-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_utils.py
231 lines (211 loc) · 9.4 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from transformers import AdamW, get_linear_schedule_with_warmup
import torch
BERT_ABBV = {'Bio_ClinicalBERT': 'clinicalbert',
'bert-base-multilingual-cased': 'mbert_cased',
'bert-base-multilingual-uncased': 'mbert_uncased',
'bluebert_pubmed_mimic_base': 'bluebert',
'bert-base-cased': 'base_cased',
'bert-large-cased': 'large_cased',
'bert-base-uncased': 'base_uncased',
'bert-large-uncased': 'large_uncased',
'pubmedbert_abs': 'pubmedbert',
'scibert_scivocab_uncased': 'scibert',
'biobert_v1.1': 'biobert',
'biobert-large-cased-v1.1': 'biobertL',
'spanbert-large-cased': 'span_large'}
def main_name(bert_name_or_path):
if bert_name_or_path.lower().find('kebio') >= 0:
return 'kebio'
if bert_name_or_path.find('/') == -1:
if bert_name_or_path in BERT_ABBV:
return BERT_ABBV[bert_name_or_path]
return bert_name_or_path
if bert_name_or_path[-1] == "/":
bert_name_or_path = bert_name_or_path[:-1]
name = bert_name_or_path.split('/')[-1]
if name in BERT_ABBV:
return BERT_ABBV[name]
return name
def main_name_list(bert_name_or_path_list):
return ",".join([main_name(bert_name_or_path) for bert_name_or_path in bert_name_or_path_list.split(',')])
def generate_output_folder_name(args):
# general
args_list = [args.setting]
args_list += [args.task]
if args.model in ["TTIC", "VanillaSpanBase", "SpanAttfullyconnect", "SpanAttschema"]:
args_list += [args.model,
args.version,
main_name_list(args.bert_name_or_path)]
if args.seed != -1:
args_list += [f's{args.seed}']
# training
args_list += [f'len_{args.truncate_length}',
f'epoch_{args.train_epoch}',
f'lr_{args.learning_rate}_{args.encoder_learning_rate}_{args.task_learning_rate}',
f'bsz_{int(args.batch_size) * int(args.gradient_accumulation_steps)}']
if args.max_grad_norm != 5.0:
args_list += [f'norm_{args.max_grad_norm}']
if args.no_lr_decay:
args_list += ['nld']
args_list += [args.lr_decay_range]
if args.warmup_ratio != 0.1:
args_list += [f'warm{args.warmup_ratio}']
args_list += [args.class_loss_weight]
if args.weight_scheduler != "none":
args_list += [args.weight_scheduler]
if args.ema > 0.:
args_list += [f'ema_{args.ema}']
# loss
if args.negative_sampling:
args_list += [f"negd_{args.hard_neg_dist}"]
if args.loss == "ce":
if args.na_weight != 1.0:
args_list += [f"ce_{args.na_weight}"]
if args.loss != "ce":
if args.loss == "BCE":
args_list += [f"BCE"]
if args.loss == "focal":
args_list += [f"focal_{args.focal_gamma}_{args.focal_alpha}"]
elif args.loss == "ldam":
args_list += [f"ldam_{args.ldam_max_m}_{args.ldam_s}"]
elif args.loss == "dice":
args_list += [f"dice_{args.dice_alpha}_{args.dice_gamma}"]
elif args.loss == "two":
args_list += [f"two_{args.na_weight}"]
if float(args.kl_alpha) > 0.0 and args.kl != "none":
args_list += [f"kl_{args.kl}_{args.kl_alpha}"]
if float(args.label_smoothing) >= 0.0:
args_list += [str(args.label_smoothing)]
if args.not_correct_bias:
args_list += ['ncb']
# encoder
if args.freeze_bert:
args_list += ['frz']
if args.not_finetune:
args_list += ['not_ft']
if args.reinit > 0:
args_list += [f'reinit_{args.reinit}']
args_list += [args.subword_aggr]
if args.bert_output != 'last':
args_list += [args.bert_output.split('-')[0]]
else:
args_list += ['last']
# model
args_list += [args.act]
args_list += [f'mlpdp_{args.dp}']
args_list += [args.nhead]
args_list += [args.nlayer]
args_list += [args.span_pooling]
args_list += [args.attn_schema]
args_list += [args.span_pos_embed]
# comment
args_list += [args.comment]
output_basename = "-".join([str(arg) for arg in args_list])
return output_basename
def generate_optimizer_scheduler(args, model, len_train_dataloader):
if args.setting != "TTIC":
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = []
learning_rate = args.learning_rate
encoder_learning_rate = args.encoder_learning_rate if args.encoder_learning_rate > 0 else learning_rate
decoder_learning_rate = args.decoder_learning_rate if args.decoder_learning_rate > 0 else learning_rate
task_learning_rate = args.task_learning_rate if args.task_learning_rate > 0 else learning_rate
# for n, p in model.named_parameters():
# print("name: ", n, "grad: ", p.requires_grad)
bert_params = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and n.find('bert') >= 0 and p.requires_grad],
"weight_decay": args.weight_decay,
"lr": learning_rate
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and n.find('bert') >= 0 and p.requires_grad],
"weight_decay": 0.0,
"lr": learning_rate
},
]
encoder_params = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and n.find('encoder') >= 0 and n.find('bert') == -1 and p.requires_grad],
"weight_decay": args.weight_decay,
"lr": encoder_learning_rate
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and n.find('encoder') >= 0 and n.find('bert') == -1 and p.requires_grad],
"weight_decay": 0.0,
"lr": encoder_learning_rate
},
]
decoder_params = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and n.find('decoder') >= 0 and p.requires_grad],
"weight_decay": args.weight_decay,
"lr": decoder_learning_rate
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and n.find('decoder') >= 0 and p.requires_grad],
"weight_decay": 0.0,
"lr": decoder_learning_rate
},
]
task_params = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and n.find('encoder') == -1 and n.find('decoder') == -1 and p.requires_grad],
"weight_decay": args.weight_decay,
"lr": task_learning_rate
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and n.find('encoder') == -1 and n.find('decoder') == -1 and p.requires_grad],
"weight_decay": 0.0,
"lr": task_learning_rate
},
]
if bert_params[0]['params'] or bert_params[1]['params']:
optimizer_grouped_parameters.extend(bert_params)
if encoder_params[0]['params'] or encoder_params[1]['params']:
optimizer_grouped_parameters.extend(encoder_params)
if decoder_params[0]['params'] or decoder_params[1]['params']:
optimizer_grouped_parameters.extend(decoder_params)
if task_params[0]['params'] or task_params[1]['params']:
optimizer_grouped_parameters.extend(task_params)
# print(optimizer_grouped_parameters)
# para_list = []
# for item in optimizer_grouped_parameters:
# for subitem in item:
# for para in subitem['params']:
# para_list.append(para)
# for n, p in model.named_parameters():
# if p.requires_grad:
# if p not in para_list:
# print("False")
# else:
# print("True")
# else:
# if p in para_list:
# print("False")
# else:
# print("True")
optimizer = AdamW(optimizer_grouped_parameters, eps=1e-8, correct_bias=not args.not_correct_bias)
if not args.no_lr_decay:
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=int(args.train_epoch * len_train_dataloader * float(args.warmup_ratio)),
num_training_steps=args.train_epoch * len_train_dataloader)
else:
scheduler = None
return optimizer, scheduler
else:
params = list()
names = list()
for name, param in list(model.named_parameters()):
if param.requires_grad:
params.append(param)
names.append(name)
optimizer = getattr(torch.optim, "Adam")(params, lr=args.learning_rate)
return optimizer, params, None
def weight_scheduler(epoch_idx, total_epoch=None, args=None, method="square"):
if method == "square":
if args is not None:
total_epoch = args.train_epoch
return 1 - (epoch_idx / total_epoch) ** 2
else:
raise NotImplementedError