forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient_mednist.py
125 lines (103 loc) · 4.87 KB
/
client_mednist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from tritonclient.utils import *
import tritonclient.grpc as grpcclient
import tritonclient.http as httpclient
import argparse
import numpy as np
import os
import sys
import time
from uuid import uuid4
import glob
from monai.apps.utils import download_and_extract
from monai.utils.type_conversion import convert_to_numpy
MEDNIST_CLASSES = ["AbdomenCT", "BreastMRI", "CXR", "ChestCT", "Hand", "HeadCT"]
model_name = "mednist_class"
gdrive_path = "https://developer.download.nvidia.com/assets/Clara/monai/tutorials/MedNIST_demo.tar.gz"
mednist_filename = "MedNIST_demo.tar.gz"
md5_check = "3f24a5833bb0455a7815c4e0ecc8a810"
def open_jpeg_files(input_path):
return sorted(glob.glob(os.path.join(input_path, "*.jpeg")))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Triton CLI for MedNist classification inference from JPEG data")
parser.add_argument(
"input",
type=str,
help="Path to JPEG file or directory containing JPEG files to send for MedNist classification",
)
args = parser.parse_args()
jpeg_files = []
extract_dir = "./client/test_data/MedNist"
tar_save_path = os.path.join(extract_dir, mednist_filename)
if os.path.isdir(args.input): # check for directory existence
# Grab files from Google Drive and place in directory
download_and_extract(gdrive_path, tar_save_path, output_dir=extract_dir, hash_val=md5_check, hash_type="md5")
jpeg_files = open_jpeg_files(args.input)
elif os.path.isfile(args.input):
jpeg_files = [args.input]
if not jpeg_files:
print("No valid inputs provided")
sys.exit(1)
with httpclient.InferenceServerClient("localhost:8000") as client:
image_bytes = b""
for jpeg_file in jpeg_files:
with open(jpeg_file, "rb") as f:
image_bytes = f.read()
input0_data = np.array([[image_bytes]], dtype=np.bytes_)
inputs = [
httpclient.InferInput("INPUT0", input0_data.shape, np_to_triton_dtype(input0_data.dtype)),
]
inputs[0].set_data_from_numpy(input0_data)
outputs = [
httpclient.InferRequestedOutput("OUTPUT0"),
]
inference_start_time = time.time() * 1000
response = client.infer(
model_name,
inputs,
request_id=str(uuid4().hex),
outputs=outputs,
)
inference_time = time.time() * 1000 - inference_start_time
result = response.get_response()
print(
"Classification result for `{}`: {}. (Inference time: {:6.0f} ms)".format(
jpeg_file,
response.as_numpy("OUTPUT0").astype(str)[0],
inference_time,
)
)