-
Notifications
You must be signed in to change notification settings - Fork 59
/
test_int.html
1034 lines (1002 loc) · 31.4 KB
/
test_int.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<title>
TEST_INT - Quadrature Tests
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TEST_INT <br> Quadrature Tests
</h1>
<hr>
<p>
<b>TEST_INT</b>
is a FORTRAN90 library which
evaluates test integrands.
</p>
<p>
The test integrands would normally be used to testing one
dimensional quadrature software. It is possible to invoke a
particular function by number, or to try out all available functions,
as demonstrated in the sample calling program.
</p>
<p>
The library includes not just the integrand, but also the interval
of integration, and the exact value of the integral.
Thus, for each integrand function, three subroutines are supplied. For
instance, for function #9, we have the routines:
<ul>
<li>
<b>P09_FUN</b> evaluates the integrand for problem 9.
</li>
<li>
<b>P09_LIM</b> returns the integration limits for problem 9.
</li>
<li>
<b>P09_EXACT</b> returns the exact integral for problem 9.
</li>
</ul>
So once you have the calling sequences for these routines, you
can easily evaluate the function, or integrate it between the
appropriate limits, or compare your estimate of the integral
to the exact value.
</p>
<p>
Moreover, since the same interface is used for each function,
if you wish to work with problem 16 instead, you simply change
the "09" to "16" in your routine calls.
</p>
<p>
If you wish to call <i>all</i> of the functions, then you
simply use the generic interface, which again has three
subroutines, but which requires you to specify the problem
number as an extra input argument:
<ul>
<li>
<b>P00_FUN</b> evaluates the integrand for any problem.
</li>
<li>
<b>P00_LIM</b> returns the integration limits for any problem.
</li>
<li>
<b>P00_EXACT</b> returns the exact integral for any problem.
</li>
</ul>
</p>
<p>
Finally, some demonstration routines are built in for
simple quadrature methods. These routines include
<ul>
<li>
<b>P00_GAUSS_LEGENDRE</b>
</li>
<li>
<b>P00_EVEN</b>
</li>
<li>
<b>P00_HALTON</b>
</li>
<li>
<b>P00_MIDPOINT</b>
</li>
<li>
<b>P00_MONTECARLO</b>
</li>
<li>
<b>P00_SIMPSON</b>
</li>
<li>
<b>P00_TRAPEZOID</b>
</li>
</ul>
and can be used with any of the sample integrands.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TEST_INT</b> is available in
<a href = "../../c_src/test_int/test_int.html">a C version</a> and
<a href = "../../cpp_src/test_int/test_int.html">a C++ version</a> and
<a href = "../../f77_src/test_int/test_int.html">a FORTRAN77 version</a> and
<a href = "../../f_src/test_int/test_int.html">a FORTRAN90 version</a> and
<a href = "../../m_src/test_int/test_int.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/test_int_2d/test_int_2d.html">
TEST_INT_2D</a>,
a FORTRAN90 library which
defines test integrands for 2D quadrature rules.
</p>
<p>
<a href = "../../f_src/test_int_hermite/test_int_hermite.html">
TEST_INT_HERMITE</a>,
a FORTRAN90 library which
defines some test integration problems over infinite intervals.
</p>
<p>
<a href = "../../f_src/test_int_laguerre/test_int_laguerre.html">
TEST_INT_LAGUERRE</a>,
a FORTRAN90 library which
defines test integrands for integration over [ALPHA,+Infinity).
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Kendall Atkinson,<br>
An Introduction to Numerical Analysis,<br>
Prentice Hall, 1989,<br>
ISBN: 0471624896,<br>
LC: QA297.A94.1989.
</li>
<li>
Roger Broucke,<br>
Algorithm 446:
Ten Subroutines for the Manipulation of Chebyshev Series,<br>
Communications of the ACM,<br>
Volume 16, 1973, pages 254-256.
</li>
<li>
Charles Clenshaw, Alan Curtis,<br>
A Method for Numerical Integration on an Automatic Computer,<br>
Numerische Mathematik,<br>
Volume 2, Number 1, December 1960, pages 197-205.
</li>
<li>
Richard Crandall,<br>
Projects in Scientific Computing,<br>
Springer, 2005,<br>
ISBN: 0387950095,<br>
LC: Q183.9.C733.
</li>
<li>
Philip Davis, Philip Rabinowitz,<br>
Methods of Numerical Integration,<br>
Second Edition,<br>
Dover, 2007,<br>
ISBN: 0486453391,<br>
LC: QA299.3.D28.
</li>
<li>
Hermann Engels,<br>
Numerical Quadrature and Cubature,<br>
Academic Press, 1980,<br>
ISBN: 012238850X,<br>
LC: QA299.3E5.
</li>
<li>
Leslie Fox, Ian Parker,<br>
Chebyshev Polynomials in Numerical Analysis,<br>
Oxford Press, 1968,<br>
LC: QA297.F65.
</li>
<li>
John Halton,<br>
On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals,<br>
Numerische Mathematik,<br>
Volume 2, Number 1, December 1960, pages 84-90.
</li>
<li>
John Hart, Ward Cheney, Charles Lawson, Hans Maehly,
Charles Mesztenyi, John Rice, Henry Thacher,
Christoph Witzgall,<br>
Computer Approximations,<br>
Wiley, 1968,<br>
LC: QA297.C64.
</li>
<li>
David Kahaner,<br>
Comparison of Numerical Quadrature Formulas,<br>
in Mathematical Software,<br>
edited by John Rice,<br>
Academic Press, 1971,<br>
ISBN: 012587250X,<br>
LC: QA1.M766.
</li>
<li>
Prem Kythe, Pratap Puri,<br>
Computational Methods for Linear Integral Equations,<br>
Birkhaeuser, 2002,<br>
ISBN: 0817641920,<br>
LC: QA431.K97.
</li>
<li>
Robert Piessens, Elise deDoncker-Kapenga,
Christian Ueberhuber, David Kahaner,<br>
QUADPACK: A Subroutine Package for Automatic Integration,<br>
Springer, 1983,<br>
ISBN: 3540125531,<br>
LC: QA299.3.Q36.
</li>
<li>
Herbert Salzer, Norman Levine,<br>
Table of a Weierstrass Continuous Nondifferentiable Function,<br>
Mathematics of Computation,<br>
Volume 15, Number 74, April 1961, pages 120-130.
</li>
<li>
Arthur Stroud, Don Secrest,<br>
Gaussian Quadrature Formulas,<br>
Prentice Hall, 1966,<br>
LC: QA299.4G3S7.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "test_int.f90">test_int.f90</a>, the source code;
</li>
<li>
<a href = "test_int.sh">test_int.sh</a>, commands to compile
the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "test_int_prb.f90">test_int_prb.f90</a>, the calling program;
</li>
<li>
<a href = "test_int_prb.sh">test_int_prb.sh</a>, commands
to compile, link and run the calling program;
</li>
<li>
<a href = "test_int_prb_output.txt">test_int_prb_output.txt</a>, the sample output.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>BESJ0</b> computes J Bessel functions of order 0.
</li>
<li>
<b>BESY0</b> computes Y Bessel functions of order 0.
</li>
<li>
<b>CALJY0</b> calculates J and Y Bessel functions of zero order.
</li>
<li>
<b>CH_CAP</b> capitalizes a single character.
</li>
<li>
<b>CSEVL</b> evaluates a Chebyshev series.
</li>
<li>
<b>ERROR_F</b> computes the error function.
</li>
<li>
<b>ERROR_FC</b> computes the complementary error function.
</li>
<li>
<b>EULER_CONSTANT</b> returns the value of the Euler-Mascheroni constant.
</li>
<li>
<b>I4_HUGE</b> returns a "huge" I4.
</li>
<li>
<b>I4_TO_HALTON_NUMBER_SEQUENCE:</b> next N elements of a scalar Halton sequence.
</li>
<li>
<b>I4VEC_INDICATOR</b> sets an I4VEC to the indicator vector A(I)=I.
</li>
<li>
<b>INITS</b> finds the number of Chebyshev terms needed to achieve a given accuracy.
</li>
<li>
<b>P00_EVEN</b> uses evenly spaced points to integrate a function.
</li>
<li>
<b>P00_EXACT</b> returns the exact integral for any problem.
</li>
<li>
<b>P00_FUN</b> evaluates the integrand for any problem.
</li>
<li>
<b>P00_GAUSS_LEGENDRE</b> applies a composite Gauss-Legendre rule.
</li>
<li>
<b>P00_HALTON</b> applies a Halton sequence rule to integrate a function.
</li>
<li>
<b>P00_LIM</b> returns the integration limits for any problem.
</li>
<li>
<b>P00_MIDPOINT</b> applies the composite midpoint rule to integrate a function.
</li>
<li>
<b>P00_MONTECARLO</b> applies the Monte Carlo rule to integrate a function.
</li>
<li>
<b>P00_PROB_NUM</b> returns the number of test integration problems.
</li>
<li>
<b>P00_SIMPSON</b> applies the composite Simpson rule to integrate a function.
</li>
<li>
<b>P00_TRAPEZOID</b> applies the composite trapezoid rule to integrate a function.
</li>
<li>
<b>P01_EXACT</b> returns the exact integral for problem 1.
</li>
<li>
<b>P01_FUN</b> evaluates the integrand for problem 1.
</li>
<li>
<b>P01_LIM</b> returns the integration limits for problem 1.
</li>
<li>
<b>P02_EXACT</b> returns the exact integral for problem 2.
</li>
<li>
<b>P02_FUN</b> evaluates the integrand for problem 2.
</li>
<li>
<b>P02_LIM</b> returns the integration limits for problem 2.
</li>
<li>
<b>P03_EXACT</b> returns the exact integral for problem 3.
</li>
<li>
<b>P03_FUN</b> evaluates the integrand for problem 3.
</li>
<li>
<b>P03_LIM</b> returns the integration limits for problem 3.
</li>
<li>
<b>P04_EXACT</b> returns the estimated integral for problem 4.
</li>
<li>
<b>P04_FUN</b> evaluates the integrand for problem 4.
</li>
<li>
<b>P04_LIM</b> returns the integration limits for problem 4.
</li>
<li>
<b>P05_EXACT</b> returns the estimated integral for problem 5.
</li>
<li>
<b>P05_FUN</b> evaluates the integrand for problem 5.
</li>
<li>
<b>P05_LIM</b> returns the integration limits for problem 5.
</li>
<li>
<b>P06_EXACT</b> returns the exact integral for problem 6.
</li>
<li>
<b>P06_FUN</b> evaluates the integrand for problem 6.
</li>
<li>
<b>P06_LIM</b> returns the integration limits for problem 6.
</li>
<li>
<b>P07_EXACT</b> returns the exact integral for problem 7.
</li>
<li>
<b>P07_FUN</b> evaluates the integrand for problem 7.
</li>
<li>
<b>P07_LIM</b> returns the integration limits for problem 7.
</li>
<li>
<b>P08_EXACT</b> returns the estimated integral for problem 8.
</li>
<li>
<b>P08_FUN</b> evaluates the integrand for problem 8.
</li>
<li>
<b>P08_LIM</b> returns the integration limits for problem 8.
</li>
<li>
<b>P09_EXACT</b> returns the estimated integral for problem 9.
</li>
<li>
<b>P09_FUN</b> evaluates the integrand for problem 9.
</li>
<li>
<b>P09_LIM</b> returns the integration limits for problem 9.
</li>
<li>
<b>P10_EXACT</b> returns the estimated integral for problem 10.
</li>
<li>
<b>P10_FUN</b> evaluates the integrand for problem 10.
</li>
<li>
<b>P10_LIM</b> returns the integration limits for problem 10.
</li>
<li>
<b>P11_EXACT</b> returns the estimated integral for problem 11.
</li>
<li>
<b>P11_FUN</b> evaluates the integrand for problem 11.
</li>
<li>
<b>P11_LIM</b> returns the integration limits for problem 11.
</li>
<li>
<b>P12_EXACT</b> returns the estimated integral for problem 12.
</li>
<li>
<b>P12_FUN</b> evaluates the integrand for problem 12.
</li>
<li>
<b>P12_LIM</b> returns the integration limits for problem 12.
</li>
<li>
<b>P13_EXACT</b> returns the estimated integral for problem 13.
</li>
<li>
<b>P13_FUN</b> evaluates the integrand for problem 13.
</li>
<li>
<b>P13_LIM</b> returns the integration limits for problem 13.
</li>
<li>
<b>P14_EXACT</b> returns the estimated integral for problem 14.
</li>
<li>
<b>P14_FUN</b> evaluates the integrand for problem 14.
</li>
<li>
<b>P14_LIM</b> returns the integration limits for problem 14.
</li>
<li>
<b>P15_EXACT</b> returns the exact integral for problem 15.
</li>
<li>
<b>P15_FUN</b> evaluates the integrand for problem 15.
</li>
<li>
<b>P15_LIM</b> returns the integration limits for problem 15.
</li>
<li>
<b>P16_EXACT</b> returns the exact integral for problem 16.
</li>
<li>
<b>P16_FUN</b> evaluates the integrand for problem 16.
</li>
<li>
<b>P16_LIM</b> returns the integration limits for problem 16.
</li>
<li>
<b>P17_EXACT</b> returns the estimated integral for problem 17.
</li>
<li>
<b>P17_FUN</b> evaluates the integrand for problem 17.
</li>
<li>
<b>P17_LIM</b> returns the integration limits for problem 17.
</li>
<li>
<b>P18_EXACT</b> returns the estimated integral for problem 18.
</li>
<li>
<b>P18_FUN</b> evaluates the integrand for problem 18.
</li>
<li>
<b>P18_LIM</b> returns the integration limits for problem 18.
</li>
<li>
<b>P19_EXACT</b> returns the exact integral for problem 19.
</li>
<li>
<b>P19_FUN</b> evaluates the integrand for problem 19.
</li>
<li>
<b>P19_LIM</b> returns the integration limits for problem 19.
</li>
<li>
<b>P20_EXACT</b> returns the estimated integral for problem 20.
</li>
<li>
<b>P20_FUN</b> evaluates the integrand for problem 20.
</li>
<li>
<b>P20_LIM</b> returns the integration limits for problem 20.
</li>
<li>
<b>P21_EXACT</b> returns the estimated integral for problem 21.
</li>
<li>
<b>P21_FUN</b> evaluates the integrand for problem 21.
</li>
<li>
<b>P21_LIM</b> returns the integration limits for problem 21.
</li>
<li>
<b>P22_EXACT</b> returns the estimated integral for problem 22.
</li>
<li>
<b>P22_FUN</b> evaluates the integrand for problem 22.
</li>
<li>
<b>P22_LIM</b> returns the integration limits for problem 22.
</li>
<li>
<b>P23_EXACT</b> returns the estimated integral for problem 23.
</li>
<li>
<b>P23_FUN</b> evaluates the integrand for problem 23.
</li>
<li>
<b>P23_LIM</b> returns the integration limits for problem 23.
</li>
<li>
<b>P24_EXACT</b> returns the estimated integral for problem 24.
</li>
<li>
<b>P24_FUN</b> evaluates the integrand for problem 24.
</li>
<li>
<b>P24_LIM</b> returns the integration limits for problem 24.
</li>
<li>
<b>P25_EXACT</b> returns the estimated integral for problem 25.
</li>
<li>
<b>P25_FUN</b> evaluates the integrand for problem 25.
</li>
<li>
<b>P25_LIM</b> returns the integration limits for problem 25.
</li>
<li>
<b>P26_EXACT</b> returns the exact integral for problem 26.
</li>
<li>
<b>P26_FUN</b> evaluates the integrand for problem 26.
</li>
<li>
<b>P26_LIM</b> returns the integration limits for problem 26.
</li>
<li>
<b>P27_EXACT</b> returns the exact integral for problem 27.
</li>
<li>
<b>P27_FUN</b> evaluates the integrand for problem 27.
</li>
<li>
<b>P27_LIM</b> returns the integration limits for problem 27.
</li>
<li>
<b>P28_EXACT</b> returns the exact integral for problem 28.
</li>
<li>
<b>P28_FUN</b> evaluates the integrand for problem 28.
</li>
<li>
<b>P28_LIM</b> returns the integration limits for problem 28.
</li>
<li>
<b>P29_EXACT</b> returns the exact integral for problem 29.
</li>
<li>
<b>P29_FUN</b> evaluates the integrand for problem 29.
</li>
<li>
<b>P29_LIM</b> returns the integration limits for problem 29.
</li>
<li>
<b>P30_EXACT</b> returns the exact integral for problem 30.
</li>
<li>
<b>P30_FUN</b> evaluates the integrand for problem 30.
</li>
<li>
<b>P30_LIM</b> returns the integration limits for problem 30.
</li>
<li>
<b>P31_EXACT</b> returns the exact integral for problem 31.
</li>
<li>
<b>P31_FUN</b> evaluates the integrand for problem 31.
</li>
<li>
<b>P31_LIM</b> returns the integration limits for problem 31.
</li>
<li>
<b>P32_EXACT</b> returns the exact integral for problem 32.
</li>
<li>
<b>P32_FUN</b> evaluates the integrand for problem 32.
</li>
<li>
<b>P32_LIM</b> returns the integration limits for problem 32.
</li>
<li>
<b>P33_EXACT</b> returns the exact integral for problem 33.
</li>
<li>
<b>P33_FUN</b> evaluates the integrand for problem 33.
</li>
<li>
<b>P33_LIM</b> returns the integration limits for problem 33.
</li>
<li>
<b>P34_EXACT</b> returns the exact integral for problem 34.
</li>
<li>
<b>P34_FUN</b> evaluates the integrand for problem 34.
</li>
<li>
<b>P34_LIM</b> returns the integration limits for problem 34.
</li>
<li>
<b>P35_EXACT</b> returns the exact integral for problem 35.
</li>
<li>
<b>P35_FUN</b> evaluates the integrand for problem 35.
</li>
<li>
<b>P35_LIM</b> returns the integration limits for problem 35.
</li>
<li>
<b>P36_EXACT</b> returns the exact integral for problem 36.
</li>
<li>
<b>P36_FUN</b> evaluates the integrand for problem 36.
</li>
<li>
<b>P36_LIM</b> returns the integration limits for problem 36.
</li>
<li>
<b>P36_PARAM</b> gets or sets the parameter values for problem 36.
</li>
<li>
<b>P36_PARAM_GET</b> returns the parameter values for problem 36.
</li>
<li>
<b>P36_PARAM_SET</b> sets the parameter values for problem 36.
</li>
<li>
<b>P37_EXACT</b> returns the exact integral for problem 37.
</li>
<li>
<b>P37_FUN</b> evaluates the integrand for problem 37.
</li>
<li>
<b>P37_LIM</b> returns the integration limits for problem 37.
</li>
<li>
<b>P37_PARAM</b> gets or sets the parameter values for problem 37.
</li>
<li>
<b>P37_PARAM_GET</b> returns the parameter values for problem 37.
</li>
<li>
<b>P37_PARAM_SET</b> sets the parameter values for problem 37.
</li>
<li>
<b>P38_EXACT</b> returns the exact integral for problem 38.
</li>
<li>
<b>P38_FUN</b> evaluates the integrand for problem 38.
</li>
<li>
<b>P38_LIM</b> returns the integration limits for problem 38.
</li>
<li>
<b>P38_PARAM</b> gets or sets the parameter values for problem 38.
</li>
<li>
<b>P38_PARAM_GET</b> returns the parameter values for problem 38.
</li>
<li>
<b>P38_PARAM_SET</b> sets the parameter values for problem 38.
</li>
<li>
<b>P39_EXACT</b> returns the exact integral for problem 39.
</li>
<li>
<b>P39_FUN</b> evaluates the integrand for problem 39.
</li>
<li>
<b>P39_LIM</b> returns the integration limits for problem 39.
</li>
<li>
<b>P39_PARAM</b> gets or sets the parameter values for problem 39.
</li>
<li>
<b>P39_PARAM_GET</b> returns the parameter values for problem 39.
</li>
<li>
<b>P39_PARAM_SET</b> sets the parameter values for problem 39.
</li>
<li>
<b>P40_EXACT</b> returns the exact integral for problem 40.
</li>
<li>
<b>P40_FUN</b> evaluates the integrand for problem 40.
</li>
<li>
<b>P40_LIM</b> returns the integration limits for problem 40.
</li>
<li>
<b>P40_PARAM</b> gets or sets the parameter values for problem 40.
</li>
<li>
<b>P40_PARAM_GET</b> returns the parameter values for problem 40.
</li>
<li>
<b>P40_PARAM_SET</b> sets the parameter values for problem 40.
</li>
<li>
<b>P41_EXACT</b> returns the exact integral for problem 41.
</li>
<li>
<b>P41_FUN</b> evaluates the integrand for problem 41.
</li>
<li>
<b>P41_LIM</b> returns the integration limits for problem 41.
</li>
<li>
<b>P41_PARAM</b> gets or sets the parameter values for problem 41.
</li>
<li>
<b>P41_PARAM_GET</b> returns the parameter values for problem 41.
</li>
<li>
<b>P41_PARAM_SET</b> sets the parameter values for problem 41.
</li>
<li>
<b>P42_EXACT</b> returns the exact integral for problem 42.
</li>
<li>
<b>P42_FUN</b> evaluates the integrand for problem 42.
</li>
<li>
<b>P42_LIM</b> returns the integration limits for problem 42.
</li>
<li>
<b>P42_PARAM</b> gets or sets the parameter values for problem 42.
</li>
<li>
<b>P42_PARAM_GET</b> returns the parameter values for problem 42.
</li>
<li>
<b>P42_PARAM_SET</b> sets the parameter values for problem 42.
</li>
<li>
<b>P43_EXACT</b> returns the exact integral for problem 43.
</li>
<li>
<b>P43_FUN</b> evaluates the integrand for problem 43.
</li>
<li>
<b>P43_LIM</b> returns the integration limits for problem 43.
</li>
<li>
<b>P43_PARAM</b> gets or sets the parameter values for problem 43.
</li>
<li>
<b>P43_PARAM_GET</b> returns the parameter values for problem 43.
</li>
<li>
<b>P43_PARAM_SET</b> sets the parameter values for problem 43.
</li>
<li>
<b>P44_EXACT</b> returns the exact integral for problem 44.
</li>
<li>
<b>P44_FUN</b> evaluates the integrand for problem 44.
</li>
<li>
<b>P44_LIM</b> returns the integration limits for problem 44.
</li>
<li>
<b>P44_PARAM</b> gets or sets the parameter values for problem 44.
</li>
<li>
<b>P44_PARAM_GET</b> returns the parameter values for problem 44.
</li>
<li>
<b>P44_PARAM_SET</b> sets the parameter values for problem 44.
</li>
<li>
<b>P45_EXACT</b> returns the exact integral for problem 45.
</li>
<li>
<b>P45_FUN</b> evaluates the integrand for problem 45.
</li>
<li>
<b>P45_LIM</b> returns the integration limits for problem 45.
</li>
<li>
<b>P45_PARAM</b> gets or sets the parameter values for problem 45.
</li>
<li>
<b>P45_PARAM_GET</b> returns the parameter values for problem 45.
</li>
<li>
<b>P45_PARAM_SET</b> sets the parameter values for problem 45.
</li>
<li>
<b>P46_EXACT</b> returns the exact integral for problem 46.
</li>
<li>
<b>P46_FUN</b> evaluates the integrand for problem 46.
</li>
<li>
<b>P46_LIM</b> returns the integration limits for problem 46.
</li>
<li>
<b>P46_PARAM</b> gets or sets the parameter values for problem 46.
</li>
<li>
<b>P46_PARAM_GET</b> returns the parameter values for problem 46.
</li>
<li>
<b>P46_PARAM_SET</b> sets the parameter values for problem 46.
</li>
<li>
<b>P47_EXACT</b> returns the exact integral for problem 47.
</li>
<li>
<b>P47_FUN</b> evaluates the integrand for problem 47.
</li>
<li>
<b>P47_LIM</b> returns the integration limits for problem 47.
</li>
<li>
<b>P48_EXACT</b> returns the exact integral for problem 48.
</li>
<li>
<b>P48_FUN</b> evaluates the integrand for problem 48.
</li>
<li>
<b>P48_LIM</b> returns the integration limits for problem 48.
</li>
<li>
<b>P49_EXACT</b> returns the exact integral for problem 49.
</li>
<li>
<b>P49_FUN</b> evaluates the integrand for problem 49.
</li>
<li>
<b>P49_LIM</b> returns the integration limits for problem 49.
</li>
<li>
<b>P50_EXACT</b> returns the exact integral for problem 50.
</li>
<li>
<b>P50_FUN</b> evaluates the integrand for problem 50.
</li>
<li>
<b>P50_LIM</b> returns the integration limits for problem 50.
</li>
<li>
<b>P51_EXACT</b> returns the exact integral for problem 51.
</li>
<li>
<b>P51_FUN</b> evaluates the integrand for problem 51.
</li>
<li>
<b>P51_LIM</b> returns the integration limits for problem 51.
</li>
<li>
<b>P52_EXACT</b> returns the exact integral for problem 52.
</li>
<li>
<b>P52_FUN</b> evaluates the integrand for problem 52.
</li>
<li>
<b>P52_LIM</b> returns the integration limits for problem 52.
</li>
<li>
<b>P53_EXACT</b> returns the exact integral for problem 53.
</li>
<li>
<b>P53_FUN</b> evaluates the integrand for problem 53.
</li>
<li>
<b>P53_LIM</b> returns the integration limits for problem 53.
</li>
<li>
<b>P54_EXACT</b> returns the exact integral for problem 54.
</li>
<li>
<b>P54_FUN</b> evaluates the integrand for problem 54.
</li>
<li>
<b>P54_LIM</b> returns the integration limits for problem 54.
</li>
<li>
<b>P55_EXACT</b> returns the exact integral for problem 55.
</li>
<li>
<b>P55_FUN</b> evaluates the integrand for problem 55.
</li>
<li>
<b>P55_LIM</b> returns the integration limits for problem 55.
</li>
<li>
<b>P55_PARAM</b> sets or gets real scalar parameters for problem 55.
</li>
<li>
<b>P56_EXACT</b> returns the estimated integral for problem 56.
</li>
<li>
<b>P56_FUN</b> evaluates the integrand for problem 56.
</li>
<li>
<b>P56_LIM</b> returns the integration limits for problem 56.
</li>
<li>
<b>P57_EXACT</b> returns the exact integral for problem 57.
</li>
<li>
<b>P57_FUN</b> evaluates the integrand for problem 57.
</li>
<li>
<b>P57_LIM</b> returns the integration limits for problem 57.
</li>
<li>
<b>R89SIFG</b> evaluate terms needed in an approximation to SI(X) for 4 <= |X|.
</li>
<li>
<b>R89UPAK</b> rewrites a real value X as Y * 2**N where 0.5 <= |Y| < 1.
</li>
<li>
<b>R8_CI</b> computes an approximation to the value of the cosine integral.
</li>
<li>
<b>R8_GAMMA</b> returns the value of the Gamma function at X.
</li>
<li>
<b>R8_GAMMA_LOG</b> calculates the natural logarithm of GAMMA ( X ) for positive X.
</li>