From 19c17bef6c6e31a85c234d4da922113494f5418d Mon Sep 17 00:00:00 2001 From: Runming Li Date: Sat, 18 Nov 2023 15:26:55 -0500 Subject: [PATCH] mapreduce draft --- src/Examples/Sequence/DerivedFormsRBT.agda | 150 +++++++++++++++++++++ 1 file changed, 150 insertions(+) create mode 100644 src/Examples/Sequence/DerivedFormsRBT.agda diff --git a/src/Examples/Sequence/DerivedFormsRBT.agda b/src/Examples/Sequence/DerivedFormsRBT.agda new file mode 100644 index 00000000..ae8aa3b2 --- /dev/null +++ b/src/Examples/Sequence/DerivedFormsRBT.agda @@ -0,0 +1,150 @@ +{-# OPTIONS --prop --rewriting #-} + +module Examples.Sequence.DerivedFormsRBT where + +open import Algebra.Cost + +parCostMonoid = ℕ²-ParCostMonoid +open ParCostMonoid parCostMonoid + +open import Calf costMonoid +open import Calf.Parallel parCostMonoid + +open import Calf.Data.Nat +open import Calf.Data.List +open import Calf.Data.Product +-- open import Calf.Data.Sum +open import Calf.Data.IsBounded costMonoid +open import Calf.Data.IsBoundedG costMonoid +-- open import Data.Product hiding (map) +-- open import Data.List as List hiding (sum; map) +-- import Data.List.Properties as List +open import Data.Nat as Nat using (_+_; _*_; _<_; _>_; _≤ᵇ_; _<ᵇ_; ⌊_/2⌋; _≡ᵇ_; _∸_) +import Data.Nat.Properties as Nat +-- open import Data.Nat.Logarithm + +open import Level using (0ℓ) +open import Function using (_$_) +open import Relation.Nullary +open import Relation.Binary +open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; _≢_; module ≡-Reasoning; ≢-sym) + +open import Examples.Sequence.RedBlackTree + + +module MapReduce {A B : tp⁺} where + mapreduce : cmp $ + Π color λ y → Π nat λ n → Π (list A) λ l → Π (irbt A y n l) λ _ → + Π (U (Π A λ _ → F B)) λ _ → + Π (U (Π B λ _ → Π B λ _ → F B)) λ _ → + Π B λ _ → + F B + mapreduce .black .zero .[] leaf f g z = ret z + mapreduce .red n l (red t₁ a t₂) f g z = + bind (F B) + ((mapreduce _ _ _ t₁ f g z) ∥ (mapreduce _ _ _ t₂ f g z)) λ s → + bind (F B) (f a) (λ b → + bind (F B) (g b (proj₂ s)) (λ s₃ → + bind (F B) (g (proj₁ s) s₃) ret)) + mapreduce .black n@(suc n') l (black t₁ a t₂) f g z = + bind (F B) + ((mapreduce _ _ _ t₁ f g z) ∥ (mapreduce _ _ _ t₂ f g z)) λ s → + bind (F B) (f a) (λ b → + bind (F B) (g b (proj₂ s)) (λ s₃ → + bind (F B) (g (proj₁ s) s₃) ret)) + + mapreduce/cost/work : val color → val nat → val nat + mapreduce/cost/work red n = 12 * (4 ^ (n ∸ 1)) ∸ 3 + mapreduce/cost/work black n = 6 * (4 ^ (n ∸ 1)) ∸ 3 + + mapreduce/cost/work' : val nat → val nat + mapreduce/cost/work' n = 12 * (4 ^ (n ∸ 1)) ∸ 3 + + mapreduce/cost/work≤mapreduce/cost/work' : (y : val color) → (n : val nat) → mapreduce/cost/work y n Nat.≤ mapreduce/cost/work' n + mapreduce/cost/work≤mapreduce/cost/work' red n = Nat.≤-refl + mapreduce/cost/work≤mapreduce/cost/work' black n = + Nat.∸-monoˡ-≤ {n = 12 * (4 ^ (n ∸ 1))} 3 + (Nat.*-monoˡ-≤ (4 ^ (n ∸ 1)) {y = 12} (Nat.s≤s (Nat.s≤s (Nat.s≤s (Nat.s≤s (Nat.s≤s (Nat.s≤s Nat.z≤n))))))) + + mapreduce/cost/span : val color → val nat → val nat + mapreduce/cost/span red n = 6 * n + mapreduce/cost/span black n = 6 * n ∸ 3 + + mapreduce/cost/span' : val nat → val nat + mapreduce/cost/span' n = 6 * n + + mapreduce/cost/span≤mapreduce/cost/span' : (y : val color) → (n : val nat) → mapreduce/cost/span y n Nat.≤ mapreduce/cost/span' n + mapreduce/cost/span≤mapreduce/cost/span' red n = Nat.≤-refl + mapreduce/cost/span≤mapreduce/cost/span' black n = Nat.m∸n≤m (6 * n) 3 + + mapreduce/is-bounded : + (f : cmp (Π A λ _ → F B)) → + ({x : val A} → IsBounded B (f x) (1 , 1)) → + (g : cmp (Π B λ _ → Π B λ _ → F B)) → + ({x y : val B} → IsBounded B (g x y) (1 , 1)) → + (z : val B) → + (y : val color) → (n : val nat) → (l : val (list A)) → (t : val (irbt A y n l)) → + IsBounded B (mapreduce y n l t f g z) (mapreduce/cost/work y n , mapreduce/cost/span y n) + mapreduce/is-bounded f f-bound g g-bound z .black .zero .[] leaf = + step⋆-mono-≤⁻ {c' = 3 , 0} (Nat.z≤n , Nat.z≤n) + mapreduce/is-bounded f f-bound g g-bound z .red n l (red t₁ a t₂) = + let open ≤⁻-Reasoning cost in + begin + bind cost ( + bind (F B) + ((mapreduce _ _ _ t₁ f g z) ∥ (mapreduce _ _ _ t₂ f g z)) λ _ → + bind (F B) (f a) (λ _ → + bind (F B) (g _ _) (λ _ → + bind (F B) (g _ _) ret))) + (λ _ → ret triv) + ≡⟨⟩ + ( + bind cost + ((mapreduce _ _ _ t₁ f g z) ∥ (mapreduce _ _ _ t₂ f g z)) λ (s₁ , s₂) → + bind cost (f a) λ b → + bind cost (g b s₂) λ s₃ → + bind cost (g s₁ s₃) λ _ → + ret triv + ) + ≤⟨ ≤⁻-mono (λ e → + bind cost + ((mapreduce _ _ _ t₁ f g z) ∥ (mapreduce _ _ _ t₂ f g z)) λ (s₁ , s₂) → + bind cost (f a) λ b → + bind cost (g b s₂) λ s₃ → + bind cost e λ _ → + ret triv) {! g-bound !} ⟩ + ( + bind cost + ((mapreduce _ _ _ t₁ f g z) ∥ (mapreduce _ _ _ t₂ f g z)) λ (s₁ , s₂) → + bind cost (f a) λ b → + bind cost (g b s₂) λ s₃ → + step⋆ (1 , 1) + ) + ≤⟨ {! !} ⟩ + {! !} + ∎ + mapreduce/is-bounded f f-bound g g-bound z .black n@(suc n') l (black t₁ a t₂) = + let open ≤⁻-Reasoning cost in + begin + {! !} + ≤⟨ {! !} ⟩ + {! !} + ∎ + + mapreduce/is-bounded' : + (f : cmp (Π A λ _ → F B)) → + ({x : val A} → IsBounded B (f x) (1 , 1)) → + (g : cmp (Π B λ _ → Π B λ _ → F B)) → + ({x y : val B} → IsBounded B (g x y) (1 , 1)) → + (z : val B) → + (y : val color) → (n : val nat) → (l : val (list A)) → (t : val (irbt A y n l)) → + IsBounded B (mapreduce y n l t f g z) (mapreduce/cost/work' n , mapreduce/cost/span' n) + mapreduce/is-bounded' f f-bound g g-bound z y n l t = + let open ≤⁻-Reasoning cost in + begin + bind cost (mapreduce y n l t f g z) (λ _ → ret triv) + ≤⟨ mapreduce/is-bounded f f-bound g g-bound z y n l t ⟩ + step⋆ (mapreduce/cost/work y n , mapreduce/cost/span y n) + ≤⟨ step⋆-mono-≤⁻ (mapreduce/cost/work≤mapreduce/cost/work' y n , mapreduce/cost/span≤mapreduce/cost/span' y n) ⟩ + step⋆ (mapreduce/cost/work' n , mapreduce/cost/span' n) + ∎