzRCCAUpLNAIIRSksEAjhFCQwgKNEEJBCgs0QggFKSzQzZogCRftFytdlUonghCqBzZLar7ybednHXpVRVQiFfvF9L8rbjhD8AsboSCCBbr5evXgzHBdOBUpAOwq3JFkSOoU2lnppPyguKZoY95Gq9NqVpv7RPfVc7J2EkBIQVigmylBEliGYYARQQQANau5WHOxCRToGsH+4r5/hajNDDAuyV3uLHuw5UMElNvOCyEZ8CdtM8UxnCRJtVfdktuitiiYj7+crT6rVelZwgKAmlEdKjtU5ixTOimEfIQFuvma1OGZUkdpjeiwCbaO5g63WG5VOiM/oEAJAAXqltwUKFCglCqdFEI+wimO5quDpeOcXm8fu3hMz+lbGls1jSOEycaUCkeFU3IxhEhUutXSxcI3hV8GqHnCAt2shfKW4Bk429327QVZ+ZXnI7SRGRE9fDu4V+2u5lk1z/ISlViG/a3qN5GKTeO7BzVDWKBRUJCo9G3ON0dLflExqhPlxy/aCx5IHssxN/35vGgv0Kn0PMN7Zjaq3dUljpIYXUwDpIxQg8ORBQoKl2ou7S/cx7M8UFCx6qPlR/Pt+T7EMavNbslde1WQBLM6xH9pIhRQWKBRUBCowJA/F8MxQATqvs79ryXJmJzZIrNaqHaKjkpX5b2JI7Wczn9pIhRQOMWBgkKMNsYhOnScHgAkKtWIjjhdvA9xCJAH2o7tFNq50FoUq4ttoWvh70wRChws0CgoqBjV6xlvbszbsL1gW8+oXplRfTSsxrdQBEjrkDYJmkT/Zlgvvd6rI5kcxzEMw7KszKdjGEaj0ahUKplxCCE6na7uQnif6XT4A6UBYYFGwSJKGzW2zUMj40cpnchNsNls3tyNYRi32+1wOGQ+nUqlcjgcLpdLZhye5+12uyiKMuNotVq73e7NSnOWZbVarcyna4ZwDhohhIIUjqCbr+Jql1AtGlmqYrFVBULBCAt0cyRKdNm+i1tPlrAs43CJb41uG2v2ccIXIdRwcIqjOdpztmJndlmoXm3WqcMM6nXHipXOCCFUDyzQzdH5MgevuryigCGw/beyYGgoVFhTuCx76T9+nvRt3teXai4pnQ5CysMC3RxFGNVu4fISKwrQq7WFKD0L7ZbcL+2Zeqz0qIUPO1F+4vWjsxyi3DUPCDV2WKCbo16tQzvFGasdgs0plFhdfduGKp0RXKy5qGF5T1cjhjBaVpNvP690UggpDA8SNkcajnkiMz6nxCkRtoWBhGiV/xhwhJPqzLNIQDki93QMhBo7HEE3UyxDOsWH3NYyLBiqMwBEa6O7R3V3Si4g4BZdnUI7xenilE4KIYX554/zwoULixcvNplMlZWVTz/9tMlk8ktY1HwwhPlLqweidTH5lecjNJEZkT186DWKUBPjn7+Bo0ePduvWbdCgQcuWLcvOzk5PT/dLWATX+PLbt2/fkiVLoqOjAeDxxx+PiIhQOk0/0Kl0g+OG1ITVKJ0IQsHCPwW6T58+06dPP3ToUEVFxZgxYzw3VlRUeDoVaDQab9rEEEIAwC8NZfwVhxCieJx6v/xsNts999wzcOBAmbkhhIKZfwr0mjVrRo4c2atXr5UrV27fvr1///4A8Pnnn69evRoAPv3008REb1uLmc1m+fkQQoItjs8dyOr98rPZbAcPHjxy5IjRaHzsscc4jgOAnJwct9vN87zF4tUufCzLEkI8j5XD8w3klzgAID+O5+tQfhyEFEf8sufxp59+2qVLl1tuuWXz5s1Wq3XEiBF1/7W8vNybvlmEkLCwsJKSEpnJcBxnMpnKyspkxlGr1VqttrKyUmYcT3/I6upqb+4cHh5+xS3ffPNNbGys58vPZDJ5vvxKS0sBICwsbPny5Xq9fsiQIQDw2GOPlZSUxMbGvvfee948FyGEECK/56S/4jAMQymV/4G8qTgyfyF5+XE1Go1+6WZnNpvtdrv8bnYWi6WyslJ+N7vw8PDS0lIvu9mFhiq/mrPR8c8oY9iwYQsXLtyxY4fVap00aZJfYiIPm81mMBgAwGAwVFVVeW7Mz8+PiooCAJ1OJwiC58ZFixZ5LtywatCKCjifr06I18bH18b0mU6nYxjGarXKjGMwGERRrKmROwddQSp+PLdp58UdfaL79o8ZYFZf7zfQ1d+ICAUP/xToqKioadOm+SUUusIVX345OTmrV6++9957P/zwQ71eL0nSs88+e1MBpW1Z4sxXQaMV3C6Y9BSMuKeBMleEVbC+cujfZrXZwlsOlx6yCdaHWj5MQOkTJRHySf0F2mq1rl+/vqysrPbHy9///vcAZoX+dMWXn9FofO655wBg5syZPkSjNpsw41USHQUAhJCaDxewnTqSlBR/Zau4vOpcPadjCEMp5RjuSNmRO2LvjNA0hVUuqBmqv0APHz48JiYmMjIywNmgBnepkPDq2mtEp6G//96UCjTLsFKd4bKnTCuXDkKy1P/ZbdGixbJlywKcCgoAEhVFXa7aCkYdTia2SZ2wl2JIsbttKhXLENYlurqFd7/+HDRCwaz+U73NZrP8YzUoGBn07AvPQ3ExWKtpSalm3MOkdSulc/InntW823ter5jMtqa2g2OHjEwahRPQqPGqfwSdnZ2dlJTUrl272kVImzdvDmBWqAGxdw5l0rvQvDw+MVHbpo38VRzBxsybhyfe7XQ6lU4EIbnqL9Avvvii/K3dUdAiUVEkKorheaUTQQhdT/0FukePHkuWLDlw4AAhJCMjY+zYsQFOCyGEUP0F+sknn6ypqenduzcArFq16sCBA/Pnzw9sYggh1NzVX6Bzc3O3bt3quTxx4kTP6cXIN5Wuyk25Gzf//mO3iO7plvQ0czulM0IINQ71r+JwOp215+mLoij/nP3mbHXeyoNF+y28Jacq+6PTC3A7VISQl+ofQQ8cOLBnz559+/YFgG3btt11110BTaoJcYiO3YV7wjQWURQJED2nz6nKjtZGK50XQqgRqL9Az5gxo2/fvnv37qo1jPsAACAASURBVGUYZvbs2ZmZmQFOq8ngCAfwZ5s3SiWexbUTCCGvXFmgx4wZ8/XXX9cdMu/YseOtt9764YcfAptYE8Ex3B3xd24r2MYzalESrYItLQTnoBFCXrmyQE+cOBEAbrZBGrqO4Yl3xxnjTpWcMnLG2yJuN6gMSmeEEGocrizQffr0AYDavZQkSbLb7Z5+xMg3DGFuj85or++gdCIIoUam/lUcCxYsmD9/vsPhSE9Pb9my5bvvvhvgtBBCCNVfoD/77LO///3vq1atuv322wsKCpYvXx7gtFCzIkj02wOX7p23e9T7P689WiT5Yxs2hJqA+gu0TqdTq9Xr168fNWoUy7Lyd7ZG6DrWHi3eeqokwsRHmvjlh4t25VQonRFCQaH+As2y7OTJk3ft2pWZmfnzzz+73e4Ap4WalUtVDo3q8iDAqGFPF9qUzQehIFF/gV62bFnr1q3Xrl2rVqvz8/NrdyNFqCHUbdksUlBz9X8sEWpu6j9RJSoq6sknnwQASZKGDBmCqzhQg+qaFLIzp9ysUwPQcpurd+tQpTNCKCjUX6AXLFjgcrkef/zxjIyMgoKCqVOnTp48OcCZoeajS4Jp+rCWvxY6GULT4w2xZjzZEiEAXMWBgkSbKP1DPRL+0j0OqzNCtXAVB0IoSH355ZcAsH379jFjxiidizJwFQdCKBjZ7fa3334bAPr06fP1118rnY4ycBUHQigYPfHEE9nZ2ePGjdu8efNdd91VVFQ0ePDgfv36devWbcGCBQBw9S0bNmwYMWKE5+Hjx49funQpALz11lt9+/YdPHjwE0880ei2Eq6/QJvNZpVKtWTJEgBISkpKTk4ObFYIoeZu2rRpKSkpixcv9lz9/vvv27dvv23btp07d3rq7NW3XO2nn37KysrKysratGkTwzBffPFF4F6AP9S/iuOpp55SqVT79+9/9dVXt2zZMn/+/Nq3CTUFDgctLKQtWkCQbOxttUFFBW3ZEhhy4zujZmnAgAHvvvtuZWXlHXfc4Wm6efUtV8vKyvr11189e49Yrdbw8PBA5izfNfck3LJli+dVTZkyxXMBNQ103z5hylSqVrvdbpj2EgwcoGw+0nffix98SFUqweXSfvIxtG6lbD5XuHDhwuLFi00mU2Vl5dNPP20ymZTOqJlq06bN8ePHt2/f/u2337755pv79++/+hZC/vyCFwQBAHieHz169Jw5c5RLXJb6pzg8r82jpqbGZsNTb5sKh0OYMpVGRRGLhYmOtr/5Fj1/XsF06KlTwsefQFQUsVhITIx9wgQqSTd+WAAdPXq0W7dukyZNSkpKys7OVjqdZoRhmLoTF99///3hw4cHDRq0YMGC/Px8u91+9S0mk6moqAgARFHcv38/APTq1WvdunUOhwMA5syZc/DgQaVejm/qH0EPGTJk2LBheXl5zz///Nq1a8eNGxfgtFADoRcKgOdrBxpEp6Nnz5L4eMXyOXMWtLrLVwgBNQ8lJRAZqVQ+V+vTp8/06dMPHTpUUVHhWexVVla2Zs0aAGjXrl27dl7tj8OyLCGk7vjONwzDqNVq+cteCSEajUbyx3ehVqulXnQf9OG1JyQkEEIyMzP//e9/A0BaWtqECRNUKpXb7X7hhRcMBsPVt3Tv3t1sNo8aNcpisbRr145S2rNnz4cffrhPnz4ajSYhIeHpp5/25UUqh1zrzc3Kytq+fbtGo+nVq1fPnj3lPEd5ebk3+4ITQsLCwkpKSuQ8FwBwHGcymcrKymTGUavVWq22srJSZhyNRqNSqaqrq725s1/myK7zHtLKSveIUSQqEgAIIaSigrwzh0lLk/N0Op2OYRir1erDY+m+fcL/mwkhJgBgGEYquKj6cQOoVHLyMZlMTqfTy+P1N3zDv/nmm9jY2F69eq1cudJkMvXv37+wsNCzrql79+69evXy5llUKpUkSd78FVyfWq0WBEF+YeV53uVyeVNYr0+j0XgGp17eWebTNUP1j6A//fTTRx99FKeemx4SEsI9+Xfho0+ITktdLs3oUUJqqpL5pKeT/n3p1m2gVlF7jfalqYK86ux3NpvN04vGYDBUVVUBQFRU1EsvveT5Vy/HE0aj0e12e1/LrsVsNjscDpfLJTOOWq222+3yvzA0Go3NZvOm0LMsiwXaB/UX6CVLlowcOdJsNgc4GxQAzH2jVV260DNn1ImJum5dPUVHMSzL/fM52q8fLS3R33orJCYKNTVK5nOVYcOGLVy4cMeOHVarddKkSUqng5qX+gu0RqNJSUlp3749/8cyrM2bNwcwK9SwSMsU0jKFDZI1dgxDuqYTANZgkD+m87uoqKhp06YpnQVqpuov0FOmTFEF2S9NhBBqbuov0Onp6Z9++unx48cJIbfccsvf/va3wGaFEELoGuugx4wZk5OT06NHj+7du+/Zs2fs2LEBTgshhFD9I2iTyfT+++97Lk+YMGHAAIVPNkM3xct1sgzDEEL8sqjWX3EYhgmeOEhZvq24bXQnc19f/QVaq9Xa7XadTgcAFRUV8cqdyIB84OXxA5ZlGYaRf7DBcxaG/DieLwy/xKkSqopriqN0UXpOLzMaQgqqv0CfPXs2Pj6+S5cugiAcOXKkY8eOd911FwD88MMPgU0P+cLL9bY8zzMMI39xLsMwfonDcZwoivLjbL205bvT33IM55Jcj7ae0Cm003XujPttomBWf4GeNm0aw+DOyqjxuWDPX57zvZkPpZTqARad/mR2t7fVjFrpvBDyRf0FOiMjw2g01l4tKCho0aJFoFJCyHdFNUU8++f6bhWjKnGUtNDhpxc1SvUPk7t27bp9+3bP5WXLlmVmZgYwJYR8F8aHuaU/d2gTqNvCWxTMB/mZ00mPHae//QbBd05TQ6h/BL1y5conn3yyc+fOv//+u1qt3r17d4DTQsg3CYbEQfGDN5xbzzEql+h8IHmshsUWEE0EvVDgfnAs0emAUpLZm3vmGTDc+CDwkiVLPv/8c41GU1NT8+qrr16r9duRI0eysrKeffZZf2ctS/0FOi0tbdasWffff7/BYFizZk1kMLV/ROj6RrUafauly6Xqiy10LSx8mNLpIL8Rv/mWREYCywIA3XdAWrWKGfvg9R9y8ODBxYsXr1u3juf54uLi999/v23btn//+9/NZnNVVdVnn322dOnSrVu3tm7dOi8vLzc3Nz09fd68eRaLhVL6wQcfzJo1q3PnzoMHD7777rs3bNjAB7w7AvvKK69cfeuECRO+/fbblStX3nHHHePGjSspKZEzy+FwOLzsGKvT6ex2u89P5MEwDM/zNbJ77rAsq1Kp5O8yyXEcy7JediDzLG2Uycv3kOM4juPkv0CVSkUI8UuLNUpp3c0ifMPzvI7RhanCtNyN30yZb7iXbzXP85IkyX9pGo3G7XbL71ii1WqdTqf8dqM6nc7LPzSGYbRa7U0Fv/q9FV6cRkyXj41RlgWDgblqOHzF/9DFixf369fv1ltvBQC9Xt+vX7958+ZlZma++OKLFy5cyM3NpZRyHDdr1ixJkuLj43NzczMyMl566aXTp0+XlJSMHz/+X//61+HDh5955hlFtmatfw46LS1t27ZtLVu29JxJKL8nMkIIycTcPZzUfjk5XUxs7A0fQim94nvo3LlziYmJAJCcnHz+/HkASEhIqP3XvLy8L7/88m9/+9uuXbsqKirUavVdd921b98+mT3xfVZ/gX7qqacWLVr08ssvA8CJEydmzZoV2KwQQuhK7P33SUVFUFkFFRVMt3Tmnntu+JA77rjj448/9gzGCwsLx48fn5ycfPbsWQA4e/ZsUlIS/LHbCyFEkqSkpKTx48d//vnnH3zwwejRo6urq9esWTN06NDly5c37Gu7BtzVGyHUOJC4WPXG9dJvp4laRdq0AS/O5u/SpcuECROGDh3qmfp4/fXXExISJk6cuHXrVrvdvmjRoiVLlnju2aZNmxkzZrz22mtLly5dsWJFeXn5J598MnPmzBdffPH2228fMmRIv379QkNDG/YVXqX+La8GDBjg2dU7KysLAGov+Aa3vAqeLa/q4nme53n5DfvlbHlVl8FgEEVR/sED/255dX2B31HFbrfLn+63WCyVlZXy57LDw8NLS0u93FHlZqsb9uIA3NUbIYSCVv0Fuu6u3l26dBk1alSA00IIIVT/HPRLL71Uu6v3woULlTqCiRBCzVn9BRoA+vbt669dvb3czddzLFWvl9sf0tO1Un4clmVZlpUfh+M4hmHkx0EINTfXLNB+5HA4vDxI6NnFXebTcRynUqnkx/EcJJQfx3OQ0Ms4N7uYHyHUhGFPUYQQClJXjqA///zzq+9EKX3kkUcCkQ5CCKE/XFmg9+7dCwAFBQXHjx/v0aOHKIo7d+7s0aMHFmiEEAqwKwv0ggULAODBBx88efKkp3WT1Wp99NFHFUgNIYSat/oPEp47d662sZ7BYDh37lwAU0LIRzaXuOJw4YYTRymlE/sk9GoV6BNzUQBIlJLLa758sWLFCp1ON2TIEL8m1VDqL9AtW7YcMGBARkYGIWT37t0pKSkBTgshHyw/VLgzp1zPc0SChTvOW/SqdjG4J2zT4RCk7w5e2nC8GCiM7hp9d+dI5kZ1esOGDZs3b54zZw4AHDlyZM6cOUuXLg1Isv5Rf4H+7LPP1q1bd/ToUUrppEmThg8fHuC0UONSUlOSXX7arA6N18crlQOlsO5osV0QWUIoBY2K/HK+Cgt0U7L2aNGunPJwgxoAfjhaFKZX92590z+SFixYYDAYqqqqfvrpp6SkpNOnTy9atOirr76qe1UUxbpN/WtqaiZMmEAISUpKmjp16vjx481ms9Pp/PLLLxctWrRr1664uLizZ8926NAhJyenV69eTqezbrRly5aFh4ePGTNm1qxZXbt21el0b7/9dkhISIsWLd54443rZ1t/gRYE4dKlSw6H49VXXz148KAoihwXiBXTqDH6uXDvp6cW8YQXqNAjsue9iSMJ+Pr7UwZCwOoS1BxDACiBGrdUUCl3LwIUVJYfLowwXN6gXa9ms4ts3hTo77///vjx4wBQXV1d23SfYZjU1NRXXnnlk08++f7776+4Wlxc/Je//OW+++6bO3fud999d/78+Ycffvjee+9dvHhxQUHBtGnTbrvttoceeujUqVMMw6SlpU2dOnXgwIGjRo2Ki4sbNWrUvffeWzfaFfn8+OOPo0eP/utf/3rs2LEbJn/NftCHDh1av349AGzZsuXxxx+/YSDUaIiilJUlfva5sHYdld1fTZCEhSc/sfAWLac1qox7ivbkVGX7Jc2bRSloVawoUQpAKUgSmLU4qmhS+rT+c/9fiYJGdeN2owAwatSoDRs2bNiw4YMPPqh7u6dtf3R09MWLF6+4ekVT//Pnz3ua+o8bN85sNi9atOjZZ589fvy4p/NidHQ0AGg0mujoaI1G42mjeEXwuiZPnnz48OHMzMxt27bdMPn6C3Rubu5///tfg8EAAFOmTMGDhE2J+N8Fwltv07XrHPPes73+BnW7b/yYa6t0VXLMn3VQxahKnaWyc/QFITAwLSzcqDZouBAtF25UpcUYFckENZDuySFlNpcgUpcgldvcmTc/v1FXbm4uAJw7dy42NvaKq1c09U9OTs7JyQGA9957z7NZ69y5c+Pj4yVJ8iY4z/Oeqp2fnw8A2dnZb7zxxvbt27/55psbdqC95hRH7WVsN9qklJSKK1aSiAgKQFQq17YsdtAA6NzZ53hm3ixIQu2Uhos6o7Ux/kn15g3rFLH9dJlGzYmi1D817PaUEKUyQQ3hlnjTzHvaHDlfxTHktmRzhFEtJ1pubu6kSZPOnDnz1Vdfff3113WviqJYt6l/dXX1+PHjv/nmm4SEhKFDh/7nP/9ZsWJF+/bt586d279//xsGLykpeeqpp86cOVNUVEQpvXDhwowZMyIjI9PT02/Yp6j+hv2vv/76rl27Tpw4MXr06LVr144bN27q1Kk+vxHYsD94GvbTvDz34xOJJRQACCHEbmee/yfp3UvO0+U6cucefVfNqARJGBp35+AWPi5g8kvDfrcoWUWVikgGlVc7omLDfjkab8N+z6HChx56qN6rMvkxGrYbbWZiY4nTAZIEDAOUUqsVUtvKDNne0v693u/nlp4NUZvNarNf0vSZimUSQ/Xe76iCUDCrfwR9heLi4oiICJ+fA0fQwTOCBgB65qz07f+JmzYRSk3//bAmLVXm0+GWVzeEI+hgG0E3FvUfJExMTFy5cmXt1fvuuy9Q+aAGR1qmsC/+S/3jRsOeXarbuiudDkLomuov0Eajcd68edOnT7/OYUrUuOHCdoSCXv0F2mw2//jjj3a7fdiwYeXl5QHOCSE5RMmrw4MIBb9rDqM4jnvnnXe+/vrrPn362O32QOaEkG+qHML3hwq3nSoVJfpIz7iBaWFKZ4SQLPWPoMeNG+e5MGbMmGXLlqWmyj2O1MxVu6t/qzx1wX5B6USauJVHig7kVUaYNJEm/st9Bb+cr1I6I4RkuXIEPWbMmK+//nrVqlWrVq1SJKGm50T58feOzecZtUDFHpE9700YyRDcacz/KIVNx4vDjbW9GrjfCm2d403KZoWQHFcW6IkTJwLAs88+q0QyTRAFOv/Y3AhtpGdJ08/Fe1NNqe1DOyidVxNECAAB+GP+WaRUr/aqVwNCQevKAj179uzZs2dffb+BAwcGJJ+mxua2cYyq9qqaUZc45S70RtfyeGb8p7vyTVpGEKVKuzujJTbsR14J2i7+VxboesfOpaXKtL9pAvQqvVsU6B/jOpfkitRG3lSECxcuLF682GQyVVZWPv300yaTCQDsdvu8efNYlmVZdvLkyQyDcyYAAJmtLZFGdW65qGJotwRDCHaza1oo0KNlv5ysPMkR9lZLl5amVjd8yIYNG55++un27dsDQFVV1UsvvXTFWPPIkSNZWVlBO2dw5Se4NvsjR454zuRxOp0zZsz4y1/+EujUmgQC5LnOz809+q6aUQuSkBndp63p5o64Hj16tFu3boMGDVq2bFl2dnZ6ejoAbNq0qUePHn369Pnuu+/27NmD5+LXSo02dG9zE2cSynTDZjceLOufyRZCiFqtlv99TAjhed4vZzloNBpvziT0fYuqOvYV//x/ed8aOAMldFfRzkmpz3hTo++55x7Pjio7d+786KOPunbtOn78eIvFQin94IMP5syZk5ubm52dnZGRYbfbd+zYkZycvH///q+++srlctXtze+v/4k3pf4hxjPPPLNjx46CgoLU1NSjR49OmzYtwGk1JanmtHmZ72UXZ5tUxkhN1M0+vE+fPtOnTz906FBFRcWYMWM8N+bl5XXt2hUAUlJSfv31V0+B/uyzz6xWq9lsHj16tDeRPQNwvV5/syldgeM4Qohf4rAsK7/6sCzL83xgtphwe9esVa1Wi6Lo5Z2vQ6PRCIIgPw6lVBAE+ad6A4Db7famQPvlR15OVY5RZQQAAsSkMh8pP+JNgV61alVOTk5hYaHFYpk3b96CBQtGjRr1wAMPzJkzZ+3atSNGjMjPz/d80TIM06ZNm5dffnnmzJm7du1KSUmp25vfMwwPsPo/xPv37z98+PCIESNWrlx57Nixzz77LMBpNTEGlaGV8cafpHqtWbNm5MiRvXr1Wrly5fbt269ub6hWy2q6iOTwssZRSiVJ8ktB9FccURT9FcebAu0XdYfhBIBSr34BeEbQWVlZn3/+eatWrfLy8nbt2rVx48bKysqwsDCj8X+ahsfExACATqerqanRarXvvvvuV199VdubP/DqL9AqlQoAHA6HJEkdO3b0bBiDFGGz2Tw7J3g2UvPc2LJly5ycnLi4uOzs7NotfR955BHPBS+7zPA8z/O8/GbfnmZJ8uP4q1kSy7LeT3FotVqZT4cCpoWuxS9lR3ScjgK1CtWpIWneP7Zv376vvvrqyZMnk5KShg4des899xQUFBiNxk2bNl1rqmfu3Ln333//wIEDhw8frlTTi/oLdOvWrefPn9+tW7cRI0YkJSXhQUIFDRs2bOHChTt27LBarZMmTcrJyVm9evWTTz45f/78vXv36nS6+++/X+kcEQqE3lGZBEi+7TwAtA1J6xDa8aYe/vLLL7/88ssff/zxxIkTV6xYUV5e/sknn7Rp02bGjBmdO3e+eglH79696/bm//LLL/32SrxWf7tRQRBKSkoiIiKWLFlSUFAwduxYzxZbvsF2o0HVbrSWZwRdOyr3mYN1rD+3LuvCtu4Rt90WcbvPkznYbvSGsN2oNyn58KigVf/MfUVFxcaNG99///2KigqdTrdixYoAp4UaCwp0xdnvj5QctvCW7Krs90/OL3Uo+XvLLdKzRdbCKuzWj5qC+qc4hg8f3qlTJzlN+lEzUemqPFB0wMybJUkiADpWe9Z6NkyjTJei82U1U5ef1qo5tygNSAsb2z2GZfywugshpdRfoNu2bfvRRx8FOBXUGPGMWoI/f+FSSnmWVyqZtceKwwwqFcdJkrQzuzQ5TNtb3sbPCCmr/imO1NTUH3/8sbCwsOQPAU4LNRZaTjcgtr9dsFOgLsltE+1tTG0UyYRS2JldzvyxEovn2IIKuXO+CCmr/hH0b7/99vrrr1ssltpb8vLyApQRamxGpoyONybklOWY1SG3RWRoWK9OrvO/PXueP7I24cCO3bffuTN9kJ3w4QbVjR+FUBCrv0BfvHixvLxckVMbUaPDMVzPmF6djbcomAM9dcr98r9bhlguGiydju4QahyXHny0V2vLjR+JglUTW4/hm/oLdKtWrQJ2dhBC8tFDhyHErFGzCRaNW9IMObWd7zmN4bCHFGrcrjnFkZiY2K5du9pB9IYNGwKYFUI3SaUilAIAyxC1ihUJYfD3H2r86i/QL730kudsb4RuSJCE/YX7auegDZwh8DmQXj3pBx8y4eGUZWllBf/k3yV/tE9DSFn1F+jc3NxHH300wKmgRmr52e93XdrJM7xbElb9vurN9NlaLtANLkhMjGrJYmndemK16jMyaJ9Mp+yWbwgprv5JuiVLllRUVAQ4FdQY1Qj2LRe26DgdAaJmVHpWl12drUgmJD6efeJx9p/Pqe8YAriDAWoS6h9BazSalJSU9u3b8/zlkw42b94cwKxQo+GUXGzdJpCEOEU8zRoh/6i/QE+ZMgXnoJE3zGpzekS3U+UnGWAogF2sSTGkKJ0UQk1E/QW6R48eS5YsOXDgACEkIyNj7NixAU4LNSL3poy83M0uvPttkRlKNeKgOWfounXU6XR26UIHDVIkB4T8q/4C/eSTT9bU1PTu3RsAVq1adeDAgfnz5wc2MdRoWHjLX1MfvjdupJJJ5F9wj59AIiIow9h37OAuXoKHHlQyH4T84ZqrOLZu3eq5PHHixKu3WULIbxwOaes2WlLivuUWpns332KIu3aR0FBgWQJAjCbnokWqB8cQPFSIGrn6C7TT6RRF0XOWir/2LkOoHg6H+PY70t59oFbZvvqaf/iv8MAYH8IQSQLyP+WY4KmwqPGrv0APHDiwZ8+effv2BYBt27bdddddAU0KNRvSgYPi7j3EaAQAEhrqWLhIde8I0Nx0uyXStSssXETCwykhYK9RP/AA4JmEqPGrv0DPmDGjb9++e/fuZRhm9uzZmZmZAU4LNRO0qopwf34ICcvS6mriQ4Fu3Yp7603xx810w0b+yb8z943GtX6oCbiyQFutVs+Fbt26devWrfZGz8bSCPkX076daLURz9baoqTq34/62sOMpHfh0rvA1Clak8npdIJ3exIiFMyuLNAdOnSoe5UQIghCfn4+NrdDDYEkJnIvvyT8vxmEZVXDhqn+OtaJPTQQ+sOVBbpuY35K6RdffDFjxoyZM2cGNCnUnDB9+6q39wW3WxcaKooiyN7VG6Emo/45aAA4fPjwU089FRMTk5WVlZCQEMicUHOEZ64idJV6CnR5efn06dO3b98+d+7cgQMHBj4nhBBCcHU3u4ULF6anpyclJR0+fNj76kwp/eijj954442ZM2fW4E9UhBDyhytH0BMmTEhJSfn666+XLVtW9/YjR45cJ8rhw4eNRuMTTzxx7tw5QRD8nyYKYsU1xRvOr//pQhYFeDJ1UmpIqg9B3CI9dbGaAI0xEAaPEyIEAFcX6IsXL/oQJTs72263f/DBBwzDPPbYY54bT506lZ+fDwCdO3fWeLGylRACALUNTn3GMAwhRH4cjuMYhpEfR6VS+SVOcKJAV+et/K38NwsfRoEu+O3Dlzv/O4y/uaVyJcVVr3x52Gm2SISkJ5jG9YjVq/E0E4SuKtDR0dE+RBEEISoqavjw4atWrdq2bduQIUMA4MiRIz/99BMApKWlmc1mL0N5U8qvz1Po5cdhGIZhGL/EIYTIjxOcKl0VB4oPmNVmSZIIEC2rO1t99qYKtLRqtfqtd/8fMJzoXvjQtOMFzI+/loy4JarhckaosbjmKo6bkpiYWFZWBgB6vd75xwkCY8aMGTNmDACUl5dXVlbeMAghJCwszJt7Xh/HcSaTSX4ctVqt1Wrlx9FoNCqVqrq62ps7N7qt5nlGQyWp9ioFUcPezFdRdrbw/geXtGaOJQyl45fOmvGPBUVVLv8nilAj5J92XxkZGWfPnp09e/bevXv79evnl5ioUdBy2kEJQ2xum0glp+RKC2nfJqSt9w+XTmeDTmfScECBEiJwam1VeYRR3XAJI9SI+GcEzbLss88+65dQqNG5N3lkojHxdOnpUHVot/DuPHMzs+1hFuIWQvSaKofAEGAEIbFlzKA0ZVr+IxRs/FOgUXPGEKZ71G3t9O19eCxJ70oye3M/7UjSq0Sr3fbMsxP6p7AMruJACAALNFIWUXHc88+Jmb2htNR0yy2WNq1xHT1CtbBAI99JZ87AxUtS27ZMcpLvUTiO7ZEBAJzBgFtDIFQXFmjkI3HxF9LSZZTnq51O7TNPw3Dc1QEh7STF/gAAIABJREFUP8NN25Av6Llz4pJlEBZGDAYmIqJm7jwoLVM6KYSaGhxBI1/QS5eI5s/FcITnpYsXmTCLkikVl9DNm8FqFXpkQJcuCmaCkL8EV4H+KX/74YLDQGkLXWxmdB+W4Pm+vtB6Nii5EY7jWJb18s5XkFq3tjpcjIkBAEIIdTr0bVqDT6Hq5sP4ug83LS6x3nc/CQsDlq1evkL79CTtqJFykkEoGARRgT5SdnhZ7lI9oweAY+VHCSF9o/GcF184HA5v7sbzPMMwXt75SmFh7DOThLnzQK1mXC79qzMdPA++hfoDy7KSJPmWj7hpEw01U5UKAFiLxfbWHPWdQ8GLpkt6vd6Hp0MoMIKoQP9W+ZtJbRIFEQC0nK7AXqB0Ro2Vl/uT0T/49izM3cPVvXtJly7pW7ViQ0Odf+xmKYfP+VCbDZg/f29RAlQQgAuijzdCPgiig4QsYQF3PmxcQkOZtDQSEqJ0HkA6daJVVZevuFzqkSOxOqMmIIg+xLdabt1dvMvAGgiQaqG67c20dEDNHNO5E/f8P8X//IcCox5zPzPuYX/1W6KUfvzxx+Xl5S6X64UXXvBtyh4h3wRRgW5pajXttpe3nd1KqZQaktYhtKPSGaHGhBkymBkyGAB0JpPT6YQ/uirKhJtRIAUFUYEGgDahbSyJSi7VQjerxOo6ll0lUWgXxceENMFNCa7ejCI3N9fTGuyee+4ZN26cN0EYhlGpVPJH3wzDGAwGnw8b1I0TEhIiPw4AeNnqXarTkxZ5L7gKNGpc8ssd//r+N7NOTQh8XuN+aWhKWoxB6aT87OrNKGJiYt544w0ACAsL87LNt06nE0XRKXtQbzAYnE6n2+2WGcdkMtlsNvkn1pvNZqvV6k2h93xFyXy6ZggLNPJd1ukyi0GtYhkAsOhVu85UNL0CffVmFBqNJi0tzfOvJSUl3gShlIqi6JcZEn/FEQTBL51PBEHwpkCzLJ7T4IsgWsWBGh2HW2L/WGpMAMSm+DMWN6NACsIRNPJdcrh239kKg5YBAKcghemb4E4ouBkFUhAWaOS7vm0spVb3mqNFhJCBqZa7OkcqnRFCTQoWaOQ7liH3d43+a69kIMRZY1c6HYSaGpyDRnKxDPEcJ0QI+Rf+XSGEUJDCAo0QQkEKCzRCCAUpPEiIgkJxtWtX7iWWgXZRGpMGP5YIAWCBRsEgu8g2Y02OSauilFTVuN69PzXS1ATbeiB0s3CKAylv++nyML1Ko2K1aiZUp9pyCvefRQgACzQKBtt+KyV/bE/FscTm8kOPCISaACzQSHl3d4p0iZcb7jhcUoJFo2w+CAUJnINGyhvWKbLaKe7ILpcoHdI+vF9b7AmOEAAWaCRfmc0FwPDgzSba9TPw7PheceP7tSZUooJ/dkJBqAnAAo185xKkJXsLdmSXE0JuTzY9eFsLo4wVcgaeFUWowV2lEPoDFmjkux9Plh44V2kxqAHg6AWr6VjxA91ibjYILSiQVq2mVdXOtFT27uENkCZCjRUWaOS7ggoH/0ebJBVLfjhadNMFuqLC/eBYEh4BHFezZ4/q9/Mw6Un/J4pQ44SrOJDvjBpOkC6vvqAU+rcNu9kI0qHDYDQBxwEA0encK1dS73b5Q6g5wAKNfDcwLazM7rY5hRqXWGJ1DUi76QINokjqHFukAMQfG+Uh1DTgFAfyXbhBvfDhDr8VuwBIioUL0d70x4m5pbNQVUU0GmAY6nKq7hwKZnNDpIpQY4QjaCSLTs32bB3Wu224D9UZACAiQvXRf0n3bvRSoWb4cO2kp/ydIEKNGI6gkcJI27Zc27bw/D81BoMoilBTo3RGCAULHEEjhFCQwhE0kkWi9PdSOwUSqpY43JkQIb/CAo18Z3eJX+wp2JdXSQikJ5jGdIux6FVKJ4VQ04FDHuS7Tb+WHM2vMutUIVrVyYvVPxwtUjqjoEOtVnrxIuDaQeQTLNDId0VVLvUf0xosw2z8tUTZfIKN9NXXwt0j3A//rfy228XT2UqngxofLNDId6E6zv3HmYQSpYPSwpXNJ6jQI0fEzxdDZCQJC2OiY2oeHqd0RqjxwQKNfDe4fUS53V3tEKwOodTqvqNDhNIZBRGacwZ0+stXGAY4Ds9iRzcLDxIi34VouS8e7ZRXLlAg8SGMhsPv+zrCw6jbRXi15xoVBNDrr/8IhK6ABTrYbdmyZe/evQBQVFQ0ZMiQO++8EwD27du3ZMmS6OhoAHj88ccjIhQbunIM6RQfwjCM1WpVKofgxPTsye75Wdqxk3KcZLdrXvl/IoNfYOjmYIEOdgMGDBgwYIAoim+++Wb//v09N9pstnvuuWfgwIHK5oauR6Vinv8n6ZtJyyuM3btJcXGiw6F0TqiRwQLdOGzatKl3794azeXdVG0228GDB48cOWI0Gh977DGO4wDgL3/5S3FxcVxc3OLFi70MSwgJC7v5FnT1xeF5Xn4QSqlOp5MfR6VSGQwGmXHkIyqOZGQAAGs0Sm630umgxgcLdCNAKd25c+esWbNqb8nIyMjIyAgLC1u+fPmWLVuGDBkCAPPmzRNFkeO4iooKb8Kq1Wq1Wi1zamLbqdKc4hpCSKxZPaR9OOPzvoQAOp1OkiSH7GGmwWBwuVwul8ubO4eGhsp8OoQaDhboAJGoxBAfpyCzs7MTEhLq9k3Oz8+PiooCAJ1OJwiXd/HzTEkDQEmJV+uRJUmilIoyzqH4Obfi813nzTo1ENid7aaSNKS97yvtKKWSJMnJx79xEFIcFugGV1JTsjFn/U8FP1FKH2n16K1hXW42wvnz51u0aOG5nJOTs3r16nvvvffDDz/U6/WSJD377LP+TtlbJwqsRg0LBABAz7N5pXalMkGoScIC3eB++H3NqcpTFrUFAJac/SJCGxmni7upCAMGDKi93KpVq+eeew4AZs6c6d88fcAyhNZeoUDA9/kNhNDVAlGgWZYlXkxNeu7jOd4l8+n8FYcQIjNOjWDfV7TXogmTiAQAOlZ3zp6XZEqSmVuQuC3ZvOVkaZiBBYAKh9Axzqh0Rgg1KYEo0AzDeF+gPeVV/tMFSRwN0VL65yhTpJJBZZCfW5BIjda/ODTlUL4NgKRF8l0SQ5TOCKEmJRAF2u12e3PEhhBiMBicTqfMp+M4jlIqPw6llOM4+XHuSb53/e/reIYXJNEmVLfRt71OTKOxkQ1C02IM6S0j8UQVhBoCzkE3uCHxdySFJP1a9P/bu9PwKKp0D+DnVPWafSMkJISwJUFFZTARwpKoMwMZ9RlEUEbEO4DgIKBcFRHUEcfHZVgG1LkIOmRY5KrIQxhGgQwIAZEExCvDprIo6BMIkNDZutPp7qpzP7TGDEvorqquOun8f19sms7b57x2XqpPvXXqaLQ5+pbEW+wmu9EjAoD2AQU65CihfRNvzLR0N3ogANDOoEADhFyDt2Hb6a0XnOc72ZMHdRpkN6m9WhI6CBRogNDyMd+6Y2uP1hwVqXi49vC5pnO/6/6A4quWoEPBpwQgtH5o/P7AhQNm0UwIsQiWL2v+r6qpyuhBQfuAI2gA5SID2OLZ7LVQSiilgiAQQgRKLTZLID94OUEQbDab2az2zryUUv/OJyrjEELUb24FbUCBBlDO6XRe8zVRckKDxyUwi0UUZSb1jb8xjsYF8oOXM5vNbrc7wH2g2mC1Wl0ul/rtSux2u8vlat3pfzWiKNrt6F8KGpY4AEKosrZ56urj7lNjzp5JrWy4cF3cTb9Jv8tEcWAEAcEHBSCENh86nxhlMZuSmfuXTd8XxiZ0TrRqsAE3dBA4ggYIoR3HLgo/bXNgNQlVdWovTIUOBQUaIIRuy0qQf1qidXvlzjEWY8cD7QsKNCgn//vf8pYtviNHjB4Iv4bf0Km60dvg9tY3eftlxNyWg/UNCALWoEEh6a2l8j82EqvF1exh439P7r/P6BHxKD3eVvz7vudcVGRSWoxJxR3BoCPCETQowU5+K5dsIHFxxB5BExJc7ywnFy4YPShO2UzCDWkxvTpHoTpDsFCgQZGaamJpdbmExczOo0ADaAwFGhTJzGSupp//2OSmGRnGjQYgPKFAgxI0OVmcM5tVVbGLF+WzZyP/soBERxk9KIBwg5OEoJD4yzvEwYNIdY09s5tos3lwRxUAraFAgwo2G0lPoxb09l4VY2TnsYvfOaooYQMyY3JSlOyRBB0WCjRACJUerV73RVWs3SIztv3o+efu7JXVGTUaAoU1aIAQWl1RGWUVCSWUkrgI8xen640eEbQnKNAAIURb78TJSCA7cwK0QIEGCKExeanOZokQwhirdfv6dYs1ekTQnmANGiCEim7oZDEJlXU+Qli/9Mg+OEkIwUCBBgghUaC/vi4pOjra6/W63W6jhwPtDEcFurK2+bijOkpoTomxGj0WAADj8VKg/3Hg/Povq+wWs8vjfSCvy/Drk4weEQCAwbg4SVhV17z+/6riI8xRNlNChPl/91ZedHqNHhQAgMG4KNDnGzxm888jMYvihQa19y0GAGjvuCjQqbFWj1du+aPHJ6XGYRkaADo6Lgp0p2jLf+Wn1Tg9dU3eGqf3kYKMGBsvi+MAAEbhpQ7ekZOYmxnnFe0WyRWN6twueDzyJ9vlykpvVpblV78yejQAYYijUhhrNyUmxlRXY/W5PfD5fAsXsfI9xGJz/2Oj798HybRHCe7pBKApLpY4oN2Rjx9nO3eSiEhiEkl0tOef/ySVZ4weFEC44egIGrQSGRnQ9cSiKIqiGOCLL+H1SU6TSRAEQgillJpMNsknKgrVwmQyiaLoj6mGKIpWq9Vkwmcb2j18iMOQ0+kM5GVWq9VqtQb44ktldGWNThYZySgVCGEul7tzZ6Is1E+ioqIkSWpqarr2S9skimJzc3Nzc3MgL7bb7SrfDiB0sMQBisTGmt9YLJ87x6qqTP37R69eRWw2o8cEEG5wBA0K0Rv7Wsq2E1m2R0UJgkBwT0IAreEIGtRRvWQMAFeD3y4AAE6hQAMAcIqXAi3VOyWPx+WRZSJ7ZBXXqjgchJDqRl+T1CQRSX2cBm+Dj/iUx2locPt8tY3hu1O7F/sOXktTk0+SZcaapYAaS67M55MdjupGHyGkwdug2diAbxycJPz2tGfSZHbhHDOJz07NPpllpgLtFZ01/brHokxRgYfxbdnK/vg8czdXJVheeyqrPl5gMkmJSHnx5pcsoiWIOMuXy0vfIc3NB3Oi/+fRTI+JEkKSbEnzb1kY1LSkpW9LS97yP17fb/j6Qfe/MqJ3r+TwueMRO3DA+/h/U0FwFQ233X8f6dbN6BFxx7fgL9Lqdwkla4f33nynjVLSJSL9roy7ByQNCC7O8N9IZ85SQuY92ftkTzulxEzNIzPvGdblzhCNHDhh/BG0Z+qjpPoCo8J7o1NP9TKJPiJJ4reN3779zbKg4kgv/JG4mxkhr0/tVh9HiUwIpeeaqhYdWRB4EJ/bLb/+JmluZoS8Nbmbx/zjtcvVzdULD88PYjCnT0tL3iKUypTKhN7z5ZbOZ759fsPxoGbEtdpa74wnSEoq6dxZ+vJA/e8nENzP6T/JpaXymjWS2XImJXLLnTaTjzFmOtd07u2vl9b76gOP43tkinzmDCFkyy+Tv+1hZ0RmjHhl77pTJaq+20F7YHyBJpVn/HeiP5UZIUhMYIwSQhipba4NPIbscNAmtz9OY5SZtNzbntKz7rOBx6FbtxLyY1F224Sf4zDyXeN3gcdhH28mlPy4gyollJDCb8obmsPn10k+dpxGRv649walgs0ufxdEfjoC9ulnTBAlmR29LpLKRGCMMsIYEQg9fPFw4HHkI0f8n8n9ebGMMkoEQggjxCd7v6j+IlSjBz5wUKDj4vz/tbklQiij/qrIhGA23hGio39+/HNZJYQRkQaxjMN6977aX1lNQWxRTdO7XPJMdVSCWeQg2xqhMdFE+nmJn0k+Gh1j4Hg4xGJjKWOiQGPqJEIZIT/+088ISbTGBx6H/nStY1SD1HL04Jcela7VaIFPxpcMOngwZYwS8uvSap+ZSKIgUCYReXDnIUFEMZloRldCCCXkls/rGfUXekYIuys9iHU6U04OjY/zx+n2vevHZxkhhNyXOTrwOOKdd7LEJEoYJYwyVmuP3nT9HdenBbGkzjmalUVvv400OonXyxrqrSNG0LRL/03q4EwPPUQkn8Ckmw/Vp1W6JVFghBEiZUZ37x2bHXgcOuMxQhglZOx7Z0w+/4eaEEKizdFptrRQjR74IM6dOzfU7+F2uxljV/tb8Y7bic3Kqi+K7sjGzsO8naKz4tPu735ffvLgoN5FfOB37PQpqfpi6inhYNc8X6yQEdNpbPdxgzoHGWfcg+zQEW99Y+9D4t4bbqQ2T6I9dmL2pNzEvCCiCILp3pHyqdNut/RV515/uW/2bTd3eepX3a/5cxEREUGN9opcLte1X0SIyWQymUwB7llxKUqFvDzaOZmmptrvGWEf+4DHp3YBx2KxMMZ8quNYrVZJkiQpoB4elQlvK9VRkeLIe0l9vTcyLtU+qDarZ6eIqLzOeRN6TzQF861OyMoS++SwQ4dkJxPrMk9mRdstQk5Cnz/e/IKg9ADLbrc3Nze38VsZoIiIiAD3ThEEAdueKEDV/0+6JofDEchvC6U0MTGxurpa5duZTKaYmJiLFy+qjGOxWOx2e11dnco4NpvNbDY3NATUGpWUpMHtzAPMoX+zpPr6IE5YXVFERIQgCI2qL/XWarOkmJiYwDdLUpnwAFMdHR3t9Xrdqs+jxsXFuVwuj0ftnukJCQl1dXUB/hvWhqSkpJqamkBqiCiK8fFBLOyAn/FLHAAAcEUo0AAAnEKBBri2HTt2zJw50+hRQIeDAg1wDbW1tQcOHLBhw2vQnZaXeu/YsWPTpk3z5wdxxR0A/1auXDlu3LjXX3/d/8eGhoa9e/cSQjIyMlJTUwOJIIoiY8xqDaKV/ooopWazmaq+OS+l1GKxyLKsMg4hxGq1BnKSUP2YOybNCjSOMiAs7d69Oysrq3WzR11d3fr16wkhd9xxR/fu126dJIQIgmA2m0VRVDkYfxxNbrcYYGENJE4gL9OhWywsaVagLznKIISUlZUdOnSIEDJq1Ki4ny4XbIP/31hl9zBtTRAESqn6OGruqdqayWQSBEF9HDDE/v37CSHffPPN999/X1paOmzYsPT09CVLlvj/tv222TU0NGjSZldfXx9gm53FEsSeZeCnTYG+/CgDIDzMmDHD/+D5558fNmyYsYOBjkabAn35UQYhpLCwsLCwkBDicDgCuXU0pdRmsym8yXQrJpPJbDarj+O/UEV9HP+FKgHGwdVW3HrppZeMHgJ0ONoUaBxlAABoTuM2OxxlAABoRY+9OOrq6gJp6GGMOZ3OqCi1W77JstzU1KT+pJwkSR6PR/2ag8/nkyQpwJPdmuxX4HA4AnlZUANrg9frZYypPwXk8Xj8bWQq4zQ3N4uiGGCrg8qEB5jqoIbUhqamJovFor4bpLGx0b+Dipog/l/YyMjIQFroBEGIjY1V83YdFONGQ0ND//79JUlSGefYsWNFRUXqx7Nz584JEyaoj/PBBx88++yz6uNobtOmTdOnT1cfZ/ny5a+88or6OC+//HJxcbH6ONOnT9+8ebP6OBqaPXv22rVr1ccZP378p59+qj7O8OHDT5w4oTKI1+vt37+/0+lUPx64GlxJCADAKQ5uGvsTs9k8cuRI9XFiY2OLiorUx0lNTS0oKFAfp0ePHuqXEUIhIyNj0KBB6uPk5OQEeEFd2/r166fJt+D8/PyuXbuqj6OhvLy8jIwM9XEKCgpSUlLUxykqKoqJUXsHHEEQRo4cqclVM3A1eqxBAwCAAljiAADgFEcFmjEW4G1HOmYczfE2Qd7iaIi3qfEWB66GlwK9f//+adOmPf3004SQFStWlJeXI05I8TZB3uJoiLep8RYH2sBLgS4pKVm4cKG/KXX06NElJSWIE1K8TZC3OBribWq8xYE28FKgTSZTy1alaq4xCdc4muNtgrzF0RBvU+MtDrSBlxaZlJSU4uLi2tra0tLSffv29ezZE3FCircJ8hZHQ7xNjbc40AZe2uwYYxUVFV9//bXJZMrOzs7NzVV2C4ZwjaM53ibIWxwN8TY13uJAG4wv0MXFxVd8fsKECYgTCrxNkLc4GuJtarzFgWsyfokjOzsbcfTE2wR5i6Mh3qbGWxy4Np32/AjSli1bEEdPvE2Qtzga4m1qvMWB1ow/gvY7cuTIunXr/E3vPp/P5/Mp2/g/XONojrcJ8hZHQ7xNjbc40AZx7ty5Ro+BEELmz58/ceLEr776atq0aZTSgQMHKttcJlzjaI63CfIWR0O8TY23ONAGXvqgbTZbjx49KKVdunQZNWrUtm3bECekeJsgb3E0xNvUeIsDbeBlicNut+/atSspKam4uDg5ObmmpgZxQoq3CfIWR0O8TY23ONAG49vs/DweT21tbVxcXGlpqcPhKCwsVPZ1KVzjaI63CfIWR0O8TY23ONAGXgr0oUOHysrKXC5Xy3ieeeYZxAkd3ibIWxwN8TY13uJAG3hZ4li5cuXYsWOjo6MRRx+8TZC3OBribWq8xYE28FKgMzMz+/Xrhzi64W2CvMXREG9T4y0OtIGXJY7Nmzdv3bo1PT295VbwM2bMQJzQ4W2CvMXREG9T4y0OtIGXI+iysrLRo0dHRUUhjj54myBvcTTE29R4iwNt4KVAZ2RkDBw4EHF0w9sEeYujId6mxlscaAMvSxyvvvqq0+ns2rVry9elSZMmIU7o8DZB3uJoiLep8RYH2sDLEXRhYaEmm8mGaxzN8TZB3uJoiLep8RYH2sDLETQhhDHW2NiovmtHqzhhDwnXDVINyvCyFwfPdxr+4YcfJk+ezE8cTSDhukGqQTkdtzZty5w5c5qammbPns0Ya2xsnDlzprFxWvP5fBcvXuQnjiaQcN0g1aAYL0fQHN5pmDHm3+tWFEX/veVV0iqOJpBw3SDVoBgvJwl5u9Pw/v37//73v8uy/NZbb61YsSI7O1tZR9HHH3/80Ucfeb3elmf+9re/KRuStpBw3SDVoJzBR/A/kWV5z549xcXFq1at2rt3ryzLxsbR6uvks88+63Q6lf1sSCHhukGqQTHjj6DffPPN6dOnL1++/OGHH1bT965VHD+tvk4mJydHRESoHIy2kHDdINWgkvEF+tSpUzNnzqysrDx+/Hjr5//85z8bEsdPq6+TTU1NTz/9dPfu3Vua+R955BFlobSChOsGqQaVjO+DliSprq5uxYoVDz30UOvnk5KSDInjxxirqKj4+uuvTSZTdnZ2bm6usp788vLyS35wwIABCuJoCAnXDVINKhlfoHlTXFx8xecnTJigLCDDxQVtQsJ1g1S3O8YvcVzuhx9+eOmll95++21D4mRnZ6t839a0OmMeUki4bpBqCI5x5yeviofm+bNnz5aUlPgfr1y58ty5c8rihOLiAs0h4bpBqiEovFyoQjhrnl+0aFFKSor/8Y033rho0SJlcTS8uEBzSLhukGpQhpclDt6a5yVJajnjcfPNN7/77rsKghDtzphrDgnXDVINivFSoEtKShYuXPinP/2JEDJ69OgXX3xR2Ye4vLx84cKF6tsz09LSlixZkpOTI8vywYMHFX/4/vCHP1RUVFBKz58/P2zYsNzcXJUD0woSrhukGhTjpUDz1jz/+OOP7969++TJk6Io5ufn5+XlBRtB24sLNIeE6wapBsV4KdD8NM+vWbNm7NixK1as8P/R5/MdPXr06NGjwbYiaXtxgeaQcN0g1aAYL33QjJvm+X379uXl5X322WeXPD9o0KCg4mh7cYHmkHDdINWgmPEFOlyb5/1HK5fPTvG8tIKE6wapBpWMX+Lgs3le/Rnz3r17E61npwkkXDdINahlUP/1pXhrnn/00Ufr6+uV/WxrH374oc/n8z92Op1Lly5VH1MTSLhukGpQjJcLVXhrnk9JSdHkjLkkSbNmzTpy5MiuXbvmzJnDT68oEq4bpBoUM36Jw4+f5vlly5YRQsxm85NPPpmVlSWKov95ZVsp3n///QMGDJg1a1ZUVNSCBQvi4uIUBAkFJFw3SDUoZvxJQr9FixZZrdaW5nm73T5lyhQFcZjqM+YVFRVXfF7ZVoolJSWfffbZuHHjHA7Hxo0bR4wYMXToUAVxNIeE6wapBuWMXWFpIUnSzp07i4uLV65cWV5eLklSsBHeeOMNxtg777yj1ZBkWVa/VPf+++97vV7/48bGxiVLlqgelzaQcN0g1aCY8UfQWrXsPPnkk4IgVFZWdu3atfXzyprnNdxKkTFWX19PCImNjVUWQVtIuG6QalDJ+DVorVp25s2bd8XmeWW02j/hiy++WLZsmdVqlWVZkqSpU6f27dtX/fDUQMJ1g1SDSsYXaP9WAMFey3S5999/f+zYsXFxcRs3bmz9vLLmea3OmK9du3bBggUxMTGEEIfDMW/evFdffVVxNE0g4bpBqkEl4wu0H2/N81rtn2CxWPyfYEJIfHy8yYSEX1kYJxypBsV4yemmTZvmzZun5hpW/9HK2bNn77nnHn//kMvlWr16dbDHLxs2bBg6dKhWWymmpKQsXrz4hhtukGX58OHDXbp0URZHc0i4bpBqUIyXAq1t8/z48eNramrWr19/1113BRuhvr5+zpw5iYmJBQUFo0ePjoqKUjOeKVOmVFRUnDhxglKan59/6623qommISRcN0g1KGZ8F4e/ed7hcFRVValvnieEnD59Wn3z/IkTJ3bv3r1v3760tLSCgoK8vDyLxaIgzqFDh8rKylwuV0uen3nmGWVD0goSrhukGlQyvkBz3jx/4sSJDz/88MCBAx988IGCH3/qqafGjh3b+uttr1691IxHPSRcN0g1qGT8EkfLh5VpsZWix+N57bXX/OcrcnNzV61apfhDfOzYsd27d3/++efdunWbMWOGsiCZmZn9+vVLxaOeAAAFPUlEQVRT9rMhgoTrBqkGlYw/gvbjp3ne/wVwz549KSkpBQUFAwcOVLOAuHnz5q1bt6anp7fcBUPx74O2kHDdINWgmPFH0H78NM8vW7Zs6NCh8+bN02Tzl7KyMvVnY0IBCdcNUg2K8VKg+Wmenz9/vuJ3v1xGRgafd9VEwnWDVINivBTocG2er6+vf+6557p27dryNXDSpEnGDskPCdcNUg2KGV+gw7t5vrCwUNkdQkMHCdcNUg0qGX+ScNWqVXv27PE3z+fn56tc0pJluaV5vnfv3rfeeitXn6HS0tJhw4YZOwYkXDdINahkfIH2C9fm+SNHjqxbt66hoYEQ4vP5fD7fX//6VwPH0wIJ1w1SDYrxUqBbhFnz/MyZM6dMmbJq1arJkyfv2bMnNTVV/d5m2kLCdYNUQ7CMX4NuEZbN8zabrUePHpTSLl26jBo16sUXX+TnQ4yE6wapBmWML9CXNM+PGTNGTfN8z549n3jiCX6a5+12+65du5KSkoqLi5OTk2tqagwcjB8SrhukGlQyfolj5syZQ4cOHTJkiCbN87NmzRoxYkTrszFG3eVhzpw5r7zyisfjqa2tjYuLKy0tdTgchYWFGRkZhoynBRKuG6QaVDL+CDpcm+erq6sJIRaLJTk5mRBy9913Gz2iHyHhukGqQSXjC7S2+Gmeb2xsfPfddy9//sEHH9R/MKGDhOsGqe6Awq1A89M8L4piYmKi0aMIOSRcN0h1BxRuBfqS74ClpaVGjcRutxcVFRn17rpBwnWDVHdA4VagL2+eN+rqJsVbLrQvSLhukOoOSJw7d67RY9DS/PnzJ06c+NVXX02bNo1SOnDgQKPOLA8ePNiQ99UZEq4bpLoDEowegMYuaZ7ftm2b0SMKc0i4bpDqDijcljjQPK8zJFw3SHUHZPyFKlpB87zOkHDdINUdVvgcQaN5XmdIuG6Q6g4rfAo0mud1hoTrBqnusMKnQKN5XmdIuG6Q6g4rfAo0mud1hoTrBqnusMKnzQ7N8zpDwnWDVHdY4dPFAQAQZsLnCBoAIMygQAMAcAoFGgCAUyjQAACcCp82O9CfJEmTJk06evRoampqbGxsQUFBZmbm/Pnz3W73gw8+OGHChBdeeOGTTz4xm81ZWVlvvvnm9u3bly5dumHDBkLIww8/XFhYmJyc/PLLL/fs2dPpdLpcrjVr1sTExBg9LQBeoECDch9//PGpU6fKy8sdDkefPn0KCwvNZnNFRcXJkyfj4+N37NixZcuWPXv2iKI4ZsyY1atXp6WlXRJBEITDhw9v2rQpMjJy6tSpxcXFxt6pGoArWOIA5Q4ePDhkyBBKaUJCwu233+5/8vrrr4+PjyeE7N2797bbbhNFkRBSUFDw+eefXzHIL37xi8jISP+Dw4cP6zV2gHYABRqUk2W55S55/kJMCLFarVd8MaW09S31fD6f/4EkSZdHAwCCAg1q5OTk7Nu3jxBSW1u7Y8eOS/524MCBZWVlsiwTQrZv3z5gwICYmJjz588TQiRJajmg/vLLL+vq6gghO3fuvOmmm3SdAADfsAYNyv32t79977338vPzMzIyhgwZYjL9x8epoKCgqKjIv8rRp08f/9ZrcXFx9957b0JCwnXXXee/irVv376PPfZYZWVlZGTk+PHjjZkJAJdwqTcoV11d/a9//euBBx5gjA0ePHjx4sW5ublBRdi2bdvixYs/+uijEI0QoF3DEgcoFxsbu2nTpltuuSU/P7+wsDDY6gwAbcMRNAAAp3AEDQDAKRRoAABOoUADAHAKBRoAgFP/DwlWregshvw/AAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","source":["* What do you think about these results? Are these genes described in the original paper? How would you describe the behavior of these genes in (well chosen) simple words?"],"metadata":{"id":"FUSsboRtLLuj"}},{"cell_type":"markdown","source":["# **Step 6: Final reflections**\n","\n","\n","- \"*Interpretations of sex-related variation are not always commensurate with the story the data actually tell*\" (Pape et al. 2024). How do you judge the interpretations of the results in the published paper?\n","\n","- Discuss potential limitations of the paper and the conclusion about the absence of Tamoxifen effect.\n","\n"," - What is important to notice in the design of the experiment (tamoxifen treatment duration, batches, number of replicates, ...)?\n"," - Have a look at the results and materials and methods section: which analyses were made and how could they influence the results?\n","\n","- Limitations of our reanalysis: what could be improved if we had more time?\n","\n"," - Try subsetting the dataset to one tissue as done by the authors. What do you notice?\n","\n"," - It is possible that we detect few significant genes for the interaction but that some trends are visible collectively at the gene set level. See the more davanced scripts on the Github repository allowing you to explore this\n","\n","- \"*Sex is not a causal mechanism*\" (Pape et al. 2024): follow-up on some DE genes and try to find which mechanism of action could explain their differential expression patterns.\n","\n","- Discuss what would be the next steps if that was your research project. Which experiments would you design next? How would you describe the results in a paper?\n","\n"," - You can also have a look at other related papers (e.g., https://www.nature.com/articles/s41586-022-04686-1, https://www.ahajournals.org/doi/10.1161/ATVBAHA.123.319922)\n"," - Or look at follow-up papers from the same authors (e.g., https://link.springer.com/article/10.1007/s12035-022-02860-0)"],"metadata":{"id":"wB5HpZcDLQFx"}}]} \ No newline at end of file