diff --git a/.github/workflows/Invalidations.yml b/.github/workflows/Invalidations.yml index ba81f83e..cfcaa3af 100644 --- a/.github/workflows/Invalidations.yml +++ b/.github/workflows/Invalidations.yml @@ -10,7 +10,7 @@ concurrency: cancel-in-progress: true jobs: - no_additional_invalidations: + evaluate: # Only run on PRs to the default branch. # In the PR trigger above branches can be specified only explicitly whereas this check should work for master, main, or any other default branch if: github.base_ref == github.event.repository.default_branch @@ -30,11 +30,11 @@ jobs: - uses: julia-actions/julia-buildpkg@v1 - uses: julia-actions/julia-invalidations@v1 id: invs_default - + - name: Report invalidation counts run: | echo "Invalidations on default branch: ${{ steps.invs_default.outputs.total }} (${{ steps.invs_default.outputs.deps }} via deps)" >> $GITHUB_STEP_SUMMARY echo "This branch: ${{ steps.invs_pr.outputs.total }} (${{ steps.invs_pr.outputs.deps }} via deps)" >> $GITHUB_STEP_SUMMARY - name: Check if the PR does increase number of invalidations if: steps.invs_pr.outputs.total > steps.invs_default.outputs.total - run: exit 1 + run: exit 1 \ No newline at end of file diff --git a/docs/src/RefElemData.md b/docs/src/RefElemData.md index ab997da2..f18dd09e 100644 --- a/docs/src/RefElemData.md +++ b/docs/src/RefElemData.md @@ -6,6 +6,7 @@ * `Nfaces`: number of faces on a given type of reference element. * `fv`: list of vertices defining faces, e.g., `[1,2], [2,3], [3,1]` for a triangle * `Fmask`: indices of interpolation nodes which lie on the faces +* `VDM`: the generalized Vandermonde matrix, a square matrix whose columns are ``V_{ij} = \phi_{j}(x_i}``, where ``\phi_j`` are orthonormal basis functions and ``x_i`` are interpolation points. * `rst::NTuple{Dim, ...}`: tuple of vectors of length `N_p`, each of which contains coordinates of degree ``N`` optimized polynomial interpolation points. * `rstq::NTuple{Dim, ...}`,`wq`, `Vq`: tuple of volume quadrature points, vector of weights, and quadrature interpolation matrix. Each element of `rstq` and `wq` are vectors of length ``N_q``, and `Vq` is a matrix of size ``N_q \times N_p``. * `N_{\rm plot}`: the degree which determines the number of plotting points ``N_{p,{\rm plot}}``. diff --git a/src/RefElemData.jl b/src/RefElemData.jl index 144e51a2..ed1b9084 100644 --- a/src/RefElemData.jl +++ b/src/RefElemData.jl @@ -207,7 +207,12 @@ Polynomial{T}() where {T} = Polynomial(T()) MultidimensionalQuadrature A type parameter for `Polynomial` indicating that the quadrature -has no specific structure. +has no specific structure. Example usage: +```julia +# these are both equivalent +approximation_type = Polynomial{MultidimensionalQuadrature}() +approximation_type = Polynomial(MultidimensionalQuadrature()) +``` """ struct MultidimensionalQuadrature end @@ -215,13 +220,19 @@ struct MultidimensionalQuadrature end TensorProductQuadrature{T} A type parameter to `Polynomial` indicating that the quadrature has a tensor -product structure. +product structure. Example usage: +```julia +# these are both equivalent +approximation_type = Polynomial{TensorProductQuadrature}(gauss_quad(0, 0, 1)) +approximation_type = Polynomial(TensorProductQuadrature(gauss_quad(0, 0, 1))) +``` """ struct TensorProductQuadrature{T} quad_rule_1D::T # 1D quadrature nodes and weights (rq, wq) end TensorProductQuadrature(args...) = TensorProductQuadrature(args) +Polynomial{TensorProductQuadrature}(args) = Polynomial(TensorProductQuadrature(args)) """ TensorProductGaussCollocation diff --git a/src/RefElemData_polynomial.jl b/src/RefElemData_polynomial.jl index 0e6c89c1..45564982 100644 --- a/src/RefElemData_polynomial.jl +++ b/src/RefElemData_polynomial.jl @@ -1,4 +1,6 @@ -# The following functions determine what default quadrature type to use +# The following functions determine what default quadrature type to use for each element. +# For tensor product elements, we default to TensorProductQuadrature. +# For simplices, wedges, and pyramids, we default to MultidimensionalQuadrature # simplices and pyramids default to multidimensional quadrature RefElemData(elem::Union{Line, Tri, Tet, Wedge, Pyr}, @@ -15,6 +17,13 @@ RefElemData(elem::Line, approx_type::Polynomial{<:TensorProductQuadrature}, N; k RefElemData(elem, Polynomial{MultidimensionalQuadrature}(), N; quad_rule_vol=approx_type.data.quad_rule_1D, kwargs...) +function RefElemData(elem::Union{Tri, Tet, Wedge, Pyr}, + approx_type::Polynomial{<:TensorProductQuadrature}, + N; kwargs...) + error("Tensor product quadrature constructors not yet implemented " * + "for Tri, Tet, Wedge, Pyr elements.") +end + """ RefElemData(elem::Line, approximation_type, N; quad_rule_vol = quad_nodes(elem, N+1)) diff --git a/src/explicit_timestep_utils.jl b/src/explicit_timestep_utils.jl index 77382a77..be915750 100644 --- a/src/explicit_timestep_utils.jl +++ b/src/explicit_timestep_utils.jl @@ -6,8 +6,10 @@ Runge Kutta method. Coefficients evolve the residual, solution, and local time, # Example ```julia -res = rk4a[i]*res + dt*rhs # i = RK stage -@. u += rk4b[i]*res +for i in eachindex(rk4a, rk4b) + @. res = rk4a[i] * res + dt * rhs # i = RK stage + @. u += rk4b[i] * res +end ``` """ function ck45()