forked from eriksargent/nn-diarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
read_wav.py
41 lines (38 loc) · 1.48 KB
/
read_wav.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import scipy.io.wavfile as wavfile
import numpy as np
# modFunction is a list of functions that can be used to modify
# the data and rate
def read_wav(filename, time_delta=0.5, modFunctions=None):
rate, data = wavfile.read(filename)
if modFunctions is not None:
# apply each mod function
for func in modFunctions:
# each mod function must have this signature
newRate = func(rate, data)
if newRate is not None:
# modify rate if changed in mod function
rate = newRate
samplesPerPoint = int(rate * time_delta)
padAmount = samplesPerPoint - (data.shape[0] % samplesPerPoint)
# setup result data padding with zero
res = np.zeros((data.shape[0]+padAmount,data.shape[1]), dtype=data.dtype)
# set data in res (for padding)
res[:data.shape[0],:data.shape[1]] = data
# return each channel separately
return res[:, 0].reshape(-1,samplesPerPoint), res[:, 1].reshape(-1,samplesPerPoint)
# N = np.size(data, 0)
#
# strideT = strideT / 1000 # 10 ms stride
# strideSamp = (int)(strideT * rate)
#
# # np.zeros(np.array([1,4]))
# chan1 = []
# chan2 = []
# for i in range(N):
# if i % ((int)(strideSamp / 2)) == 0: # assuming 50% overlap
# # We need to see if this is the right way of getting average
# avg1 = np.average(data[:, 0][i:(i + strideSamp)])
# avg2 = np.average(data[:, 1][i:(i + strideSamp)])
#
# chan1avg.append(avg1)
# chan2avg.append(avg2)