-
Notifications
You must be signed in to change notification settings - Fork 1
/
stl_hashtable.h
executable file
·1056 lines (936 loc) · 38.5 KB
/
stl_hashtable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_HASHTABLE_H
#define __SGI_STL_INTERNAL_HASHTABLE_H
// Hashtable class, used to implement the hashed associative containers
// hash_set, hash_map, hash_multiset, and hash_multimap.
#include <stl_algobase.h>
#include <stl_alloc.h>
#include <stl_construct.h>
#include <stl_tempbuf.h>
#include <stl_algo.h>
#include <stl_uninitialized.h>
#include <stl_function.h>
#include <stl_vector.h>
#include <stl_hash_fun.h>
__STL_BEGIN_NAMESPACE
template <class _Val>
struct _Hashtable_node //hash table 的节点定义
{
_Hashtable_node* _M_next;
_Val _M_val;
};
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc = alloc>
class hashtable;
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_iterator;
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator;
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_iterator { //hash table迭代器的定义
typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
_Hashtable;
typedef _Hashtable_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
const_iterator;
typedef _Hashtable_node<_Val> _Node;
typedef forward_iterator_tag iterator_category;
typedef _Val value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef _Val& reference;
typedef _Val* pointer;
_Node* _M_cur; //迭代器目前所指的节点
_Hashtable* _M_ht; //保持对容器的连接关系(因为可能需要从buckect调到bucket)
// hash table 永远维系着与整个buckets vector的关系,并记录目前所指的节点
_Hashtable_iterator(_Node* __n, _Hashtable* __tab)
: _M_cur(__n), _M_ht(__tab) {}
_Hashtable_iterator() {}
reference operator*() const { return _M_cur->_M_val; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
iterator& operator++();
iterator operator++(int);
bool operator==(const iterator& __it) const
{ return _M_cur == __it._M_cur; }
bool operator!=(const iterator& __it) const
{ return _M_cur != __it._M_cur; }
};
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator {
typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
_Hashtable;
typedef _Hashtable_iterator<_Val,_Key,_HashFcn,
_ExtractKey,_EqualKey,_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
const_iterator;
typedef _Hashtable_node<_Val> _Node;
typedef forward_iterator_tag iterator_category;
typedef _Val value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef const _Val& reference;
typedef const _Val* pointer;
const _Node* _M_cur;
const _Hashtable* _M_ht;
_Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab)
: _M_cur(__n), _M_ht(__tab) {}
_Hashtable_const_iterator() {}
_Hashtable_const_iterator(const iterator& __it)
: _M_cur(__it._M_cur), _M_ht(__it._M_ht) {}
reference operator*() const { return _M_cur->_M_val; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
const_iterator& operator++();
const_iterator operator++(int);
bool operator==(const const_iterator& __it) const
{ return _M_cur == __it._M_cur; }
bool operator!=(const const_iterator& __it) const
{ return _M_cur != __it._M_cur; }
};
// Note: assumes long is at least 32 bits.
enum { __stl_num_primes = 28 }; //枚举了28个unsigned long类型的质数
static const unsigned long __stl_prime_list[__stl_num_primes] = //相邻两个质数间大约是2倍关系
{
53ul, 97ul, 193ul, 389ul, 769ul,
1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
1610612741ul, 3221225473ul, 4294967291ul
};
inline unsigned long __stl_next_prime(unsigned long __n) //声明了一个全局函数,为了能够得到下一个质数
{
const unsigned long* __first = __stl_prime_list;
const unsigned long* __last = __stl_prime_list + (int)__stl_num_primes; //__stl_prime_list序列已经排序了
const unsigned long* pos = lower_bound(__first, __last, __n); //lower_bound是泛型算法,使用lower_bound,序列需要先排序
return pos == __last ? *(__last - 1) : *pos;
}
// Forward declaration of operator==.
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
class hashtable;
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2);
// Hashtables handle allocators a bit differently than other containers
// do. If we're using standard-conforming allocators, then a hashtable
// unconditionally has a member variable to hold its allocator, even if
// it so happens that all instances of the allocator type are identical.
// This is because, for hashtables, this extra storage is negligible.
// Additionally, a base class wouldn't serve any other purposes; it
// wouldn't, for example, simplify the exception-handling code.
// hash table的模板参数相当多; _Val节点实值类型; _Key节点的键值类型; _HashFcn hash function(哈希函数)的函数类型
// _ExtractKey 从节点中取出键值的方法(函数或仿函数); _EqualKey 判断键值相同与否的方法(函数或仿函数)
// _Alloc 空间配置器, 缺省使用std::alloc
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc> //声明时已经给_Alloc默认值alloc _Alloc = alloc
class hashtable { //hash table的buckets聚合体以vector完成,以利动态扩充
public:
typedef _Key key_type;
typedef _Val value_type;
typedef _HashFcn hasher; //为template类型参数重新定义一个名称
typedef _EqualKey key_equal; //为template类型参数重新定义一个名称
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
hasher hash_funct() const { return _M_hash; }
key_equal key_eq() const { return _M_equals; }
private:
typedef _Hashtable_node<_Val> _Node;
#ifdef __STL_USE_STD_ALLOCATORS
public: //为hash table定义一个专属的节点配置器
typedef typename _Alloc_traits<_Val,_Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
private:
typename _Alloc_traits<_Node, _Alloc>::allocator_type _M_node_allocator;
_Node* _M_get_node() { return _M_node_allocator.allocate(1); }
void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); }
# define __HASH_ALLOC_INIT(__a) _M_node_allocator(__a),
#else /* __STL_USE_STD_ALLOCATORS */
public:
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
private:
typedef simple_alloc<_Node, _Alloc> _M_node_allocator_type;
_Node* _M_get_node() { return _M_node_allocator_type::allocate(1); }
void _M_put_node(_Node* __p) { _M_node_allocator_type::deallocate(__p, 1); }
# define __HASH_ALLOC_INIT(__a)
#endif /* __STL_USE_STD_ALLOCATORS */
private:
hasher _M_hash; //函数对象
key_equal _M_equals; //函数对象
_ExtractKey _M_get_key; //这个也是一个函数对象
vector<_Node*,_Alloc> _M_buckets; //以vector完成
size_type _M_num_elements;
public:
typedef _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,
_Alloc>
const_iterator;
friend struct
_Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
friend struct
_Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
public:
hashtable(size_type __n,
const _HashFcn& __hf,
const _EqualKey& __eql,
const _ExtractKey& __ext,
const allocator_type& __a = allocator_type())
: __HASH_ALLOC_INIT(__a)
_M_hash(__hf),
_M_equals(__eql),
_M_get_key(__ext),
_M_buckets(__a),
_M_num_elements(0)
{
_M_initialize_buckets(__n);
}
hashtable(size_type __n,
const _HashFcn& __hf,
const _EqualKey& __eql,
const allocator_type& __a = allocator_type())
: __HASH_ALLOC_INIT(__a)
_M_hash(__hf),
_M_equals(__eql),
_M_get_key(_ExtractKey()),
_M_buckets(__a),
_M_num_elements(0)
{
_M_initialize_buckets(__n);
}
hashtable(const hashtable& __ht)
: __HASH_ALLOC_INIT(__ht.get_allocator())
_M_hash(__ht._M_hash),
_M_equals(__ht._M_equals),
_M_get_key(__ht._M_get_key),
_M_buckets(__ht.get_allocator()),
_M_num_elements(0)
{
_M_copy_from(__ht);
}
#undef __HASH_ALLOC_INIT
hashtable& operator= (const hashtable& __ht)
{
if (&__ht != this) {
clear();
_M_hash = __ht._M_hash;
_M_equals = __ht._M_equals;
_M_get_key = __ht._M_get_key;
_M_copy_from(__ht);
}
return *this;
}
~hashtable() { clear(); }
size_type size() const { return _M_num_elements; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return size() == 0; }
void swap(hashtable& __ht)
{
__STD::swap(_M_hash, __ht._M_hash);
__STD::swap(_M_equals, __ht._M_equals);
__STD::swap(_M_get_key, __ht._M_get_key);
_M_buckets.swap(__ht._M_buckets);
__STD::swap(_M_num_elements, __ht._M_num_elements);
}
iterator begin()
{
for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
if (_M_buckets[__n])
return iterator(_M_buckets[__n], this);
return end();
}
iterator end() { return iterator(0, this); }
const_iterator begin() const
{
for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
if (_M_buckets[__n])
return const_iterator(_M_buckets[__n], this);
return end();
}
const_iterator end() const { return const_iterator(0, this); }
#ifdef __STL_MEMBER_TEMPLATES
template <class _Vl, class _Ky, class _HF, class _Ex, class _Eq, class _Al>
friend bool operator== (const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&,
const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&);
#else /* __STL_MEMBER_TEMPLATES */
friend bool __STD_QUALIFIER
operator== __STL_NULL_TMPL_ARGS (const hashtable&, const hashtable&);
#endif /* __STL_MEMBER_TEMPLATES */
public:
size_type bucket_count() const { return _M_buckets.size(); } //bucket的个数即buckets vector的大小
size_type max_bucket_count() const //总共有多少个buckets
{ return __stl_prime_list[(int)__stl_num_primes - 1]; } //一般情况下其值应该是4294967291
size_type elems_in_bucket(size_type __bucket) const
{
size_type __result = 0;
for (_Node* __cur = _M_buckets[__bucket]; __cur; __cur = __cur->_M_next)
__result += 1;
return __result;
}
pair<iterator, bool> insert_unique(const value_type& __obj)
{
resize(_M_num_elements + 1);
return insert_unique_noresize(__obj);
}
// 插入元素, 允许重复插入
iterator insert_equal(const value_type& __obj)
{
resize(_M_num_elements + 1); //判断是否需要重建表格,如果需要就扩展
return insert_equal_noresize(__obj); //调用全局函数插入
}
pair<iterator, bool> insert_unique_noresize(const value_type& __obj);
iterator insert_equal_noresize(const value_type& __obj);
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void insert_unique(_InputIterator __f, _InputIterator __l)
{
insert_unique(__f, __l, __ITERATOR_CATEGORY(__f));
}
template <class _InputIterator>
void insert_equal(_InputIterator __f, _InputIterator __l)
{
insert_equal(__f, __l, __ITERATOR_CATEGORY(__f));
}
template <class _InputIterator>
void insert_unique(_InputIterator __f, _InputIterator __l,
input_iterator_tag)
{
for ( ; __f != __l; ++__f)
insert_unique(*__f);
}
template <class _InputIterator>
void insert_equal(_InputIterator __f, _InputIterator __l,
input_iterator_tag)
{
for ( ; __f != __l; ++__f)
insert_equal(*__f);
}
template <class _ForwardIterator>
void insert_unique(_ForwardIterator __f, _ForwardIterator __l,
forward_iterator_tag)
{
size_type __n = 0;
distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_unique_noresize(*__f);
}
template <class _ForwardIterator>
void insert_equal(_ForwardIterator __f, _ForwardIterator __l,
forward_iterator_tag)
{
size_type __n = 0;
distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_equal_noresize(*__f);
}
#else /* __STL_MEMBER_TEMPLATES */
void insert_unique(const value_type* __f, const value_type* __l)
{
size_type __n = __l - __f;
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_unique_noresize(*__f);
}
void insert_equal(const value_type* __f, const value_type* __l)
{
size_type __n = __l - __f;
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_equal_noresize(*__f);
}
void insert_unique(const_iterator __f, const_iterator __l)
{
size_type __n = 0;
distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_unique_noresize(*__f);
}
void insert_equal(const_iterator __f, const_iterator __l)
{
size_type __n = 0;
distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_equal_noresize(*__f);
}
#endif /*__STL_MEMBER_TEMPLATES */
reference find_or_insert(const value_type& __obj);
iterator find(const key_type& __key)
{
size_type __n = _M_bkt_num_key(__key);
_Node* __first;
for ( __first = _M_buckets[__n];
__first && !_M_equals(_M_get_key(__first->_M_val), __key);
__first = __first->_M_next)
{}
return iterator(__first, this);
}
const_iterator find(const key_type& __key) const
{
size_type __n = _M_bkt_num_key(__key);
const _Node* __first;
for ( __first = _M_buckets[__n];
__first && !_M_equals(_M_get_key(__first->_M_val), __key);
__first = __first->_M_next)
{}
return const_iterator(__first, this);
}
size_type count(const key_type& __key) const
{
const size_type __n = _M_bkt_num_key(__key);
size_type __result = 0;
for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), __key))
++__result;
return __result;
}
pair<iterator, iterator>
equal_range(const key_type& __key);
pair<const_iterator, const_iterator>
equal_range(const key_type& __key) const;
size_type erase(const key_type& __key);
void erase(const iterator& __it);
void erase(iterator __first, iterator __last);
void erase(const const_iterator& __it);
void erase(const_iterator __first, const_iterator __last);
void resize(size_type __num_elements_hint);
void clear();
private:
size_type _M_next_size(size_type __n) const
{ return __stl_next_prime(__n); }
void _M_initialize_buckets(size_type __n)
{
const size_type __n_buckets = _M_next_size(__n);
_M_buckets.reserve(__n_buckets);
_M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0);
_M_num_elements = 0;
}
//只接受键值
size_type _M_bkt_num_key(const key_type& __key) const
{
return _M_bkt_num_key(__key, _M_buckets.size()); //调用取模运算的hash function(哈希函数)
}
// 只接受实值(value)
size_type _M_bkt_num(const value_type& __obj) const
{
return _M_bkt_num_key(_M_get_key(__obj)); //调用上面的_M_bkt_num_key函数
}
// 接受键值和buckets个数
size_type _M_bkt_num_key(const key_type& __key, size_t __n) const
{
return _M_hash(__key) % __n; //SGI的所有內建的hash
}
// 接受实值(value)和buckets个数
size_type _M_bkt_num(const value_type& __obj, size_t __n) const
{
return _M_bkt_num_key(_M_get_key(__obj), __n); //调用取模运算的hash function(哈希函数)
}
_Node* _M_new_node(const value_type& __obj) //节点配置函数
{
_Node* __n = _M_get_node();
__n->_M_next = 0;
__STL_TRY {
construct(&__n->_M_val, __obj);
return __n;
}
__STL_UNWIND(_M_put_node(__n));
}
void _M_delete_node(_Node* __n) //节点释放函数
{
destroy(&__n->_M_val);
_M_put_node(__n);
}
void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last);
void _M_erase_bucket(const size_type __n, _Node* __last);
void _M_copy_from(const hashtable& __ht);
};
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
{
const _Node* __old = _M_cur;
_M_cur = _M_cur->_M_next; //如果存在,就是它,否则进入一下if流程
if (!_M_cur) {
size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); //根据元素值定位出下一个bucket,其起头就是我们的目的地
while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) //注意,operator++
_M_cur = _M_ht->_M_buckets[__bucket];
}
return *this;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
{
iterator __tmp = *this;
++*this; //调用operator++()
return __tmp;
} //hash table 的迭代器没有后退操作(operator--())
//hash table 没有定义所谓的逆向迭代器(reverse iterator)
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
{
const _Node* __old = _M_cur;
_M_cur = _M_cur->_M_next;
if (!_M_cur) {
size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
_M_cur = _M_ht->_M_buckets[__bucket];
}
return *this;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
{
const_iterator __tmp = *this;
++*this;
return __tmp;
}
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline forward_iterator_tag
iterator_category(const _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
{
return forward_iterator_tag();
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Val*
value_type(const _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
{
return (_Val*) 0;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::difference_type*
distance_type(const _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
{
return (hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::difference_type*) 0;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline forward_iterator_tag
iterator_category(const _Hashtable_const_iterator<_Val,_Key,_HF,
_ExK,_EqK,_All>&)
{
return forward_iterator_tag();
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Val*
value_type(const _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
{
return (_Val*) 0;
}
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::difference_type*
distance_type(const _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&)
{
return (hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::difference_type*) 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2)
{
typedef typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::_Node _Node;
if (__ht1._M_buckets.size() != __ht2._M_buckets.size())
return false;
for (int __n = 0; __n < __ht1._M_buckets.size(); ++__n) {
_Node* __cur1 = __ht1._M_buckets[__n];
_Node* __cur2 = __ht2._M_buckets[__n];
for ( ; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val;
__cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next)
{}
if (__cur1 || __cur2)
return false;
}
return true;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline bool operator!=(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2) {
return !(__ht1 == __ht2);
}
template <class _Val, class _Key, class _HF, class _Extract, class _EqKey,
class _All>
inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1,
hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) {
__ht1.swap(__ht2);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
// 在不需要重建表格的情况下插入新节点,键值不允许重复
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, bool>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::insert_unique_noresize(const value_type& __obj)
{
const size_type __n = _M_bkt_num(__obj); //决定obj应位于第几个bucket内
_Node* __first = _M_buckets[__n]; //令first指向bucket对应的串行头部
// 走过buckets[n]已被占用,此时first将不为0,于是进入以下循环
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) //走过bucket所对应的整个链表
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))//如果发现与链表中的键值相同
return pair<iterator, bool>(iterator(__cur, this), false);//不插入立即返回
// 离开以上循环(或根本没有进入以上循环)时,first指向bucket所指链表的头部节点
_Node* __tmp = _M_new_node(__obj); //产生一个新节点
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp; //新节点为链表的第一个节点
++_M_num_elements; //节点数累加1
return pair<iterator, bool>(iterator(__tmp, this), true);
}
// 在不要重建表格的情况下插入新节点,键值允许重复
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::insert_equal_noresize(const value_type& __obj)
{
const size_type __n = _M_bkt_num(__obj); //决定obj应位于#n bucket; _M_bkt_num封装了hash function
_Node* __first = _M_buckets[__n]; //令first指向bucket对应的链表头部
// 如果buckets[n]已经被占用,此时first将不为0,于是进入以下循环
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) //循环bucket对应的整条链表
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) { //如果发现与链表中的键值相同
_Node* __tmp = _M_new_node(__obj); //产生一个新节点 //就马上插入, 然后返回
__tmp->_M_next = __cur->_M_next; //将新节点插入于链表头部
__cur->_M_next = __tmp;
++_M_num_elements; //节点个数加1
return iterator(__tmp, this); //返回一个迭代器,指向新增节点
}
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return iterator(__tmp, this);
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::reference
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::find_or_insert(const value_type& __obj)
{
resize(_M_num_elements + 1);
size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
return __cur->_M_val;
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return __tmp->_M_val;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator,
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::equal_range(const key_type& __key)
{
typedef pair<iterator, iterator> _Pii;
const size_type __n = _M_bkt_num_key(__key);
for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next)
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next)
if (!_M_equals(_M_get_key(__cur->_M_val), __key))
return _Pii(iterator(__first, this), iterator(__cur, this));
for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
if (_M_buckets[__m])
return _Pii(iterator(__first, this),
iterator(_M_buckets[__m], this));
return _Pii(iterator(__first, this), end());
}
return _Pii(end(), end());
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator,
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::equal_range(const key_type& __key) const
{
typedef pair<const_iterator, const_iterator> _Pii;
const size_type __n = _M_bkt_num_key(__key);
for (const _Node* __first = _M_buckets[__n] ;
__first;
__first = __first->_M_next) {
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
for (const _Node* __cur = __first->_M_next;
__cur;
__cur = __cur->_M_next)
if (!_M_equals(_M_get_key(__cur->_M_val), __key))
return _Pii(const_iterator(__first, this),
const_iterator(__cur, this));
for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
if (_M_buckets[__m])
return _Pii(const_iterator(__first, this),
const_iterator(_M_buckets[__m], this));
return _Pii(const_iterator(__first, this), end());
}
}
return _Pii(end(), end());
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::size_type
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const key_type& __key)
{
const size_type __n = _M_bkt_num_key(__key);
_Node* __first = _M_buckets[__n];
size_type __erased = 0;
if (__first) {
_Node* __cur = __first;
_Node* __next = __cur->_M_next;
while (__next) {
if (_M_equals(_M_get_key(__next->_M_val), __key)) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
__next = __cur->_M_next;
++__erased;
--_M_num_elements;
}
else {
__cur = __next;
__next = __cur->_M_next;
}
}
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
_M_buckets[__n] = __first->_M_next;
_M_delete_node(__first);
++__erased;
--_M_num_elements;
}
}
return __erased;
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const iterator& __it)
{
_Node* __p = __it._M_cur;
if (__p) {
const size_type __n = _M_bkt_num(__p->_M_val);
_Node* __cur = _M_buckets[__n];
if (__cur == __p) {
_M_buckets[__n] = __cur->_M_next;
_M_delete_node(__cur);
--_M_num_elements;
}
else {
_Node* __next = __cur->_M_next;
while (__next) {
if (__next == __p) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
--_M_num_elements;
break;
}
else {
__cur = __next;
__next = __cur->_M_next;
}
}
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::erase(iterator __first, iterator __last)
{
size_type __f_bucket = __first._M_cur ?
_M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size();
size_type __l_bucket = __last._M_cur ?
_M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size();
if (__first._M_cur == __last._M_cur)
return;
else if (__f_bucket == __l_bucket)
_M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur);
else {
_M_erase_bucket(__f_bucket, __first._M_cur, 0);
for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n)
_M_erase_bucket(__n, 0);
if (__l_bucket != _M_buckets.size())
_M_erase_bucket(__l_bucket, __last._M_cur);
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const_iterator __first,
const_iterator __last)
{
erase(iterator(const_cast<_Node*>(__first._M_cur),
const_cast<hashtable*>(__first._M_ht)),
iterator(const_cast<_Node*>(__last._M_cur),
const_cast<hashtable*>(__last._M_ht)));
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const const_iterator& __it)
{
erase(iterator(const_cast<_Node*>(__it._M_cur),
const_cast<hashtable*>(__it._M_ht)));
}
// 以下函数判断是否需要重建表格,如果不需要,则立即返回,如果需要,就动手……
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> //拿元素个数和bucket vector的大小来比
::resize(size_type __num_elements_hint) //如果前者大于后者,就重建表格
{ //每个bucket(list)的最大容量和bucckets vector相同
const size_type __old_n = _M_buckets.size();
if (__num_elements_hint > __old_n) { //确定真的需要重新配置
const size_type __n = _M_next_size(__num_elements_hint); //找出下一个质数
if (__n > __old_n) {
vector<_Node*, _All> __tmp(__n, (_Node*)(0), //设立新的buckets
_M_buckets.get_allocator());
__STL_TRY { //处理每个旧的bucket
for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) {
_Node* __first = _M_buckets[__bucket]; //指向节点所对应的串行的起始节点
while (__first) { //处理每个就bucket所含(串行)的每一个节点;串行还没有结束
size_type __new_bucket = _M_bkt_num(__first->_M_val, __n); //找出节点落在那个bucket内
_M_buckets[__bucket] = __first->_M_next; //(1) 令旧bucket所指向对应串行的下一个节点(以便迭代处理)
__first->_M_next = __tmp[__new_bucket]; //(2)(3) 将当前节点插入到新bucket内, 成为其对应串行的第一个节点
__tmp[__new_bucket] = __first;
__first = _M_buckets[__bucket]; //(4) 回到旧bucket所指的待处理串行,准备出路下一个节点
}
} //新旧两个buckets对调
_M_buckets.swap(__tmp); //注意,对调的双方大小不同,大的变小,小的变大
} //离开时释放local tmp的内存空间
# ifdef __STL_USE_EXCEPTIONS
catch(...) {
for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) {
while (__tmp[__bucket]) {
_Node* __next = __tmp[__bucket]->_M_next;
_M_delete_node(__tmp[__bucket]);
__tmp[__bucket] = __next;
}
}
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::_M_erase_bucket(const size_type __n, _Node* __first, _Node* __last)
{
_Node* __cur = _M_buckets[__n];
if (__cur == __first)
_M_erase_bucket(__n, __last);
else {
_Node* __next;
for (__next = __cur->_M_next;
__next != __first;
__cur = __next, __next = __cur->_M_next)
;
while (__next != __last) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
__next = __cur->_M_next;
--_M_num_elements;
}
}
}
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::_M_erase_bucket(const size_type __n, _Node* __last)
{
_Node* __cur = _M_buckets[__n];
while (__cur != __last) {
_Node* __next = __cur->_M_next;
_M_delete_node(__cur);