Skip to content

Latest commit

 

History

History
 
 

Image Retrieval

Description

This code is intended to be used for image retrieval algorithm training when the probe image is transformed by the following transformation:

  • Random cropping
  • Rotation
  • Repetition
  • Color distortion

Trained model

Setup

Prerequisites

  • Ubuntu* 16.04
  • Python* 3.5 or 3.6
  • TensorFlow* 2.0.0a0 (for training only)
  • OpenVINO™ 2019 R1 with Python API (to infer pretrained model only)

Installation

  1. Create virtual environment

    virtualenv venv -p python3 --prompt="(image_retrieval)"
  2. Activate virtual environment and setup OpenVINO™ variables

    . venv/bin/activate
  3. Install the modules

    pip install -e .
    

Training

  • To train an image-retrieval model, run the train.py script as follows:

    python tools/train.py \
      --gallery data/gallery/gallery.txt \
      --test_images data/queries/quieries.txt \
      --test_gallery data/gallery/gallery.txt \
      --train_dir model \
      --model mobilenet_v2 \
      --augmentation_config configs/augmentation_config.json \
      --loss triplet_1.0 \
      --steps_per_epoch 500 \
      --batch_size 32 \
      --input_size 224 \
      --dump_hard_examples \
      --lr_drop_step 500
    
  • To fine-tune the image-retrieval model, run the train.py script as follows:

    python tools/train.py \
      --gallery data/gallery/gallery.txt \
      --test_images data/queries/quieries.txt \
      --test_gallery data/gallery/gallery.txt \
      --train_dir model \
      --model mobilenet_v2 \
      --augmentation_config configs/augmentation_config.json \
      --loss triplet_1.0 \
      --steps_per_epoch 500 \
      --batch_size 32 \
      --input_size 224 \
      --dump_hard_examples \
      --lr_drop_step 500 \
      --model_weights pretrained_model/weights-251920
    

The augmentation_config.json file contains the parameters of gallery images augmentation.

Each line in the file with list of gallery images should have the following format:

<path_to_image_folder>/<image_file_name> <id_of_gallery_group>

where <id_of_gallery_group> should be a number identifier to join similar (almost identical) gallery images into groups (but in the simplest case, it can be different for each line).

Evaluation

To test the image retrieval model using TensorFlow, run the test.py script as follows:

python tools/test.py \
  --model_weights pretrained_model/weights-251920 \
  --gallery data/gallery/gallery.txt \
  --test_images data/queries/quieries.txt \
  --ie tf

To test the image retrieval model using OpenVINO™, run the test.py script as follows:

python tools/test.py \
  --model_weights image-retrieval-0001.xml \
  --gallery data/gallery/gallery.txt \
  --test_images data/queries/quieries.txt \
  --ie ie \
  --cpu_extension /opt/intel/openvino/inference_engine/lib/intel64/libcpu_extension_avx512.so

After running the command, you get the following:

 9	1.00	1.00	1.00	0.00
13	1.00	1.00	1.00	0.00
16	1.00	1.00	1.00	0.00
21	1.00	1.00	1.00	0.00
AVERAGE: top1: 1.000    top5: 1.000    top10: 1.000    mean_index: 0.000
AVERAGE top1 over all queries:  1.000

Export

  1. Freeze your model:

    python tools/export.py \
      --model mobilenet_v2 \
      --model_weights pretrained_model/weights-251920
    
  2. Run the Model Optimizer:

    NOTE: You need to install TF1.12 to use the Model Optimizer.

    1. Create and activate new virtual environment:

      virtualenv venv_mo -p python3 --prompt="(ir-mo)"
      . venv_mo/bin/activate
    2. Install modules and activate environment for OpenVINO™ :

      pip3 install -r requirements-mo.txt
      source /opt/intel/openvino/bin/setupvars.sh
    3. Run the Model Optimizer tool to export a frozen graph to Intermediate Representation:

      mo.py --model_name image-retrieval \
        --input_model model/export/frozen_graph.pb \
        --mean_values [127.5,127.5,127.5] \
        --scale 127.5 \
        --data_type FP32 \
        --output_dir model/export/IR