-
Notifications
You must be signed in to change notification settings - Fork 59
/
svd_demo.html
327 lines (292 loc) · 8.73 KB
/
svd_demo.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
<html>
<head>
<title>
SVD_DEMO - Demonstration of the Singular Value Decomposition
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
SVD_DEMO <br> Demonstration of the Singular Value Decomposition
</h1>
<hr>
<p>
<b>SVD_DEMO</b>
is a FORTRAN90 program which
demonstrates the computation of the singular value decomposition
and a few of its properties.
</p>
<p>
The singular value decomposition has uses in solving
overdetermined or underdetermined linear systems,
linear least squares problems, data compression,
the pseudoinverse matrix,
reduced order modeling, and
the accurate computation of matrix rank and null space.
</p>
<p>
The singular value decomposition of an M by N rectangular matrix A has
the form
<pre>
A(mxn) = U(mxm) * S(mxn) * V'(nxn)
</pre>
where
<ul>
<li>
U is an orthogonal matrix, whose columns are the left singular vectors;
</li>
<li>
S is a diagonal matrix, whose min(m,n) diagonal entries are the singular values;
</li>
<li>
V is an orthogonal matrix, whose columns are the right singular vectors;
</li>
</ul>
Note that the transpose of V is used in the decomposition, and that the diagonal matrix
S is typically stored as a vector.
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<b>svd_demo</b> <i>m</i> <i>n</i> <i>seed</i>
</blockquote>
where
<ul>
<li>
<i>m</i> is the number of rows in the random matrix;
</li>
<li>
<i>n</i> is the number of columns in the random matrix;
</li>
<li>
<i>seed</i> an optional seed for the random number generator;
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>SVD_DEMO</b> is available in
<a href = "../../c_src/svd_demo/svd_demo.html">a C version</a> and
<a href = "../../cpp_src/svd_demo/svd_demo.html">a C++ version</a> and
<a href = "../../f77_src/svd_demo/svd_demo.html">a FORTRAN77 version</a> and
<a href = "../../f_src/svd_demo/svd_demo.html">a FORTRAN90 version</a> and
<a href = "../../m_src/svd_demo/svd_demo.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../datasets/fingerprints/fingerprints.html">
FINGERPRINTS</a>,
a dataset directory which
contains a few images of fingerprints.
</p>
<p>
<a href = "../../f_src/lapack_examples/lapack_examples.html">
LAPACK_EXAMPLES</a>,
a FORTRAN90 program which
demonstrates the use of the LAPACK linear algebra library.
</p>
<p>
<a href = "../../f_src/linpack/linpack.html">
LINPACK</a>,
a FORTRAN90 library which
includes routines to carry out the singular value
decomposition.
</p>
<p>
<a href = "../../f_src/svd_basis/svd_basis.html">
SVD_BASIS</a>,
a FORTRAN90 program which
computes a reduced basis for a collection of data vectors using the SVD.
</p>
<p>
<a href = "../../f_src/svd_truncated/svd_truncated.html">
SVD_TRUNCATED</a>,
a FORTRAN90 program which
demonstrates the computation of the reduced or truncated
Singular Value Decomposition (SVD) that is useful for cases when
one dimension of the matrix is much smaller than the other.
</p>
<p>
<a href = "../../f77_src/toms358/toms358.html">
TOMS358</a>,
a FORTRAN77 routine which
computes the singular value decomposition
for a complex matrix.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford,
James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
Sven Hammarling, Alan McKenney, Danny Sorensen,<br>
LAPACK User's Guide,<br>
Third Edition,<br>
SIAM, 1999,<br>
ISBN: 0898714478,<br>
LC: QA76.73.F25L36
</li>
<li>
Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,<br>
LINPACK User's Guide,<br>
SIAM, 1979,<br>
ISBN13: 978-0-898711-72-1,<br>
LC: QA214.L56.
</li>
<li>
Gene Golub, Charles VanLoan,<br>
Matrix Computations,
Third Edition,<br>
Johns Hopkins, 1996,<br>
ISBN: 0-8018-4513-X,<br>
LC: QA188.G65.
</li>
<li>
David Kahaner, Cleve Moler, Steven Nash,<br>
Numerical Methods and Software,<br>
Prentice Hall, 1989,<br>
ISBN: 0-13-627258-4,<br>
LC: TA345.K34.
</li>
<li>
Lloyd Trefethen, David Bau,<br>
Numerical Linear Algebra,<br>
SIAM, 1997,<br>
ISBN: 0-89871-361-7,<br>
LC: QA184.T74.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "svd_demo.f90">svd_demo.f90</a>, the source code.
</li>
<li>
<a href = "svd_demo.sh">svd_demo.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "svd_demo_5_3_output.txt">svd_demo_5_3_output.txt</a>,
the output from the command "svd_demo 5 3 123456789".
</li>
<li>
<a href = "svd_demo_5_5_output.txt">svd_demo_5_5_output.txt</a>,
the output from the command "svd_demo 5 5 123456789".
</li>
<li>
<a href = "svd_demo_5_8_output.txt">svd_demo_5_8_output.txt</a>,
the output from the command "svd_demo 5 8 123456789".
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>MAIN</b> is the main program for SVD_DEMO.
</li>
<li>
<b>COMPARE_LINPACK_LAPACK</b> compares the SVD's from LINPACK and LAPACK.
</li>
<li>
<b>GET_SEED</b> returns a seed for the random number generator.
</li>
<li>
<b>GET_SVD_LAPACK</b> gets the SVD of a matrix using a call to LAPACK.
</li>
<li>
<b>GET_SVD_LINPACK</b> gets the SVD of a matrix using a call to LINPACK.
</li>
<li>
<b>I4_UNIFORM</b> returns a pseudorandom I4.
</li>
<li>
<b>PSEUDO_INVERSE</b> computes the pseudoinverse.
</li>
<li>
<b>PSEUDO_LINEAR_SOLVE_TEST</b> uses the pseudoinverse for linear systems.
</li>
<li>
<b>PSEUDO_PRODUCT_TEST</b> examines the products A*A+ and A+*A.
</li>
<li>
<b>R4_UNIFORM_01</b> returns a unit pseudorandom R4.
</li>
<li>
<b>R8MAT_DIF_FRO</b> returns the Frobenius norm of the difference of two R8MAT's.
</li>
<li>
<b>R8MAT_NORM_FRO</b> returns the Frobenius norm of an R8MAT.
</li>
<li>
<b>R8MAT_PRINT</b> prints an R8MAT.
</li>
<li>
<b>R8MAT_PRINT_SOME</b> prints some of an R8MAT.
</li>
<li>
<b>R8MAT_UNIFORM_01</b> returns a unit pseudorandom R8MAT.
</li>
<li>
<b>R8VEC_NORM_L2</b> returns the L2 norm of an R8VEC.
</li>
<li>
<b>R8VEC_UNIFORM_01:</b> real ( kind = 8 ) vector of unit pseudorandom values.
</li>
<li>
<b>RANK_ONE_PRINT_TEST</b> prints the sums of rank one matrices.
</li>
<li>
<b>RANK_ONE_TEST</b> compares A to the sum of rank one matrices.
</li>
<li>
<b>S_TO_I</b> reads an integer value from a string.
</li>
<li>
<b>SVD_PRODUCT_TEST</b> tests that A = U * S * V.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 13 September 2006.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>