forked from aihackmelb/gbh_api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_data.py
36 lines (28 loc) · 1.26 KB
/
gen_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# NOT INCLUDED IN FINAL REPO
import pandas as pd
import numpy as np
import datetime
def generate_market_data(start_date, end_date, filename):
# Generate a date range with 5-minute intervals
date_range = pd.date_range(start=start_date, end=end_date, freq='5T')
# Simulate Market Price (e.g., fluctuating between certain values)
market_price = np.random.uniform(20, 50, len(date_range))
# Simulate Weather Data
temperature = np.random.uniform(10, 35, len(date_range)) # Temperature in Celsius
cloud_cover = np.random.uniform(0, 100, len(date_range)) # Cloud cover percentage
# Simulate Energy Demand (e.g., higher during daytime and peak hours)
base_demand = np.random.uniform(500, 1000, len(date_range))
demand_variation = 300 * np.sin(2 * np.pi * (date_range.hour + date_range.minute / 60) / 24)
energy_demand = base_demand + demand_variation
# Create a DataFrame
data = pd.DataFrame({
'Timestamp': date_range,
'Market_Price': market_price,
'Temperature': temperature,
'Cloud_Cover': cloud_cover,
'Energy_Demand': energy_demand
})
# Save to CSV
data.to_csv(filename, index=False)
# Usage
generate_market_data(start_date='2024-01-01', end_date='2024-01-02', filename='train.csv')