-
Notifications
You must be signed in to change notification settings - Fork 7
/
plot_correlation_distribution.py
303 lines (262 loc) · 12.2 KB
/
plot_correlation_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import pylab
import numpy as np
import scipy as sp
import pandas as pd
import pickle as pkl
import matplotlib.pyplot as plt
from scipy import interpolate
from collections import defaultdict
from scipy.optimize import curve_fit
# run in ~/repos/depmap_analysis
def nest_dict():
"""Returns a nested dictionary of arbitrary depth
Returns
-------
defaultdict(nest_dict)
"""
return defaultdict(nest_dict)
def _map2index(start, binsize, value):
offset = int(abs(start//binsize))
return offset + int(float(value.strip()) // binsize)
def _histogram_for_large_files(fpath, number_of_bins, binsize, first):
home_brewed_histo = np.zeros(number_of_bins, dtype=int)
with open(file=fpath) as fo:
for line in fo:
flt = line.strip()
home_brewed_histo[_map2index(first, binsize, flt)] += 1
return home_brewed_histo
def _my_gauss(x, a, x0, sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))
def _pickle_open(file_path_to_pickle):
with open(file_path_to_pickle, 'rb') as pi:
return pkl.load(file=pi)
def _entry_exist(nested_dict, outer_key, inner_key):
if nested_dict.get(outer_key) and nested_dict.get(outer_key).get(inner_key):
return True
else:
return False
def _get_gaussian_stats(bin_edges, hist):
a0 = max(hist) / 2.0
sigma0 = 0.125*(bin_edges[-1]-bin_edges[0]) # (bin distance)/8
bin_positions = (bin_edges[:-1] + bin_edges[1:]) / 2.0
mu0 = bin_positions[np.argmax(bin_positions)] # guess max
coeff, var_matrix = curve_fit(_my_gauss, bin_positions, hist, [a0, mu0,
sigma0])
a = coeff[0]
mu = coeff[1]
sigma = coeff[2]
return a, mu, sigma
def _get_partial_gaussian_stats(bin_edges, hist):
bin_positions = (bin_edges[:-1] + bin_edges[1:]) / 2.0
# Get log of nonzero x, y pairs
log_hist = []
saved_positions = []
for x, y in zip(bin_positions, hist):
if y > 0:
log_hist.append(np.log(y))
saved_positions.append(x)
log_hist = np.array(log_hist)
saved_positions = np.array(saved_positions)
interp_log_gaussian = interpolate.interp1d(x=saved_positions,
y=log_hist,
kind='quadratic')
interp_gaussian = np.exp(interp_log_gaussian(bin_positions))
return _get_gaussian_stats(bin_edges, interp_gaussian)
read_correlation_file = input('Do you want to read the full correlation file? ')
nested_explained_dict = _pickle_open(
'Q3_depmap_INDRA_db_20180730_explained_nest_dict_belief.pkl')
corr_lookup = _pickle_open('input_data/depmap/correlation_lookup_ll02.pkl')
direct = 0
explained = 0
only_x_upstream = 0
has_intermeditate = 0
intermediates_only = 0
AB_correlation_list = []
only_upstream_pairs = []
x_is_downstream_count = []
x_is_intermediate_count = []
AB_correlation_list_direct = []
AB_correlation_list_intermediate = []
AXB_correlation_list_intermediate_ll02 = []
x_count_df = pd.DataFrame(columns=['subj', 'obj', 'x_type', 'count'])
x_count_df_list = []
for subj in nested_explained_dict:
for obj in nested_explained_dict[subj]:
directed = nested_explained_dict[subj][obj]['directed']
undirected = nested_explained_dict[subj][obj]['undirected']
x_is_downstream = nested_explained_dict[subj][obj]['x_is_downstream']
x_is_upstream = nested_explained_dict[subj][obj]['x_is_upstream']
x_is_intermediary = nested_explained_dict[subj][obj][
'x_is_intermediary']
# Check if all but x_is_upstream are empty
if not directed and not undirected and not x_is_downstream and not \
x_is_intermediary:
if x_is_upstream:
only_x_upstream += 1
only_upstream_pairs.append((subj, obj, x_is_upstream))
else:
continue
else:
correlation = nested_explained_dict[subj][obj]['correlation']
AB_correlation_list.append(correlation)
explained += 1
if directed or undirected:
AB_correlation_list_direct.append(correlation)
direct += 1
if x_is_downstream or x_is_intermediary:
if x_is_downstream:
for x, s in x_is_downstream:
# get A-X correlation
if _entry_exist(corr_lookup, subj, x):
AXB_correlation_list_intermediate_ll02.append(
corr_lookup[subj][x])
elif _entry_exist(corr_lookup, x, subj):
AXB_correlation_list_intermediate_ll02.append(
corr_lookup[x][subj])
# get X-B correlation
if _entry_exist(corr_lookup, x, obj):
AXB_correlation_list_intermediate_ll02.append(
corr_lookup[x][obj])
elif _entry_exist(corr_lookup, obj, x):
AXB_correlation_list_intermediate_ll02.append(
corr_lookup[obj][x])
x_ds_count = len(x_is_downstream)
x_is_downstream_count.append(x_ds_count)
x_count_df_list.append({'subj': subj,
'obj': obj,
'x_type': 'x_is_downstream',
'count': x_ds_count})
if x_ds_count > 500:
print('%s and %s share more than 500 targets' % (
subj, obj))
if x_is_intermediary:
for x, s in x_is_intermediary:
# get A-X correlation
if _entry_exist(corr_lookup, subj, x):
AXB_correlation_list_intermediate_ll02.append(
corr_lookup[subj][x])
elif _entry_exist(corr_lookup, x, subj):
AXB_correlation_list_intermediate_ll02.append(
corr_lookup[x][subj])
# get X-B correlation
if _entry_exist(corr_lookup, x, obj):
AXB_correlation_list_intermediate_ll02.append(
corr_lookup[x][obj])
elif _entry_exist(corr_lookup, obj, x):
AXB_correlation_list_intermediate_ll02.append(
corr_lookup[obj][x])
x_im_count = len(x_is_intermediary)
x_is_intermediate_count.append(x_im_count)
x_count_df_list.append({'subj': subj,
'obj': obj,
'x_type': 'x_is_intermediary',
'count': x_im_count})
if x_im_count > 500:
print('%s and %s have more than 500 intermediaries' % (
subj, obj))
AB_correlation_list_intermediate.append(correlation)
has_intermeditate += 1
if not directed and not undirected:
intermediates_only += 1
print('Total number of explanations excluding those with only shared '
'regulator: %i' % explained)
print('Total number of cases where shared regulator is only explanation: %i'
% only_x_upstream)
print('Total number of explanations with direct link, excluding those with '
'only shared regulator: %i' % direct)
print('Total number of explanations with intermediates, excluding those with '
'only shared regulator: %i' % has_intermeditate)
print('Total number of explanations with only intermediates as explanation, '
'excluding those with only shared regulator: %i' % intermediates_only)
correlation_array = np.array(AB_correlation_list)
correlation_array_intermediate = np.array(AB_correlation_list_intermediate)
correlation_array_direct = np.array(AB_correlation_list_direct)
correlation_array_AXB = np.array(AXB_correlation_list_intermediate_ll02)
max_of_x = max(max(x_is_intermediate_count), max(x_is_downstream_count))
x_is_intermediate_count_hist, x_count_binedges = \
np.histogram(a=x_is_intermediate_count,
bins=max_of_x,
range=(0.5, max_of_x+0.5))
x_is_downstream_count_hist, x_count_binedges = \
np.histogram(a=x_is_downstream_count,
bins=max_of_x,
range=(0.5, max_of_x+0.5))
expl_correlation_hist, binedges = np.histogram(
a=correlation_array, bins=200, range=(-1.0, 1.0))
expl_correlation_direct_hist, binedges = np.histogram(
a=correlation_array_direct, bins=200, range=(-1.0, 1.0))
expl_correlation_intermediate_hist, binedges = np.histogram(
a=correlation_array_intermediate, bins=200, range=(-1.0, 1.0))
expl_correlation_AXB_hist, binedges = np.histogram(
a=correlation_array_AXB, bins=200, range=(-1, 1))
if read_correlation_file.strip().lower() == 'y':
start = -1.0
stop = 1.0
step = 0.01
bins = int((stop-start)/step)
all_corr_edges = np.arange(start, stop+step, step)
all_corr_hist = _histogram_for_large_files('input_data/corr_only.dat',
bins, step, start)
all_corr_hist_norm = all_corr_hist / sum(all_corr_hist)
# Plot in figure 1
pylab.figure(1)
# Plot data
pylab.plot(all_corr_edges[:-1], all_corr_hist/2, label='all corr')
# Get fit, plot it
a, mu, sigma = _get_gaussian_stats(all_corr_edges, all_corr_hist)
g_fit = _my_gauss(all_corr_edges, a, mu, sigma)
pylab.plot(all_corr_edges, g_fit, label='Gaussian fit')
pylab.title('Fit parameters: mu={:.3f}, sigma={:.3f}'.format(mu, sigma))
pylab.figure(1)
# all_corr_ll03 = pd.read_csv(
# 'input_data/depmap/_saved_Q3_depmap_INDRA_db_20180730_ll03_correlations'
# '.csv', names=['gene1', 'gene2', 'corr'])
# all_corr_ll03_array = all_corr_ll03['corr'].values
# correlations_ll03_hist, binedges = np.histogram(a=all_corr_ll03_array,
# bins=200, range=(-1.0, 1.0))
# correlations_ll03_hist_norm = correlations_ll03_hist / sum(
# correlations_ll03_hist)
expl_correlation_hist_norm = expl_correlation_hist / sum(expl_correlation_hist)
expl_correlation_direct_hist_norm = expl_correlation_direct_hist / sum(
expl_correlation_direct_hist)
expl_correlation_intermediate_hist_norm = \
expl_correlation_intermediate_hist / sum(expl_correlation_intermediate_hist)
expl_correlation_AXB_hist_norm = expl_correlation_AXB_hist / sum(
expl_correlation_AXB_hist)
# pylab.plot(binedges[:-1], correlations_ll03_hist,
# label='all corr > 0.3')
a_expl, mu_expl, sigma_expl = _get_partial_gaussian_stats(binedges,
expl_correlation_hist)
pylab.plot(binedges[:-1], expl_correlation_hist, label='explained mu={:.2f}, '
'sig={:.2f}')
pylab.plot(binedges[:-1], expl_correlation_direct_hist, label='direct')
pylab.plot(binedges[:-1], expl_correlation_intermediate_hist,
label='intermediate')
pylab.plot(binedges[:-1], expl_correlation_AXB_hist, label='AX, XB corr > 0.2')
pylab.xlabel('Correlation')
pylab.ylabel('Count')
pylab.legend(loc='upper left')
pylab.savefig('correlation_comparisons.png', dpi=500)
pylab.show()
print("x_is_intermediate_count_hist[:10]")
print(x_is_intermediate_count_hist[:10])
print("x_is_downstream_count_hist[:10]")
print(x_is_downstream_count_hist[:10])
pylab.figure(2)
pylab.bar(x_count_binedges[1:], x_is_downstream_count_hist,
align='edge',
log=True,
label='Shared targets')
pylab.bar(x_count_binedges[1:], x_is_intermediate_count_hist,
align='edge',
log=True,
label='Intermediates')
pylab.xlabel('Count of X')
pylab.ylabel('log(occurences of count)')
pylab.legend(loc='upper right')
pylab.title('log of occurences of X count (excluding shared regulator)')
pylab.savefig('X_count.png', dpi=500)
pylab.show()
x_count_df = x_count_df.append(other=x_count_df_list, ignore_index=True)
x_count_df.sort_values(inplace=True, by='count', ascending=False)
x_count_df.to_csv('X_counts.csv', index=None)