-
Notifications
You must be signed in to change notification settings - Fork 59
/
rkf45.html
198 lines (168 loc) · 4.84 KB
/
rkf45.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
<html>
<head>
<title>
RKF45 - Runge-Kutta-Fehlberg ODE Solver
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
RKF45 <br> Runge-Kutta-Fehlberg ODE Solver
</h1>
<hr>
<p>
<b>RKF45</b>
is a FORTRAN90 library which
implements the Watt and Shampine RKF45 ODE solver.
</p>
<p>
The RKF45 ODE solver is a Runge-Kutta-Fehlberg algorithm for
solving an ordinary differential equation, with automatic error
estimation using rules of order 4 and 5.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>RKF45</b> is available in
<a href = "../../c_src/rkf45/rkf45.html">a C version</a> and
<a href = "../../cpp_src/rkf45/rkf45.html">a C++ version</a> and
<a href = "../../f77_src/rkf45/rkf45.html">a FORTRAN77 version</a> and
<a href = "../../f_src/rkf45/rkf45.html">a FORTRAN90 version</a> and
<a href = "../../m_src/rkf45/rkf45.html">a MATLAB version</a> and
<a href = "../../py_src/rkf45/rkf45.html">a PYTHON version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f77_src/cwg_ode/cwg_ode.html">
CWG_ODE</a>,
a FORTRAN77 library which
contains three ODE solvers, by C William Gear.
</p>
<p>
<a href = "../../f_src/nms/nms.html">
NMS</a>,
a FORTRAN90 library which
includes a wide variety of numerical software.
</p>
<p>
<a href = "../../f_src/ode/ode.html">
ODE</a>,
a FORTRAN90 library which
solves a system of ordinary differential equations,
by Shampine and Gordon.
</p>
<p>
<a href = "../../f77_src/odepack/odepack.html">
ODEPACK</a>,
a FORTRAN77 library which
contains nine ODE solvers, including LSODE, LSODES, LSODA,
LSODAR, LSODPK, LSODKR, LSODI, LSOIBT, and LSODIS,
by Alan Hindmarsh.
</p>
<p>
<a href = "../../f_src/test_ode/test_ode.html">
TEST_ODE</a>,
a FORTRAN90 library which
contains routines which define some test problems for ODE solvers.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Erwin Fehlberg,<br>
Low-order Classical Runge-Kutta Formulas with Stepsize Control,<br>
NASA Technical Report R-315, 1969.
</li>
<li>
Lawrence Shampine, Herman Watts, S Davenport,<br>
Solving Non-stiff Ordinary Differential Equations -
The State of the Art,<br>
SIAM Review,<br>
Volume 18, pages 376-411, 1976.
</li>
<li>
The source code for Shampine and Watt's original FORTRAN77
routine is available at
<a href = "http://www.netlib.org/ode/">
http://www.netlib.org/ode/</a>
the NETLIB ODE web site.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "rkf45.f90">rkf45.f90</a>, the source code;
</li>
<li>
<a href = "rkf45.sh">rkf45.sh</a>,
commands to compile the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "rkf45_prb.f90">rkf45_prb.f90</a>, a sample calling program;
</li>
<li>
<a href = "rkf45_prb.sh">rkf45_prb.sh</a>,
commands to compile and run the sample calling program;
</li>
<li>
<a href = "rkf45_prb_output.txt">rkf45_prb_output.txt</a>,
the output file;
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>R4_FEHL</b> takes one Fehlberg fourth-fifth order step (single precision).
</li>
<li>
<b>R4_RKF45</b> carries out the Runge-Kutta-Fehlberg method (single precision).
</li>
<li>
<b>R8_FEHL</b> takes one Fehlberg fourth-fifth order step (double precision).
</li>
<li>
<b>R8_RKF45</b> carries out the Runge-Kutta-Fehlberg method (double precision).
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 03 March 2010.
</i>
<!-- John Burkardt -->
</body>
</html>