-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampler.py
145 lines (107 loc) · 4.28 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import random
import numpy as np
class UncertaintySampler:
def __init__(self, budget):
self.budget = budget
def sample(self, task_learner, data, cuda):
all_indices = []
all_preds = []
for images, _, indices in data:
if cuda:
images = images.cuda()
with torch.no_grad():
out = task_learner(images)
preds = out.max(1)[0] #if the max was 1, then we will select it, and then it will be -1 => not taken
preds = preds.cpu().data
all_preds.extend(preds)
all_indices.extend(indices)
all_preds = torch.stack(all_preds)
all_preds = all_preds.view(-1)
all_preds *= -1
_, querry_indices = torch.topk(all_preds, int(self.budget))
querry_pool_indices = np.asarray(all_indices)[querry_indices]
print("uncertinaty sampler")
print(querry_pool_indices)
return querry_pool_indices
class EESampler:
def __init__(self, budget):
self.budget = budget
def sample(self, task_learner, data, cuda):
all_indices = []
all_preds = []
for images, _, indices in data:
if cuda:
images = images.cuda()
with torch.no_grad():
out = task_learner(images)
preds = out.max(1)[0] # if the max was 1, then we will select it, and then it will be -1 => not taken
preds = preds.cpu().data
all_preds.extend(preds)
all_indices.extend(indices)
all_preds = torch.stack(all_preds)
all_preds = all_preds.view(-1)
# all_preds *= -1
_, querry_indices = torch.topk(all_preds, int(self.budget))
querry_pool_indices = np.asarray(all_indices)[querry_indices]
print("uncertinaty sampler")
print(querry_pool_indices)
return querry_pool_indices
class RandomSampler:
def __init__(self, budget):
self.budget = budget
def sample(self, data):
all_indices = []
for _, _, indices in data:
all_indices.extend(indices)
all_indices = [int(x) for x in all_indices]
random.seed("csc2547")
new_indices = random.sample(all_indices, self.budget)
return new_indices
class AdversarySamplerSingleClass:
def __init__(self, budget):
self.budget = budget
def sample(self, vae, discriminator, data, cuda):
all_preds = []
all_indices = []
for images, _, indices in data:
if cuda:
images = images.cuda()
with torch.no_grad():
_, _, mu, _ = vae(images)
preds = discriminator(mu)
preds = preds.cpu().data
all_preds.extend(preds)
all_indices.extend(indices)
all_preds = torch.stack(all_preds)
all_preds = all_preds.view(-1)
# need to multiply by -1 to be able to use torch.topk
all_preds *= -1
# select the points which the discriminator things are the most likely to be unlabeled
_, querry_indices = torch.topk(all_preds, int(self.budget))
querry_pool_indices = np.asarray(all_indices)[querry_indices]
return querry_pool_indices
class AdversarySampler:
def __init__(self, budget):
self.budget = budget
def sample(self, vae, discriminator, data, cuda):
all_preds = []
all_indices = []
for images, _, indices in data:
if cuda:
images = images.cuda()
with torch.no_grad():
_, _, mu, _ = vae(images)
discrim_out = discriminator(mu)
preds = discrim_out[0] #look at only the probability of the class zero
preds = preds.cpu().data
all_preds.extend(preds)
all_indices.extend(indices)
all_preds = torch.stack(all_preds)
all_preds = all_preds.view(-1)
# need to multiply by -1 to be able to use torch.topk
# all_preds *= -1
# select the points which the discriminator things are the most likely to be unlabeled
_, querry_indices = torch.topk(all_preds, int(self.budget))
querry_pool_indices = np.asarray(all_indices)[querry_indices]
return querry_pool_indices