-
Notifications
You must be signed in to change notification settings - Fork 1
/
TestAttention.py
110 lines (95 loc) · 3.85 KB
/
TestAttention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import tensorflow as tf
import sonnet as snt
import numpy as np
import matplotlib.pyplot as plt
import cv2
img_size = 128, 64
glimpse_size = 5, 5
x = abs(np.random.randn(1, *img_size)) * .3
x[0, 3:6, 3:6] = 1
im = cv2.imread("img.jpg")
print(im.shape)
x = im
# Make a crop
crop = x[0, 2:7, 2:7]
def gaussian_mask(u, s, d, R, C):
"""
:param u: tf.Tensor, centre of the first Gaussian.
:param s: tf.Tensor, standard deviation of Gaussians.
:param d: tf.Tensor, shift between Gaussian centres.
:param R: int, number of rows in the mask, there is one Gaussian per row.
:param C: int, number of columns in the mask.
"""
# indices to create centres
R = tf.to_float(tf.reshape(tf.range(R), (1, 1, R)))
C = tf.to_float(tf.reshape(tf.range(C), (1, C, 1)))
centres = u[np.newaxis, :, np.newaxis] + R * d
column_centres = C - centres
mask = tf.exp(-.5 * tf.square(column_centres / s))
# we add eps for numerical stability
normalised_mask = mask / (tf.reduce_sum(mask, 1, keep_dims=True) + 1e-8)
return normalised_mask
def gaussian_glimpse(img_tensor, transform_params, crop_size):
"""
:param img_tensor: tf.Tensor of size (batch_size, Height, Width, channels)
:param transform_params: tf.Tensor of size (batch_size, 6), where params are (mean_y, std_y, d_y, mean_x, std_x, d_x) specified in pixels.
:param crop_size): tuple of 2 ints, size of the resulting crop
"""
# parse arguments
h, w = crop_size
H, W = img_tensor.shape.as_list()[1:3]
split_ax = transform_params.shape.ndims -1
uy, sy, dy, ux, sx, dx = tf.split(transform_params, 6, split_ax)
# create Gaussian masks, one for each axis
Ay = gaussian_mask(uy, sy, dy, h, H)
Ax = gaussian_mask(ux, sx, dx, w, W)
# extract glimpse
glimpse = tf.matmul(tf.matmul(Ay, img_tensor, adjoint_a=True), Ax)
return glimpse
def spatial_transformer(img_tensor, transform_params, crop_size):
"""
:param img_tensor: tf.Tensor of size (batch_size, Height, Width, channels)
:param transform_params: tf.Tensor of size (batch_size, 4), where params are (scale_y, shift_y, scale_x, shift_x)
:param crop_size): tuple of 2 ints, size of the resulting crop
"""
constraints = snt.AffineWarpConstraints.no_shear_2d()
img_size = img_tensor.shape.as_list()[1:]
warper = snt.AffineGridWarper(img_size, crop_size, constraints)
grid_coords = warper(transform_params)
#glimpse = snt.resampler(img_tensor[..., tf.newaxis], grid_coords)
glimpse = tf.contrib.resampler.resampler(img_tensor[..., tf.newaxis], grid_coords)
return glimpse
tf.reset_default_graph()
# placeholders
tx = tf.placeholder(tf.float32, x.shape)
tu = tf.placeholder(tf.float32, [1])
ts = tf.placeholder(tf.float32, [1])
td = tf.placeholder(tf.float32, [1])
stn_params = tf.placeholder(tf.float32, [1, 4], 'stn_params')
# Gaussian Attention
gaussian_att_params = tf.concat([tu, ts, td, tu, ts, td], -1)
gaussian_glimpse_expr = gaussian_glimpse(tx, gaussian_att_params, glimpse_size)
# Spatial Transformer
#stn_glimpse_expr = spatial_transformer(tx, stn_params, glimpse_size)
sess = tf.Session()
# extract a Gaussian glimpse
u = 2
s = .5
d = 1
u, s, d = (np.asarray([i]) for i in (u, s, d))
gaussian_crop = sess.run(gaussian_glimpse_expr, feed_dict={tx: x, tu: u, ts: s, td: d})
# extract STN glimpse
transform = [.4, -.1, .4, -.1]
transform = np.asarray(transform).reshape((1, 4))
#stn_crop = sess.run(stn_glimpse_expr, {tx: x, stn_params: transform})
# plots
fig, axes = plt.subplots(1, 3, figsize=(12, 3))
titles = ['Input Image', 'Crop', 'Gaussian Att', 'STN']
imgs = [x, crop, gaussian_crop]
for ax, title, img in zip(axes, titles, imgs):
ax.imshow(img.squeeze(), cmap='gray', vmin=0., vmax=1.)
ax.set_title(title)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
fig.savefig('attention_example2.png', dpi=300, bbox_inches='tight')
plt.show()