-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
396 lines (364 loc) · 15.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import pygame, sys
from pygame.locals import *
import math
import random as rn
import numpy as np
import scipy as sc
from scipy.spatial import ConvexHull
from scipy import interpolate
import argparse
from constants import *
####
## logical functions
####
def random_points(min=MIN_POINTS, max=MAX_POINTS, margin=MARGIN, min_distance=MIN_DISTANCE):
pointCount = rn.randrange(min, max+1, 1)
points = []
for i in range(pointCount):
x = rn.randrange(margin, WIDTH - margin + 1, 1)
y = rn.randrange(margin, HEIGHT -margin + 1, 1)
distances = list(filter(lambda x: x < min_distance, [math.sqrt((p[0]-x)**2 + (p[1]-y)**2) for p in points]))
if len(distances) == 0:
points.append((x, y))
return np.array(points)
def get_track_points(hull, points):
# get the original points from the random
# set that will be used as the track starting shape
return np.array([points[hull.vertices[i]] for i in range(len(hull.vertices))])
def make_rand_vector(dims):
vec = [rn.gauss(0, 1) for i in range(dims)]
mag = sum(x**2 for x in vec) ** .5
return [x/mag for x in vec]
def shape_track(track_points, difficulty=DIFFICULTY, max_displacement=MAX_DISPLACEMENT, margin=MARGIN):
track_set = [[0,0] for i in range(len(track_points)*2)]
for i in range(len(track_points)):
displacement = math.pow(rn.random(), difficulty) * max_displacement
disp = [displacement * i for i in make_rand_vector(2)]
track_set[i*2] = track_points[i]
track_set[i*2 + 1][0] = int((track_points[i][0] + track_points[(i+1)%len(track_points)][0]) / 2 + disp[0])
track_set[i*2 + 1][1] = int((track_points[i][1] + track_points[(i+1)%len(track_points)][1]) / 2 + disp[1])
for i in range(3):
track_set = fix_angles(track_set)
track_set = push_points_apart(track_set)
# push any point outside screen limits back again
final_set = []
for point in track_set:
if point[0] < margin:
point[0] = margin
elif point[0] > (WIDTH - margin):
point[0] = WIDTH - margin
if point[1] < margin:
point[1] = margin
elif point[1] > HEIGHT - margin:
point[1] = HEIGHT - margin
final_set.append(point)
return final_set
def push_points_apart(points, distance=DISTANCE_BETWEEN_POINTS):
# distance might need some tweaking
distance2 = distance * distance
for i in range(len(points)):
for j in range(i+1, len(points)):
p_distance = math.sqrt((points[i][0]-points[j][0])**2 + (points[i][1]-points[j][1])**2)
if p_distance < distance:
dx = points[j][0] - points[i][0];
dy = points[j][1] - points[i][1];
dl = math.sqrt(dx*dx + dy*dy);
dx /= dl;
dy /= dl;
dif = distance - dl;
dx *= dif;
dy *= dif;
points[j][0] = int(points[j][0] + dx);
points[j][1] = int(points[j][1] + dy);
points[i][0] = int(points[i][0] - dx);
points[i][1] = int(points[i][1] - dy);
return points
def fix_angles(points, max_angle=MAX_ANGLE):
for i in range(len(points)):
if i > 0:
prev_point = i - 1
else:
prev_point = len(points)-1
next_point = (i+1) % len(points)
px = points[i][0] - points[prev_point][0]
py = points[i][1] - points[prev_point][1]
pl = math.sqrt(px*px + py*py)
px /= pl
py /= pl
nx = -(points[i][0] - points[next_point][0])
ny = -(points[i][1] - points[next_point][1])
nl = math.sqrt(nx*nx + ny*ny)
nx /= nl
ny /= nl
a = math.atan2(px * ny - py * nx, px * nx + py * ny)
if (abs(math.degrees(a)) <= max_angle):
continue
diff = math.radians(max_angle * math.copysign(1,a)) - a
c = math.cos(diff)
s = math.sin(diff)
new_x = (nx * c - ny * s) * nl
new_y = (nx * s + ny * c) * nl
points[next_point][0] = int(points[i][0] + new_x)
points[next_point][1] = int(points[i][1] + new_y)
return points
def get_corners_with_kerb(points, min_kerb_angle=MIN_KERB_ANGLE, max_kerb_angle=MAX_KERB_ANGLE):
require_kerb = []
for i in range(len(points)):
if i > 0:
prev_point = i - 1
else:
prev_point = len(points)-1
next_point = (i+1) % len(points)
px = points[prev_point][0] - points[i][0]
py = points[prev_point][1] - points[i][1]
pl = math.sqrt(px*px + py*py)
px /= pl
py /= pl
nx = points[next_point][0] - points[i][0]
ny = points[next_point][1] - points[i][1]
nl = math.sqrt(nx*nx + ny*ny)
nx /= nl
ny /= nl
a = math.atan(px * ny - py * nx)
if (min_kerb_angle <= abs(math.degrees(a)) <= max_kerb_angle):
require_kerb.append(points[i])
return require_kerb
def smooth_track(track_points):
x = np.array([p[0] for p in track_points])
y = np.array([p[1] for p in track_points])
# append the starting x,y coordinates
x = np.r_[x, x[0]]
y = np.r_[y, y[0]]
# fit splines to x=f(u) and y=g(u), treating both as periodic. also note that s=0
# is needed in order to force the spline fit to pass through all the input points.
tck, u = interpolate.splprep([x, y], s=0, per=True)
# evaluate the spline fits for # points evenly spaced distance values
xi, yi = interpolate.splev(np.linspace(0, 1, SPLINE_POINTS), tck)
return [(int(xi[i]), int(yi[i])) for i in range(len(xi))]
def get_full_corners(track_points, corners):
# get full range of points that conform the corner
offset = FULL_CORNER_NUM_POINTS
corners_in_track = get_corners_from_kp(track_points, corners)
# for each corner keypoint in smoothed track,
# get the set of points that make the corner.
# This are the offset previous and offset next points
f_corners = []
for corner in corners_in_track:
# get kp index
i = track_points.index(corner)
# build temp list to get set of points
tmp_track_points = track_points + track_points + track_points
f_corner = tmp_track_points[i+len(track_points)-1-offset:i+len(track_points)-1+offset]
f_corners.append(f_corner)
return f_corners
def get_corners_from_kp(complete_track, corner_kps):
# for each detected corner find closest point in final track (smoothed track)
return [find_closest_point(complete_track, corner) for corner in corner_kps]
def find_closest_point(points, keypoint):
min_dist = None
closest_point = None
for p in points:
dist = math.hypot(p[0]-keypoint[0], p[1]-keypoint[1])
if min_dist is None or dist < min_dist:
min_dist = dist
closest_point = p
return closest_point
def get_checkpoints(track_points, n_checkpoints=N_CHECKPOINTS):
# get step between checkpoints
checkpoint_step = len(track_points) // n_checkpoints
# get checkpoint track points
checkpoints = []
for i in range(N_CHECKPOINTS):
index = i * checkpoint_step
checkpoints.append(track_points[index])
return checkpoints
####
## drawing functions
####
def draw_points(surface, color, points):
for p in points:
draw_single_point(surface, color, p)
def draw_convex_hull(hull, surface, points, color):
for i in range(len(hull.vertices)-1):
draw_single_line(surface, color, points[hull.vertices[i]], points[hull.vertices[i+1]])
# close the polygon
if i == len(hull.vertices) - 2:
draw_single_line(
surface,
color,
points[hull.vertices[0]],
points[hull.vertices[-1]]
)
def draw_lines_from_points(surface, color, points):
for i in range(len(points)-1):
draw_single_line(surface, color, points[i], points[i+1])
# close the polygon
if i == len(points) - 2:
draw_single_line(
surface,
color,
points[0],
points[-1]
)
def draw_single_point(surface, color, pos, radius=2):
pygame.draw.circle(surface, color, pos, radius)
def draw_single_line(surface, color, init, end):
pygame.draw.line(surface, color, init, end)
def draw_track(surface, color, points, corners):
radius = TRACK_WIDTH // 2
# draw kerbs
draw_corner_kerbs(surface, corners, radius)
# draw track
chunk_dimensions = (radius * 2, radius * 2)
for point in points:
blit_pos = (point[0] - radius, point[1] - radius)
track_chunk = pygame.Surface(chunk_dimensions, pygame.SRCALPHA)
pygame.draw.circle(track_chunk, color, (radius, radius), radius)
surface.blit(track_chunk, blit_pos)
starting_grid = draw_starting_grid(radius*2)
# rotate and place starting grid
offset = TRACK_POINT_ANGLE_OFFSET
vec_p = [points[offset][1] - points[0][1], -(points[offset][0] - points[0][0])]
n_vec_p = [vec_p[0] / math.hypot(vec_p[0], vec_p[1]), vec_p[1] / math.hypot(vec_p[0], vec_p[1])]
# compute angle
angle = math.degrees(math.atan2(n_vec_p[1], n_vec_p[0]))
rot_grid = pygame.transform.rotate(starting_grid, -angle)
start_pos = (points[0][0] - math.copysign(1, n_vec_p[0])*n_vec_p[0] * radius, points[0][1] - math.copysign(1, n_vec_p[1])*n_vec_p[1] * radius)
surface.blit(rot_grid, start_pos)
def draw_starting_grid(track_width):
tile_height = START_TILE_HEIGHT # Move outside
tile_width = START_TILE_WIDTH # Move outside
grid_tile = pygame.image.load(STARTING_GRID_TILE)
starting_grid = pygame.Surface((track_width, tile_height), pygame.SRCALPHA)
for i in range(track_width // tile_height):
position = (i*tile_width, 0)
starting_grid.blit(grid_tile, position)
return starting_grid
def draw_checkpoint(track_surface, points, checkpoint, debug=False):
# given the main point of a checkpoint, compute and draw the checkpoint box
margin = CHECKPOINT_MARGIN
radius = TRACK_WIDTH // 2 + margin
offset = CHECKPOINT_POINT_ANGLE_OFFSET
check_index = points.index(checkpoint)
vec_p = [points[check_index + offset][1] - points[check_index][1], -(points[check_index+offset][0] - points[check_index][0])]
n_vec_p = [vec_p[0] / math.hypot(vec_p[0], vec_p[1]), vec_p[1] / math.hypot(vec_p[0], vec_p[1])]
# compute angle
angle = math.degrees(math.atan2(n_vec_p[1], n_vec_p[0]))
# draw checkpoint
checkpoint = draw_rectangle((radius*2, 5), BLUE, line_thickness=1, fill=False)
rot_checkpoint = pygame.transform.rotate(checkpoint, -angle)
if debug:
rot_checkpoint.fill(RED)
check_pos = (points[check_index][0] - math.copysign(1, n_vec_p[0])*n_vec_p[0] * radius, points[check_index][1] - math.copysign(1, n_vec_p[1])*n_vec_p[1] * radius)
track_surface.blit(rot_checkpoint, check_pos)
def draw_rectangle(dimensions, color, line_thickness=1, fill=False):
filled = line_thickness
if fill:
filled = 0
rect_surf = pygame.Surface(dimensions, pygame.SRCALPHA)
pygame.draw.rect(rect_surf, color, (0, 0, dimensions[0], dimensions[1]), filled)
return rect_surf
def draw_corner_kerbs(track_surface, corners, track_width):
# rotate and place kerbs
step = STEP_TO_NEXT_KERB_POINT
offset = KERB_POINT_ANGLE_OFFSET
correction_x = KERB_PLACEMENT_X_CORRECTION
correction_y = KERB_PLACEMENT_Y_CORRECTION
for corner in corners:
temp_corner = corner + corner
last_kerb = None
for i in range(0, len(corner), step):
# parallel vector
vec_p = [temp_corner[i+offset][0] - temp_corner[i][0], temp_corner[i+offset][1] - temp_corner[i][1]]
n_vec_p = [vec_p[0] / math.hypot(vec_p[0], vec_p[1]), vec_p[1] / math.hypot(vec_p[0], vec_p[1])]
# perpendicular vector
vec_perp = [temp_corner[i+offset][1] - temp_corner[i][1], -(temp_corner[i+offset][0] - temp_corner[i][0])]
n_vec_perp = [vec_perp[0] / math.hypot(vec_perp[0], vec_perp[1]), vec_perp[1] / math.hypot(vec_perp[0], vec_perp[1])]
# compute angle
angle = math.degrees(math.atan2(n_vec_p[1], n_vec_p[0]))
kerb = draw_single_kerb()
rot_kerb = pygame.transform.rotate(kerb, -angle)
m_x = 1
m_y = 1
if angle > 180:
m_x = -1
start_pos = (
corner[i][0] + m_x * n_vec_perp[0] * track_width - correction_x,
corner[i][1] + m_y * n_vec_perp[1] * track_width - correction_y
)
if last_kerb is None:
last_kerb = start_pos
else:
if math.hypot(start_pos[0] - last_kerb[0], start_pos[1]-last_kerb[1]) >= track_width:
continue
last_kerb = start_pos
track_surface.blit(rot_kerb, start_pos)
def draw_single_kerb():
tile_height = KERB_TILE_HEIGHT # Move outside
tile_width = KERB_TILE_WIDTH # Move outside
kerb_tile = pygame.image.load(KERB_TILE)
kerb = pygame.Surface((tile_width, tile_height), pygame.SRCALPHA)
kerb.blit(kerb_tile, (0, 0))
return kerb
####
## Main function
####
def main(debug=True, draw_checkpoints_in_track=True):
pygame.init()
screen = pygame.display.set_mode((WIDTH, HEIGHT))
background_color = GRASS_GREEN
screen.fill(background_color)
# generate the track
points = random_points()
hull = ConvexHull(points)
track_points = shape_track(get_track_points(hull, points))
corner_points = get_corners_with_kerb(track_points)
f_points = smooth_track(track_points)
# get complete corners from keypoints
corners = get_full_corners(f_points, corner_points)
# draw the actual track (road, kerbs, starting grid)
draw_track(screen, GREY, f_points, corners)
# draw checkpoints
checkpoints = get_checkpoints(f_points)
if draw_checkpoints_in_track or debug:
for checkpoint in checkpoints:
draw_checkpoint(screen, f_points, checkpoint, debug)
if debug:
# draw the different elements that end up
# making the track
draw_points(screen, WHITE, points)
draw_convex_hull(hull, screen, points, RED)
draw_points(screen, BLUE, track_points)
draw_lines_from_points(screen, BLUE, track_points)
draw_points(screen, BLACK, f_points)
pygame.display.set_caption(TITLE)
while True: # main loop
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
sys.exit()
pygame.display.update()
def str2bool(v):
"""
Helper method to parse strings into boolean values
"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == '__main__':
# rn.seed(rn.choice(COOL_TRACK_SEEDS))
parser = argparse.ArgumentParser(description="Procedural racetrack generator")
# Add parser options
parser.add_argument("--debug", type=str2bool, nargs='?',
const=True, default=False,
help="Show racetrack generation steps")
parser.add_argument("--show-checkpoints", type=str2bool, nargs='?',
const=True, default=False,
help="Show checkpoints")
args = parser.parse_args()
main(debug=args.debug, draw_checkpoints_in_track=args.show_checkpoints)