Jln.mp is a C++17 metaprogramming library designed for fast compilation speed (strongly inspired by Kvasir::mpl, but generally faster, with more algorithm and a debug mode to have errors with more context).
Licence: MIT
Online documentation: https://jonathanpoelen.github.io/jln.mp/
Online documentation for v1: https://jonathanpoelen.github.io/jln.mp/v1/
Single file version in standalone branch.
Functions of jln.mp are used in 2 stages:
- Instantiation, by indicating parameters which describe how it must work.
- Call, by applying sequence to an instantiation.
For example, suppose we want to remove void
from a sequence. The function to use is jln::mp::remove
:
using remove_void = jln::mp::remove<void>;
We can then apply it to our data:
using result = jln::mp::call<remove_void, int, void, double, char>;
// result == jln::mp::list<int, double, char>
Now suppose that result
must be a std::tuple
. Rather than linking with another function, it is possible to combine them in remove_void
via a continuation (C
parameter).
using remove_void = jln:mp::remove<void, /*C=*/jln::mp::lift<std::tuple>>;
using result = jln::mp::call<remove_void, int, void, double, char>;
// result == std::tuple<int, double, char>
The default continuations are jln::mp::listify
which transforms a sequence into a jln::mp::list
and jln::mp::identity
which returns the input value.
Jln.mp also has 2 additional namespaces:
smp
a SFINAE compatible version ofmp
.emp
which directly returns a result without going throughjln::mp::call
. According to the function, type sequences are replaced by lists and continuations are not always available.
A function is a type with a f
template member.
struct to_tuple
{
template<class... xs>
using f = std::tuple<xs...>;
};
jln::mp::call<to_tuple, int, double> == std::tuple<int, double>
In the mind of the library, functions should at least take a continuation.
// equivalent to jln::mp::lift<std::tuple, C>
template<class C = jln::mp::identity>
struct to_tuple
{
template<class... xs>
using f = jln::mp::call<C, std::tuple<xs...>>;
};
jln::mp::call<to_tuple<>, int, double> == std::tuple<int, double>
-
Sequence: a value sequence or a type sequence.
-
Set: a sequence of unique elements.
-
Map: a sequence of lists having at least one element (the key). The keys of the map must be unique.
-
Value: a type with a
value
member. -
Typelist: an instance compatible with
template<class...> class T
, such aslist<>
. -
Function: a type with a
f
template member. The number and the nature of the parameters depend on the context of use. -
Predicate: a function which takes n argument (usually 1) and returns a boolean.
-
Meta-function: a template class
template<class...> class M
. -
Lazy meta-function: a meta-function with a
type
member. -
C
: Continuation function. Represents the function used to chain calls, typicallylistify
oridentity
. -
TC
: True Continuation function. Represents a continuation used when something is found. -
FC
: False Continuation function. Represents a continuation used when something is not found. -
_v
suffix:C::f
takes values. UsuallyC::f<jln::mp::int_t...>
(C++17) orC::f<auto...>
(C++20). In theemp
namespace, with a few exceptions, this corresponds to a variable template (as for the stl). -
_c
suffix: number type parameters arejln::mp::int_t
. Usuallyfoo_c<int_t i> = foo<number<i>>
.
Implementation of std::tuple_cat
that works with tuple like.
#include "jln/mp/algorithm/make_int_sequence.hpp"
#include "jln/mp/algorithm/transform.hpp"
#include "jln/mp/algorithm/repeat.hpp"
#include "jln/mp/algorithm/repeat_index.hpp"
#include "jln/mp/functional/each.hpp"
#include "jln/mp/functional/lift.hpp"
#include "jln/mp/list/join.hpp"
#include <array>
#include <tuple>
namespace mp = jln::mp;
namespace emp = jln::mp::emp;
template<class Tuple>
struct my_tuple_element
{
template<class I>
using f = std::tuple_element_t<I::value, Tuple>;
};
template<class... Tuples>
using my_tuple_cat_result_type = mp::call<
// Convert a sequence of mp::list to std::tuple
mp::join<mp::lift<std::tuple>>,
// Convert a tuple like to mp::list of tuple element.
// To support tuple-likes, it is necessary to use std::tuple_size and std::tuple_element.
// Otherwise, emp::unpack<Tuples> is sufficient.
emp::make_int_sequence<
std::tuple_size<std::decay_t<Tuples>>,
// Convert a sequence of tuple index to a mp::list of tuple element.
mp::transform<my_tuple_element<std::decay_t<Tuples>>>
>...
>;
template<class R, mp::int_t... ituples, mp::int_t... ivalues, class Tuple>
constexpr R my_tuple_cat_impl(
emp::numbers<ituples...>, emp::numbers<ivalues...>, Tuple t)
{
// get is looked up by argument-dependent lookup
using std::get;
return R{ get<ivalues>(get<ituples>(std::move(t)))... };
}
template<class... Tuples, class R = my_tuple_cat_result_type<Tuples...>>
constexpr R my_tuple_cat(Tuples&&... args)
{
// ex: tuple_size=3 tuple_size=2 tuple_size=4
// list< 0, 0, 0, 1, 1, 2, 2, 2, 2 >
using index_by_tuple = mp::repeat_index_v_c<mp::join<>>
::f<std::tuple_size_v<std::decay_t<Tuples>>...>;
// ex: tuple_size=3 tuple_size=2 tuple_size=4
// list< 0, 1, 2, 0, 1, 0, 1, 2, 3 >
using index_by_value = emp::join<
emp::make_int_sequence<std::tuple_size<std::decay_t<Tuples>>>...
>;
return my_tuple_cat_impl<R>(index_by_tuple{}, index_by_value{},
std::tuple<Tuples&&...>(std::forward<Tuples>(args)...));
}
// defines a tuple like
//@{
namespace toy
{
// tuple like
struct Vector2D
{
int x, y;
};
template<std::size_t i>
constexpr int get(Vector2D const& t)
{
return i == 0 ? t.x : t.y;
}
}
template<>
struct std::tuple_size<::toy::Vector2D>
: std::integral_constant<std::size_t, 2>
{};
template<size_t i>
struct std::tuple_element<i, ::toy::Vector2D>
{
using type = int;
};
//@}
// test
// @{
constexpr std::tuple<int, float, double> t0{1, 2, 3};
constexpr std::tuple<char, unsigned> t1{4, 5};
constexpr std::tuple<long> t2{6};
constexpr std::array<short, 4> a{7, 8, 9, 10};
constexpr toy::Vector2D v {11, 12};
constexpr auto my_tuple = my_tuple_cat(t0, t1, t2, a, v);
using my_tuple_type = std::remove_const_t<decltype(my_tuple)>;
using std_tuple = std::tuple<
int, float, double,
char, unsigned,
long,
short, short, short, short,
int, int>;
static_assert(std::is_same_v<my_tuple_type, std_tuple>);
static_assert(my_tuple == std::tuple{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
// @}
Functions are missing in the stacktrace when the compiler displays an error message, how to display them?
Compile with the define JLN_MP_ENABLE_DEBUG
at 1
to have errors with more context.
Error:
sorry, unimplemented: mangling record_type
orsorry, unimplemented: mangling typename_type
with Gcc.
This is a Gcc bug when an algorithm is used in the prototype of a function.
template<class... Ts>
mp::call<func, Ts...> foo();
// Must be replaced by
template<class... Ts, class R = mp::call<func, Ts...>>
R foo();