forked from brain-research/deep-molecular-massspec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_predictions.py
187 lines (144 loc) · 6.54 KB
/
make_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Run massspec model on data and write out predictions.
Example usage:
blaze-bin/third_party/py/deep_molecular_massspec/make_predictions \
--alsologtostderr --input_file=testdata/test_14_record.gz \
--output_file=/tmp/models/output_predictions \
--model_checkpoint_path=/tmp/models/output/ \
--hparams=eval_batch_size=16
This saves a numpy archive to FLAGS.output_file that contains a dictionary
where the keys are inchikeys and values are 1D np arrays for spectra.
You should load this dict downstream using:
data_dict = np.load(data_file).item()
(Note that .item() is necessary because np.load returns a 0-D array,
where the first element is the desired dictionary.)
"""
from __future__ import print_function
import json
import os
import tempfile
import dataset_setup_constants as ds_constants
import feature_map_constants as fmap_constants
# Note that many FLAGS are inherited from molecule_estimator
import molecule_estimator
import molecule_predictors
import plot_spectra_utils
import util
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
FLAGS = tf.app.flags.FLAGS
tf.flags.DEFINE_string(
'input_file', None, 'Input TFRecord file or a '
'globble file pattern for TFRecord files')
tf.flags.DEFINE_string(
'model_checkpoint_path', None,
'Path to model checkpoint. If a directory, the most '
'recent model checkpoint in this directory will be used. If a file, it '
'should be of the form /.../name-of-the-file.ckpt-10000')
tf.flags.DEFINE_bool(
'save_spectra_plots', True,
'Make plots of true and predicted spectra for each query molecule.'
)
tf.flags.DEFINE_string('output_file', None,
'Location where outputs will be written.')
def _make_features_and_labels_from_tfrecord(input_file_pattern, hparams,
features_to_load):
"""Construct features and labels Tensors to be consumed by model_fn."""
def _make_tmp_dataset_config_file(input_filenames):
"""Construct a temporary config file that points to input_filename."""
_, tmp_file = tempfile.mkstemp()
dataset_config = {
ds_constants.SPECTRUM_PREDICTION_TRAIN_KEY: input_filenames
}
with tf.gfile.Open(tmp_file, 'w') as f:
json.dump(dataset_config, f)
return tmp_file
input_files = tf.gfile.Glob(input_file_pattern)
if not input_files:
raise ValueError('No files found matching %s' % input_file_pattern)
data_dir, _ = os.path.split(input_files[0])
data_basenames = [os.path.split(filename)[1] for filename in input_files]
dataset_config_file = _make_tmp_dataset_config_file(data_basenames)
mode = tf.estimator.ModeKeys.PREDICT
input_fn = molecule_estimator.make_input_fn(
dataset_config_file=dataset_config_file,
hparams=hparams,
mode=mode,
features_to_load=features_to_load,
data_dir=data_dir,
load_library_matching_data=False)
tf.gfile.Remove(dataset_config_file)
return input_fn()
def _make_features_labels_and_estimator(model_type, hparam_string, input_file):
"""Construct input ops and EstimatorSpec for massspec model."""
prediction_helper = molecule_predictors.get_prediction_helper(model_type)
hparams = prediction_helper.get_default_hparams()
hparams.parse(hparam_string)
model_fn = molecule_estimator.make_model_fn(
prediction_helper, dataset_config_file=None, model_dir=None)
features_to_load = prediction_helper.features_to_load(hparams)
features, labels = _make_features_and_labels_from_tfrecord(
input_file, hparams, features_to_load)
estimator_spec = model_fn(
features, labels, hparams, mode=tf.estimator.ModeKeys.PREDICT)
return features, labels, estimator_spec
def _save_plot_figure(key, prediction, true_spectrum, results_dir):
"""A helper function that makes and saves plots of true and predicted spectra."""
spectra_plot_file_name = plot_spectra_utils.name_plot_file(
plot_spectra_utils.PlotModeKeys.PREDICTED_SPECTRUM, key, file_type='png')
# Rescale the true/predicted spectra
true_spectrum = true_spectrum / true_spectrum.max() * plot_spectra_utils.MAX_VALUE_OF_TRUE_SPECTRA
prediction = prediction / prediction.max() * plot_spectra_utils.MAX_VALUE_OF_TRUE_SPECTRA
plot_spectra_utils.plot_true_and_predicted_spectra(
true_spectrum, prediction,
output_filename=os.path.join(results_dir,spectra_plot_file_name),
rescale_mz_axis=True
)
def main(_):
features, labels, estimator_spec = _make_features_labels_and_estimator(
FLAGS.model_type, FLAGS.hparams, FLAGS.input_file)
del labels # Unused
pred_op = estimator_spec.predictions
inchikey_op = features[fmap_constants.SPECTRUM_PREDICTION][
fmap_constants.INCHIKEY]
ops_to_fetch = [inchikey_op, pred_op]
if FLAGS.save_spectra_plots:
true_spectra_op = features[fmap_constants.SPECTRUM_PREDICTION][fmap_constants.DENSE_MASS_SPEC]
ops_to_fetch.append(true_spectra_op)
results = {}
results_dir = os.path.dirname(FLAGS.output_file)
tf.gfile.MakeDirs(results_dir)
def process_fetched_values_fn(fetched_values):
if FLAGS.save_spectra_plots:
keys, predictions, true_spectra = fetched_values
for key, prediction, true_spectrum in zip(keys, predictions, true_spectra):
# Dereference the singleton np string array to get the actual string.
key = key[0]
results[key] = prediction
_save_plot_figure(key, prediction, true_spectrum, results_dir)
else:
keys, predictions = fetched_values
for key, prediction in zip(keys, predictions):
# Dereference the singleton np string array to get the actual string.
key = key[0]
results[key] = prediction
util.run_graph_and_process_results(ops_to_fetch, FLAGS.model_checkpoint_path,
process_fetched_values_fn)
np.save(FLAGS.output_file, results)
if __name__ == '__main__':
for flag in ['input_file', 'model_checkpoint_path', 'output_file']:
tf.app.flags.mark_flag_as_required(flag)
tf.app.run(main)