-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDistParNelderMead.hpp
101 lines (94 loc) · 3.37 KB
/
DistParNelderMead.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
* DistParNelderMead.hpp
*
* Implements MPI based distributed memory parallel NelderMead simplex method.
*
* Created on: May 10, 2011
* Author: kyleklein
*/
#ifndef DISTR_PAR_NELDERMEAD_HPP_
#define DISTR_PAR_NELDERMEAD_HPP_
#define SIMPLEX(i,j) simplex[((indices[(i)])*dimension) + (j) ]
#define RHO (1.0) // RHO > 0
#define XI (2.0) // XI > max(RHO, 1)
#define GAM (0.5) // 0 < GAM < 1
#define SIG (0.5) // 0 < SIG < 1
class DistParNelderMead {
public:
/**
* Given initial guess, a step, the dimension of the simplex,
* and a pointer to an objective function.
*
* simplex: Array of doubles size dimension*(dimension+1)
* dimensions: Dimension of each of the dimension+1 vectors.
* obj_function: Pointer to the objective function, takes as argument
* a vector and its length, should return a double.
*/
DistParNelderMead(double *guess, double step, int dimension,
double (*obj_function)(double *vector, int dimension), int rank, int size,
int points_per_iter);
/**
* Same as above except we initialize the simplex to whatever we choose.
*/
DistParNelderMead(int dimension,
double (*obj_function)(double *vector, int dimension), int rank, int size,
int points_per_ter);
/*
* Deletes user passed simplex as well as all allocated memory.
*/
~DistParNelderMead();
/**
* Find the point which minimizes the objective function, and return
* an array of dimension doubles. User is responsible to free that memory.
*
* Will return answer if less than 1e-6, or if max_iterations > 0, then after
* max_iterations, whichever comes first.
*/
double* solve(int max_iterations);
// Set rho, otherwise assumed to be RHO
void set_rho(double rho);
// Set xi, otherwise assumed XI
void set_xi(double xi);
// Set gam, otherwise assumed GAM
void set_gam(double gam);
// Set sig, otherwise assumed to be SIG
void set_sig(double sig);
// Set minimimum improvement to do restart after some number of iterations
void setRestartCriterion(int iterations, double improvement);
private:
void init(double *guess, double step, int dimension,
double (*obj_function)(double *vector, int dimension), int rank, int size,
int pointsPerIter);
void centroid();
void reflection();
void expansion();
void outsidecontraction();
void insidecontraction();
void global_best(double *global_best);
void minimize();
void daxpy(double *result, double scalar1, double *a, double scalar2,
double *b, int length);
void print_simplex();
void sort_simplex();
void update(double *vector, int index);
double *simplex, *M, *AR, *AE, *AC;
double *obj_function_results;
double rho, xi, gam, sig, fAR, fAE, fAC, best;
int *indices;
int dimension, points_on_proc;
int rank, size, points_per_iter, current_point;
int feval;
int updated;
double (*obj_function)(double *vector, int dimension);
};
class IndexSorter {
public:
IndexSorter(double *arg) :
obj_function_results(arg) {};
bool operator()(int i, int j) {
return obj_function_results[i] < obj_function_results[j];
}
private:
double *obj_function_results;
};
#endif /* DISTR_PAR_NELDERMEAD_HPP_ */