-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathbeachball.py
1057 lines (938 loc) · 32.7 KB
/
beachball.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# -------------------------------------------------------------------
# Filename: beachball.py
# Purpose: Draws a beach ball diagram of an earthquake focal mechanism.
# Author: Robert Barsch
# Email: [email protected]
#
# Copyright (C) 2008-2012 Robert Barsch
# Romain Jolivet: This is a copy of the beachball.py file from ObsPy as I don't want to import obspy
# which conflicts with proj versions as I am writing these lines.
# Update on Feb 2024: I don't see any reason for importing obspy still, so I will keep this file here.
# ---------------------------------------------------------------------
"""
Draws a beachball diagram of an earthquake focal mechanism
Most source code provided here are adopted from
1. MatLab script `bb.m`_ written by Andy Michael, Chen Ji and Oliver Boyd.
2. ps_meca program from the `Generic Mapping Tools (GMT)`_.
:copyright:
The ObsPy Development Team ([email protected])
:license:
GNU Lesser General Public License, Version 3
(https://www.gnu.org/copyleft/lesser.html)
.. _`Generic Mapping Tools (GMT)`: https://gmt.soest.hawaii.edu
.. _`bb.m`: http://www.ceri.memphis.edu/people/olboyd/Software/Software.html
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from future.builtins import * # NOQA @UnusedWildImport
import io
import warnings
import numpy as np
from matplotlib import path as mplpath
from matplotlib import collections, patches, transforms
from decorator import decorator
D2R = np.pi / 180
R2D = 180 / np.pi
EPSILON = 0.00001
@decorator
def mopad_fallback(func, *args, **kwargs):
try:
result = func(*args, **kwargs)
except IndexError:
msg = "Encountered an exception while plotting the beachball. " \
"Falling back to the mopad wrapper which is slower but more " \
"stable."
warnings.warn(msg)
# Could be done with the inspect module but this wrapper is only a
# single purpose wrapper and thus KISS.
arguments = ["fm", "linewidth", "facecolor", "bgcolor", "edgecolor",
"alpha", "xy", "width", "size", "nofill", "zorder",
"axes"]
final_kwargs = {}
for _i, arg in enumerate(args):
final_kwargs[arguments[_i]] = arg
final_kwargs.update(kwargs)
from .mopad_wrapper import beach as _mopad_beach
result = _mopad_beach(**final_kwargs)
return result
@mopad_fallback
def beach(fm, linewidth=2, facecolor='b', bgcolor='w', edgecolor='k',
alpha=1.0, xy=(0, 0), width=200, size=100, nofill=False,
zorder=100, axes=None):
"""
Return a beach ball as a collection which can be connected to an
current matplotlib axes instance (ax.add_collection).
S1, D1, and R1, the strike, dip and rake of one of the focal planes, can
be vectors of multiple focal mechanisms.
:param fm: Focal mechanism that is either number of mechanisms (NM) by 3
(strike, dip, and rake) or NM x 6 (M11, M22, M33, M12, M13, M23 - the
six independent components of the moment tensor, where the coordinate
system is 1,2,3 = Up,South,East which equals r,theta,phi -
Harvard/Global CMT convention). The relation to Aki and Richards
x,y,z equals North,East,Down convention is as follows: Mrr=Mzz,
Mtt=Mxx, Mpp=Myy, Mrt=Mxz, Mrp=-Myz, Mtp=-Mxy.
The strike is of the first plane, clockwise relative to north.
The dip is of the first plane, defined clockwise and perpendicular to
strike, relative to horizontal such that 0 is horizontal and 90 is
vertical. The rake is of the first focal plane solution. 90 moves the
hanging wall up-dip (thrust), 0 moves it in the strike direction
(left-lateral), -90 moves it down-dip (normal), and 180 moves it
opposite to strike (right-lateral).
:param facecolor: Color to use for quadrants of tension; can be a string,
e.g. ``'r'``, ``'b'`` or three component color vector, [R G B].
Defaults to ``'b'`` (blue).
:param bgcolor: The background color. Defaults to ``'w'`` (white).
:param edgecolor: Color of the edges. Defaults to ``'k'`` (black).
:param alpha: The alpha level of the beach ball. Defaults to ``1.0``
(opaque).
:param xy: Origin position of the beach ball as tuple. Defaults to
``(0, 0)``.
:type width: int or tuple
:param width: Symbol size of beach ball, or tuple for elliptically
shaped patches. Defaults to size ``200``.
:param size: Controls the number of interpolation points for the
curves. Minimum is automatically set to ``100``.
:param nofill: Do not fill the beach ball, but only plot the planes.
:param zorder: Set zorder. Artists with lower zorder values are drawn
first.
:type axes: :class:`matplotlib.axes.Axes`
:param axes: Used to make beach balls circular on non-scaled axes. Also
maintains the aspect ratio when resizing the figure. Will not add
the returned collection to the axes instance.
"""
# check if one or two widths are specified (Circle or Ellipse)
try:
assert(len(width) == 2)
except TypeError:
width = (width, width)
mt = None
np1 = None
if isinstance(fm, MomentTensor):
mt = fm
np1 = mt2plane(mt)
elif isinstance(fm, NodalPlane):
np1 = fm
elif len(fm) == 6:
mt = MomentTensor(fm[0], fm[1], fm[2], fm[3], fm[4], fm[5], 0)
np1 = mt2plane(mt)
elif len(fm) == 3:
np1 = NodalPlane(fm[0], fm[1], fm[2])
else:
raise TypeError("Wrong input value for 'fm'.")
# Only at least size 100, i.e. 100 points in the matrix are allowed
if size < 100:
size = 100
# Return as collection
plot_dc_used = True
if mt:
(t, n, p) = mt2axes(mt.normalized)
if np.fabs(n.val) < EPSILON and np.fabs(t.val + p.val) < EPSILON:
colors, p = plot_dc(np1, size, xy=xy, width=width)
else:
colors, p = plot_mt(t, n, p, size,
plot_zerotrace=True, xy=xy, width=width)
plot_dc_used = False
else:
colors, p = plot_dc(np1, size=size, xy=xy, width=width)
col = collections.PatchCollection(p, match_original=False)
if nofill:
col.set_facecolor('none')
else:
# Replace color dummies 'b' and 'w' by face and bgcolor
fc = [facecolor if c == 'b' else bgcolor for c in colors]
col.set_facecolors(fc)
# Use the given axes to maintain the aspect ratio of beachballs on figure
# resize.
if axes is not None:
# This is what holds the aspect ratio (but breaks the positioning)
col.set_transform(transforms.IdentityTransform())
# Next is a dirty hack to fix the positioning:
# 1. Need to bring the all patches to the origin (0, 0).
for p in col._paths:
p.vertices -= xy
# 2. Then use the offset property of the collection to position the
# patches
col.set_offsets(xy)
col._transOffset = axes.transData
col.set_edgecolor(edgecolor)
col.set_alpha(alpha)
col.set_linewidth(linewidth)
col.set_zorder(zorder)
# warn about color blending bug, see #1464
if alpha != 1 and not nofill and not plot_dc_used:
msg = ("There is a known bug when plotting semi-transparent patches "
"for non-DC sources, which leads to blending of pressure and "
"tension color, see issue #1464.")
warnings.warn(msg)
return col
def beachball(fm, linewidth=2, facecolor='b', bgcolor='w', edgecolor='k',
alpha=1.0, xy=(0, 0), width=200, size=100, nofill=False,
zorder=100, outfile=None, format=None, fig=None):
"""
Draws a beach ball diagram of an earthquake focal mechanism.
S1, D1, and R1, the strike, dip and rake of one of the focal planes, can
be vectors of multiple focal mechanisms.
:param fm: Focal mechanism that is either number of mechanisms (NM) by 3
(strike, dip, and rake) or NM x 6 (M11, M22, M33, M12, M13, M23 - the
six independent components of the moment tensor, where the coordinate
system is 1,2,3 = Up,South,East which equals r,theta,phi). The strike
is of the first plane, clockwise relative to north.
The dip is of the first plane, defined clockwise and perpendicular to
strike, relative to horizontal such that 0 is horizontal and 90 is
vertical. The rake is of the first focal plane solution. 90 moves the
hanging wall up-dip (thrust), 0 moves it in the strike direction
(left-lateral), -90 moves it down-dip (normal), and 180 moves it
opposite to strike (right-lateral).
:param facecolor: Color to use for quadrants of tension; can be a string,
e.g. ``'r'``, ``'b'`` or three component color vector, [R G B].
Defaults to ``'b'`` (blue).
:param bgcolor: The background color. Defaults to ``'w'`` (white).
:param edgecolor: Color of the edges. Defaults to ``'k'`` (black).
:param alpha: The alpha level of the beach ball. Defaults to ``1.0``
(opaque).
:param xy: Origin position of the beach ball as tuple. Defaults to
``(0, 0)``.
:type width: int
:param width: Symbol size of beach ball. Defaults to ``200``.
:param size: Controls the number of interpolation points for the
curves. Minimum is automatically set to ``100``.
:param nofill: Do not fill the beach ball, but only plot the planes.
:param zorder: Set zorder. Artists with lower zorder values are drawn
first.
:param outfile: Output file string. Also used to automatically
determine the output format. Supported file formats depend on your
matplotlib backend. Most backends support png, pdf, ps, eps and
svg. Defaults to ``None``.
:param format: Format of the graph picture. If no format is given the
outfile parameter will be used to try to automatically determine
the output format. If no format is found it defaults to png output.
If no outfile is specified but a format is, than a binary
imagestring will be returned.
Defaults to ``None``.
:param fig: Give an existing figure instance to plot into. New Figure if
set to ``None``.
"""
import matplotlib.pyplot as plt
plot_width = width * 0.95
# plot the figure
if not fig:
fig = plt.figure(figsize=(3, 3), dpi=100)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
fig.set_figheight(width // 100)
fig.set_figwidth(width // 100)
ax = fig.add_subplot(111, aspect='equal')
# hide axes + ticks
ax.axison = False
# plot the collection
collection = beach(fm, linewidth=linewidth, facecolor=facecolor,
edgecolor=edgecolor, bgcolor=bgcolor,
alpha=alpha, nofill=nofill, xy=xy,
width=plot_width, size=size, zorder=zorder)
ax.add_collection(collection)
ax.autoscale_view(tight=False, scalex=True, scaley=True)
# export
if outfile:
if format:
fig.savefig(outfile, dpi=100, transparent=True, format=format)
else:
fig.savefig(outfile, dpi=100, transparent=True)
elif format and not outfile:
imgdata = io.BytesIO()
fig.savefig(imgdata, format=format, dpi=100, transparent=True)
imgdata.seek(0)
return imgdata.read()
else:
plt.show()
return fig
def plot_mt(T, N, P, size=200, plot_zerotrace=True, # noqa
x0=0, y0=0, xy=(0, 0), width=200):
"""
Uses a principal axis T, N and P to draw a beach ball plot.
:param ax: axis object of a matplotlib figure
:param T: :class:`~PrincipalAxis`
:param N: :class:`~PrincipalAxis`
:param P: :class:`~PrincipalAxis`
Adapted from ps_tensor / utilmeca.c / `Generic Mapping Tools (GMT)`_.
.. _`Generic Mapping Tools (GMT)`: https://gmt.soest.hawaii.edu
"""
# check if one or two widths are specified (Circle or Ellipse)
try:
assert(len(width) == 2)
except TypeError:
width = (width, width)
collect = []
colors = []
res = [value / float(size) for value in width]
b = 1
big_iso = 0
j = 1
j2 = 0
j3 = 0
n = 0
azi = np.zeros((3, 2))
x = np.zeros(400)
y = np.zeros(400)
x2 = np.zeros(400)
y2 = np.zeros(400)
x3 = np.zeros(400)
y3 = np.zeros(400)
xp1 = np.zeros(800)
yp1 = np.zeros(800)
xp2 = np.zeros(400)
yp2 = np.zeros(400)
a = np.zeros(3)
p = np.zeros(3)
v = np.zeros(3)
a[0] = T.strike
a[1] = N.strike
a[2] = P.strike
p[0] = T.dip
p[1] = N.dip
p[2] = P.dip
v[0] = T.val
v[1] = N.val
v[2] = P.val
vi = (v[0] + v[1] + v[2]) / 3.
for i in range(0, 3):
v[i] = v[i] - vi
radius_size = size * 0.5
if np.fabs(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]) < EPSILON:
# pure implosion-explosion
if vi > 0.:
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append('b')
if vi < 0.:
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append('w')
return colors, collect
if np.fabs(v[0]) >= np.fabs(v[2]):
d = 0
m = 2
else:
d = 2
m = 0
if (plot_zerotrace):
vi = 0.
f = -v[1] / float(v[d])
iso = vi / float(v[d])
# Cliff Frohlich, Seismological Research letters,
# Vol 7, Number 1, January-February, 1996
# Unless the isotropic parameter lies in the range
# between -1 and 1 - f there will be no nodes whatsoever
if iso < -1:
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append('w')
return colors, collect
elif iso > 1 - f:
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append('b')
return colors, collect
spd = np.sin(p[d] * D2R)
cpd = np.cos(p[d] * D2R)
spb = np.sin(p[b] * D2R)
cpb = np.cos(p[b] * D2R)
spm = np.sin(p[m] * D2R)
cpm = np.cos(p[m] * D2R)
sad = np.sin(a[d] * D2R)
cad = np.cos(a[d] * D2R)
sab = np.sin(a[b] * D2R)
cab = np.cos(a[b] * D2R)
sam = np.sin(a[m] * D2R)
cam = np.cos(a[m] * D2R)
for i in range(0, 360):
fir = i * D2R
s2alphan = (2. + 2. * iso) / \
float(3. + (1. - 2. * f) * np.cos(2. * fir))
if s2alphan > 1.:
big_iso += 1
else:
alphan = np.arcsin(np.sqrt(s2alphan))
sfi = np.sin(fir)
cfi = np.cos(fir)
san = np.sin(alphan)
can = np.cos(alphan)
xz = can * spd + san * sfi * spb + san * cfi * spm
xn = can * cpd * cad + san * sfi * cpb * cab + \
san * cfi * cpm * cam
xe = can * cpd * sad + san * sfi * cpb * sab + \
san * cfi * cpm * sam
if np.fabs(xn) < EPSILON and np.fabs(xe) < EPSILON:
takeoff = 0.
az = 0.
else:
az = np.arctan2(xe, xn)
if az < 0.:
az += np.pi * 2.
takeoff = np.arccos(xz / float(np.sqrt(xz * xz + xn * xn +
xe * xe)))
if takeoff > np.pi / 2.:
takeoff = np.pi - takeoff
az += np.pi
if az > np.pi * 2.:
az -= np.pi * 2.
r = np.sqrt(2) * np.sin(takeoff / 2.)
si = np.sin(az)
co = np.cos(az)
if i == 0:
azi[i][0] = az
x[i] = x0 + radius_size * r * si
y[i] = y0 + radius_size * r * co
azp = az
else:
if np.fabs(np.fabs(az - azp) - np.pi) < D2R * 10.:
azi[n][1] = azp
n += 1
azi[n][0] = az
if np.fabs(np.fabs(az - azp) - np.pi * 2.) < D2R * 2.:
if azp < az:
azi[n][0] += np.pi * 2.
else:
azi[n][0] -= np.pi * 2.
if n == 0:
x[j] = x0 + radius_size * r * si
y[j] = y0 + radius_size * r * co
j += 1
elif n == 1:
x2[j2] = x0 + radius_size * r * si
y2[j2] = y0 + radius_size * r * co
j2 += 1
elif n == 2:
x3[j3] = x0 + radius_size * r * si
y3[j3] = y0 + radius_size * r * co
j3 += 1
azp = az
azi[n][1] = az
if v[1] < 0.:
rgb1 = 'b'
rgb2 = 'w'
else:
rgb1 = 'w'
rgb2 = 'b'
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append(rgb2)
if n == 0:
collect.append(xy2patch(x[0:360], y[0:360], res, xy))
colors.append(rgb1)
return colors, collect
elif n == 1:
for i in range(0, j):
xp1[i] = x[i]
yp1[i] = y[i]
if azi[0][0] - azi[0][1] > np.pi:
azi[0][0] -= np.pi * 2.
elif azi[0][1] - azi[0][0] > np.pi:
azi[0][0] += np.pi * 2.
if azi[0][0] < azi[0][1]:
az = azi[0][1] - D2R
while az > azi[0][0]:
si = np.sin(az)
co = np.cos(az)
xp1[i] = x0 + radius_size * si
yp1[i] = y0 + radius_size * co
i += 1
az -= D2R
else:
az = azi[0][1] + D2R
while az < azi[0][0]:
si = np.sin(az)
co = np.cos(az)
xp1[i] = x0 + radius_size * si
yp1[i] = y0 + radius_size * co
i += 1
az += D2R
collect.append(xy2patch(xp1[0:i], yp1[0:i], res, xy))
colors.append(rgb1)
for i in range(0, j2):
xp2[i] = x2[i]
yp2[i] = y2[i]
if azi[1][0] - azi[1][1] > np.pi:
azi[1][0] -= np.pi * 2.
elif azi[1][1] - azi[1][0] > np.pi:
azi[1][0] += np.pi * 2.
if azi[1][0] < azi[1][1]:
az = azi[1][1] - D2R
while az > azi[1][0]:
si = np.sin(az)
co = np.cos(az)
xp2[i] = x0 + radius_size * si
i += 1
yp2[i] = y0 + radius_size * co
az -= D2R
else:
az = azi[1][1] + D2R
while az < azi[1][0]:
si = np.sin(az)
co = np.cos(az)
xp2[i] = x0 + radius_size * si
i += 1
yp2[i] = y0 + radius_size * co
az += D2R
collect.append(xy2patch(xp2[0:i], yp2[0:i], res, xy))
colors.append(rgb1)
return colors, collect
elif n == 2:
for i in range(0, j3):
xp1[i] = x3[i]
yp1[i] = y3[i]
for ii in range(0, j):
xp1[i] = x[ii]
i += 1
yp1[i] = y[ii]
if big_iso:
ii = j2 - 1
while ii >= 0:
xp1[i] = x2[ii]
i += 1
yp1[i] = y2[ii]
ii -= 1
collect.append(xy2patch(xp1[0:i], yp1[0:i], res, xy))
colors.append(rgb1)
return colors, collect
if azi[2][0] - azi[0][1] > np.pi:
azi[2][0] -= np.pi * 2.
elif azi[0][1] - azi[2][0] > np.pi:
azi[2][0] += np.pi * 2.
if azi[2][0] < azi[0][1]:
az = azi[0][1] - D2R
while az > azi[2][0]:
si = np.sin(az)
co = np.cos(az)
xp1[i] = x0 + radius_size * si
i += 1
yp1[i] = y0 + radius_size * co
az -= D2R
else:
az = azi[0][1] + D2R
while az < azi[2][0]:
si = np.sin(az)
co = np.cos(az)
xp1[i] = x0 + radius_size * si
i += 1
yp1[i] = y0 + radius_size * co
az += D2R
collect.append(xy2patch(xp1[0:i], yp1[0:i], res, xy))
colors.append(rgb1)
for i in range(0, j2):
xp2[i] = x2[i]
yp2[i] = y2[i]
if azi[1][0] - azi[1][1] > np.pi:
azi[1][0] -= np.pi * 2.
elif azi[1][1] - azi[1][0] > np.pi:
azi[1][0] += np.pi * 2.
if azi[1][0] < azi[1][1]:
az = azi[1][1] - D2R
while az > azi[1][0]:
si = np.sin(az)
co = np.cos(az)
xp2[i] = x0 + radius_size * si
i += 1
yp2[i] = y0 + radius_size * co
az -= D2R
else:
az = azi[1][1] + D2R
while az < azi[1][0]:
si = np.sin(az)
co = np.cos(az)
xp2[i] = x0 + radius_size * si
i += 1
yp2[i] = y0 + radius_size * co
az += D2R
collect.append(xy2patch(xp2[0:i], yp2[0:i], res, xy))
colors.append(rgb1)
return colors, collect
def plot_dc(np1, size=200, xy=(0, 0), width=200):
"""
Uses one nodal plane of a double couple to draw a beach ball plot.
:param ax: axis object of a matplotlib figure
:param np1: :class:`~NodalPlane`
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael, Chen Ji and Oliver Boyd.
"""
# check if one or two widths are specified (Circle or Ellipse)
try:
assert(len(width) == 2)
except TypeError:
width = (width, width)
s_1 = np1.strike
d_1 = np1.dip
r_1 = np1.rake
m = 0
if r_1 > 180:
r_1 -= 180
m = 1
if r_1 < 0:
r_1 += 180
m = 1
# Get azimuth and dip of second plane
(s_2, d_2, _r_2) = aux_plane(s_1, d_1, r_1)
d = size / 2
if d_1 >= 90:
d_1 = 89.9999
if d_2 >= 90:
d_2 = 89.9999
# arange checked for numerical stability, np.pi is not multiple of 0.1
phi = np.arange(0, np.pi, .01)
l1 = np.sqrt(
np.power(90 - d_1, 2) / (
np.power(np.sin(phi), 2) +
np.power(np.cos(phi), 2) *
np.power(90 - d_1, 2) / np.power(90, 2)))
l2 = np.sqrt(
np.power(90 - d_2, 2) / (
np.power(np.sin(phi), 2) + np.power(np.cos(phi), 2) *
np.power(90 - d_2, 2) / np.power(90, 2)))
collect = []
# plot paths, once for tension areas and once for pressure areas
for m_ in ((m + 1) % 2, m):
inc = 1
(x_1, y_1) = pol2cart(phi + s_1 * D2R, l1)
if m_ == 1:
lo = s_1 - 180
hi = s_2
if lo > hi:
inc = -1
th1 = np.arange(s_1 - 180, s_2, inc)
(xs_1, ys_1) = pol2cart(th1 * D2R, 90 * np.ones((1, len(th1))))
(x_2, y_2) = pol2cart(phi + s_2 * D2R, l2)
th2 = np.arange(s_2 + 180, s_1, -inc)
else:
hi = s_1 - 180
lo = s_2 - 180
if lo > hi:
inc = -1
th1 = np.arange(hi, lo, -inc)
(xs_1, ys_1) = pol2cart(th1 * D2R, 90 * np.ones((1, len(th1))))
(x_2, y_2) = pol2cart(phi + s_2 * D2R, l2)
x_2 = x_2[::-1]
y_2 = y_2[::-1]
th2 = np.arange(s_2, s_1, inc)
(xs_2, ys_2) = pol2cart(th2 * D2R, 90 * np.ones((1, len(th2))))
x = np.concatenate((x_1, xs_1[0], x_2, xs_2[0]))
y = np.concatenate((y_1, ys_1[0], y_2, ys_2[0]))
x = x * d / 90
y = y * d / 90
# calculate resolution
res = [value / float(size) for value in width]
# construct the patch
collect.append(xy2patch(y, x, res, xy))
return ['b', 'w'], collect
def xy2patch(x, y, res, xy):
# check if one or two resolutions are specified (Circle or Ellipse)
try:
assert(len(res) == 2)
except TypeError:
res = (res, res)
# transform into the Path coordinate system
x = x * res[0] + xy[0]
y = y * res[1] + xy[1]
verts = list(zip(x.tolist(), y.tolist()))
codes = [mplpath.Path.MOVETO]
codes.extend([mplpath.Path.LINETO] * (len(x) - 2))
codes.append(mplpath.Path.CLOSEPOLY)
path = mplpath.Path(verts, codes)
return patches.PathPatch(path)
def pol2cart(th, r):
"""
"""
x = r * np.cos(th)
y = r * np.sin(th)
return (x, y)
def strike_dip(n, e, u):
"""
Finds strike and dip of plane given normal vector having components n, e,
and u.
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael, Chen Ji and Oliver Boyd.
"""
r2d = 180 / np.pi
if u < 0:
n = -n
e = -e
u = -u
strike = np.arctan2(e, n) * r2d
strike = strike - 90
while strike >= 360:
strike = strike - 360
while strike < 0:
strike = strike + 360
x = np.sqrt(np.power(n, 2) + np.power(e, 2))
dip = np.arctan2(x, u) * r2d
return (strike, dip)
def aux_plane(s1, d1, r1):
"""
Get Strike and dip of second plane.
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael, Chen Ji and Oliver Boyd.
"""
r2d = 180 / np.pi
z = (s1 + 90) / r2d
z2 = d1 / r2d
z3 = r1 / r2d
# slick vector in plane 1
sl1 = -np.cos(z3) * np.cos(z) - np.sin(z3) * np.sin(z) * np.cos(z2)
sl2 = np.cos(z3) * np.sin(z) - np.sin(z3) * np.cos(z) * np.cos(z2)
sl3 = np.sin(z3) * np.sin(z2)
(strike, dip) = strike_dip(sl2, sl1, sl3)
n1 = np.sin(z) * np.sin(z2) # normal vector to plane 1
n2 = np.cos(z) * np.sin(z2)
h1 = -sl2 # strike vector of plane 2
h2 = sl1
# note h3=0 always so we leave it out
# n3 = np.cos(z2)
z = h1 * n1 + h2 * n2
z = z / np.sqrt(h1 * h1 + h2 * h2)
# we might get above 1.0 only due to floating point
# precision. Clip for those cases.
float64epsilon = 2.2204460492503131e-16
if 1.0 < abs(z) < 1.0 + 100 * float64epsilon:
z = np.copysign(1.0, z)
z = np.arccos(z)
rake = 0
if sl3 > 0:
rake = z * r2d
if sl3 <= 0:
rake = -z * r2d
return (strike, dip, rake)
def mt2plane(mt):
"""
Calculates a nodal plane of a given moment tensor.
:param mt: :class:`~MomentTensor`
:return: :class:`~NodalPlane`
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael, Chen Ji and Oliver Boyd.
"""
(d, v) = np.linalg.eig(mt.mt)
d = np.array([d[1], d[0], d[2]])
v = np.array([[v[1, 1], -v[1, 0], -v[1, 2]],
[v[2, 1], -v[2, 0], -v[2, 2]],
[-v[0, 1], v[0, 0], v[0, 2]]])
imax = d.argmax()
imin = d.argmin()
ae = (v[:, imax] + v[:, imin]) / np.sqrt(2.0)
an = (v[:, imax] - v[:, imin]) / np.sqrt(2.0)
aer = np.sqrt(np.power(ae[0], 2) + np.power(ae[1], 2) + np.power(ae[2], 2))
anr = np.sqrt(np.power(an[0], 2) + np.power(an[1], 2) + np.power(an[2], 2))
ae = ae / aer
if not anr:
an = np.array([np.nan, np.nan, np.nan])
else:
an = an / anr
if an[2] <= 0.:
an1 = an
ae1 = ae
else:
an1 = -an
ae1 = -ae
(ft, fd, fl) = tdl(an1, ae1)
return NodalPlane(360 - ft, fd, 180 - fl)
def tdl(an, bn):
"""
Helper function for mt2plane.
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael, Chen Ji and Oliver Boyd.
"""
xn = an[0]
yn = an[1]
zn = an[2]
xe = bn[0]
ye = bn[1]
ze = bn[2]
aaa = 1.0 / (1000000)
con = 57.2957795
if np.fabs(zn) < aaa:
fd = 90.
axn = np.fabs(xn)
if axn > 1.0:
axn = 1.0
ft = np.arcsin(axn) * con
st = -xn
ct = yn
if st >= 0. and ct < 0:
ft = 180. - ft
if st < 0. and ct <= 0:
ft = 180. + ft
if st < 0. and ct > 0:
ft = 360. - ft
fl = np.arcsin(abs(ze)) * con
sl = -ze
if np.fabs(xn) < aaa:
cl = xe / yn
else:
cl = -ye / xn
if sl >= 0. and cl < 0:
fl = 180. - fl
if sl < 0. and cl <= 0:
fl = fl - 180.
if sl < 0. and cl > 0:
fl = -fl
else:
if -zn > 1.0:
zn = -1.0
fdh = np.arccos(-zn)
fd = fdh * con
sd = np.sin(fdh)
if sd == 0:
return
st = -xn / sd
ct = yn / sd
sx = np.fabs(st)
if sx > 1.0:
sx = 1.0
ft = np.arcsin(sx) * con
if st >= 0. and ct < 0:
ft = 180. - ft
if st < 0. and ct <= 0:
ft = 180. + ft
if st < 0. and ct > 0:
ft = 360. - ft
sl = -ze / sd
sx = np.fabs(sl)
if sx > 1.0:
sx = 1.0
fl = np.arcsin(sx) * con
if st == 0:
cl = xe / ct
else:
xxx = yn * zn * ze / sd / sd + ye
cl = -sd * xxx / xn
if ct == 0:
cl = ye / st
if sl >= 0. and cl < 0:
fl = 180. - fl
if sl < 0. and cl <= 0:
fl = fl - 180.
if sl < 0. and cl > 0:
fl = -fl
return (ft, fd, fl)
def mt2axes(mt):
"""
Calculates the principal axes of a given moment tensor.
:param mt: :class:`~MomentTensor`
:return: tuple of :class:`~PrincipalAxis` T, N and P
Adapted from ps_tensor / utilmeca.c /
`Generic Mapping Tools (GMT) <https://gmt.soest.hawaii.edu>`_.
"""
(d, v) = np.linalg.eigh(mt.mt)
pl = np.arcsin(-v[0])
az = np.arctan2(v[2], -v[1])
for i in range(0, 3):
if pl[i] <= 0:
pl[i] = -pl[i]
az[i] += np.pi
if az[i] < 0:
az[i] += 2 * np.pi
if az[i] > 2 * np.pi:
az[i] -= 2 * np.pi
pl *= R2D
az *= R2D
t = PrincipalAxis(d[2], az[2], pl[2])
n = PrincipalAxis(d[1], az[1], pl[1])
p = PrincipalAxis(d[0], az[0], pl[0])
return (t, n, p)
class PrincipalAxis(object):
"""
A principal axis.
Strike and dip values are in degrees.
>>> a = PrincipalAxis(1.3, 20, 50)
>>> a.dip
50
>>> a.strike
20
>>> a.val
1.3
"""
def __init__(self, val=0, strike=0, dip=0):
self.val = val
self.strike = strike
self.dip = dip
class NodalPlane(object):
"""
A nodal plane.
All values are in degrees.
>>> a = NodalPlane(13, 20, 50)
>>> a.strike
13
>>> a.dip
20
>>> a.rake
50
"""
def __init__(self, strike=0, dip=0, rake=0):
self.strike = strike
self.dip = dip
self.rake = rake
class MomentTensor(object):
"""
A moment tensor.
>>> a = MomentTensor(1, 1, 0, 0, 0, -1, 26)
>>> b = MomentTensor(np.array([1, 1, 0, 0, 0, -1]), 26)
>>> c = MomentTensor(np.array([[1, 0, 0], [0, 1, -1], [0, -1, 0]]), 26)
>>> a.mt
array([[ 1, 0, 0],
[ 0, 1, -1],
[ 0, -1, 0]])
>>> b.yz
-1
>>> a.expo
26
"""
def __init__(self, *args):
if len(args) == 2: