forked from suresh-recode/LRT-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
39_eye_detection.py
58 lines (50 loc) · 2.04 KB
/
39_eye_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# All the imports go here
import numpy as np
import cv2
# Initializing the face and eye cascade classifiers from xml files
face_cascade = cv2.CascadeClassifier('./data/haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('./data/haarcascade_eye.xml')
# Starting the video capture
cap = cv2.VideoCapture(0)
ret, img = cap.read()
while (ret):
ret, img = cap.read()
# Converting the recorded image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Applying filter to remove impurities
gray = cv2.bilateralFilter(gray, 5, 1, 1)
# Detecting the face for region of image to be fed to eye classifier
faces = face_cascade.detectMultiScale(gray, 1.3, 5, minSize=(200, 200))
if (len(faces) > 0):
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# roi_face is face which is input to eye classifier
roi_face = gray[y:y + h, x:x + w]
roi_face_clr = img[y:y + h, x:x + w]
eyes = eye_cascade.detectMultiScale(roi_face, 1.3, 5, minSize=(50, 50))
# Examining the length of eyes object for eyes
if (len(eyes) >= 2):
# Check if program is running for detection
cv2.putText(img,
"Eye detected",
(70, 70),
cv2.FONT_HERSHEY_PLAIN, 3,
(0, 255, 0), 2)
else:
# To ensure if the eyes are present before starting
cv2.putText(img,
"No eyes detected", (70, 70),
cv2.FONT_HERSHEY_PLAIN, 3,
(0, 0, 255), 2)
else:
cv2.putText(img,
"No face detected", (100, 100),
cv2.FONT_HERSHEY_PLAIN, 3,
(0, 255, 0), 2)
# Controlling the algorithm with keys
cv2.imshow('img', img)
a = cv2.waitKey(1)
if (a == ord('q')):
break
cap.release()
cv2.destroyAllWindows()