forked from carlini/nn_robust_attacks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverify.py
31 lines (25 loc) · 1.06 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
## verify.py -- check the accuracy of a neural network
##
## Copyright (C) 2016, Nicholas Carlini <[email protected]>.
##
## This program is licenced under the BSD 2-Clause licence,
## contained in the LICENCE file in this directory.
from setup_cifar import CIFAR, CIFARModel
from setup_mnist import MNIST, MNISTModel
from setup_inception import ImageNet, InceptionModel
import tensorflow as tf
import numpy as np
BATCH_SIZE = 1
with tf.Session() as sess:
data, model = MNIST(), MNISTModel("models/mnist", sess)
data, model = CIFAR(), CIFARModel("models/cifar", sess)
data, model = ImageNet(), InceptionModel(sess)
x = tf.placeholder(tf.float32, (None, model.image_size, model.image_size, model.num_channels))
y = model.predict(x)
r = []
for i in range(0,len(data.test_data),BATCH_SIZE):
pred = sess.run(y, {x: data.test_data[i:i+BATCH_SIZE]})
#print(pred)
#print('real',data.test_labels[i],'pred',np.argmax(pred))
r.append(np.argmax(pred,1) == np.argmax(data.test_labels[i:i+BATCH_SIZE],1))
print(np.mean(r))