-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransition_Lexorder.thy
30 lines (23 loc) · 1.1 KB
/
Transition_Lexorder.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
subsection\<open>Transition Lexorder\<close>
text\<open>This theory defines a lexicographical ordering on transitions such that we can convert from
the set representation of EFSMs to a sorted list that we can recurse over.\<close>
theory Transition_Lexorder
imports "Transition"
GExp_Lexorder
"HOL-Library.Product_Lexorder"
begin
instantiation "transition_ext" :: (linorder) linorder begin
definition less_transition_ext :: "'a::linorder transition_scheme \<Rightarrow> 'a transition_scheme \<Rightarrow> bool" where
"less_transition_ext t1 t2 = ((Label t1, Arity t1, Guards t1, Outputs t1, Updates t1, more t1) < (Label t2, Arity t2, Guards t2, Outputs t2, Updates t2, more t2))"
definition less_eq_transition_ext :: "'a::linorder transition_scheme \<Rightarrow> 'a transition_scheme \<Rightarrow> bool" where
"less_eq_transition_ext t1 t2 = (t1 < t2 \<or> t1 = t2)"
instance
apply standard
unfolding less_eq_transition_ext_def less_transition_ext_def
apply auto[1]
apply simp
using less_trans apply blast
using less_imp_not_less apply blast
by (metis Pair_inject equality neqE)
end
end