-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
592 lines (442 loc) · 25.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This is the top-level file to train, evaluate or test your summarization model"""
import sys
from random import shuffle
import time
import codecs
import data
import os
import math
import tensorflow as tf
import numpy as np
from collections import namedtuple
import batcher_discriminator as bd
from data import Vocab
from batcher import Example
from batcher import Batch
from batcher import GenBatcher
from batcher_discriminator import DisBatcher
from model import Generator
from discriminator import Discriminator
import json
from generated_sample import Generated_sample
from result_evaluate import Evaluate
import util
import re
import nltk
from tensorflow.python import debug as tf_debug
FLAGS = tf.app.flags.FLAGS
# Where to find data
tf.app.flags.DEFINE_string('data_path', 'review_generation_dataset/train/* ', 'Path expression to tf.Example datafiles. Can include wildcards to access multiple datafiles.')
tf.app.flags.DEFINE_string('vocab_path', 'review_generation_dataset/vocab.txt', 'Path expression to text vocabulary file.')
# Important settings
tf.app.flags.DEFINE_string('mode', 'train', 'must be one of train/eval/decode')
# Where to save output
tf.app.flags.DEFINE_string('log_root', '', 'Root directory for all logging.')
tf.app.flags.DEFINE_string('exp_name', 'myexperiment', 'Name for experiment. Logs will be saved in a directory with this name, under log_root.')
tf.app.flags.DEFINE_integer('gpuid', 0, 'for gradient clipping')
tf.app.flags.DEFINE_string('dataset', 'yelp', "dataset which you use")
tf.app.flags.DEFINE_string('run_method', 'auto-encoder', 'must be one of auto-encoder/language_model')
tf.app.flags.DEFINE_integer('max_enc_sen_num', 6, 'max timesteps of encoder (max source text tokens)') # for discriminator
tf.app.flags.DEFINE_integer('max_enc_seq_len', 40, 'max timesteps of encoder (max source text tokens)') # for discriminator
tf.app.flags.DEFINE_integer('max_dec_sen_num',6, 'max timesteps of decoder (max source text tokens)') # for generator
tf.app.flags.DEFINE_integer('max_dec_steps', 40, 'max timesteps of decoder (max source text tokens)') # for generator
# Hyperparameters
tf.app.flags.DEFINE_integer('hidden_dim', 256, 'dimension of RNN hidden states') # for discriminator and generator
tf.app.flags.DEFINE_integer('emb_dim', 128, 'dimension of word embeddings') # for discriminator and generator
tf.app.flags.DEFINE_integer('batch_size', 64, 'minibatch size') # for discriminator and generator
tf.app.flags.DEFINE_integer('max_enc_steps', 50, 'max timesteps of encoder (max source text tokens)') # for generator
#tf.app.flags.DEFINE_integer('max_dec_steps', 200, 'max timesteps of decoder (max summary tokens)') # for generator
tf.app.flags.DEFINE_integer('min_dec_steps', 35, 'Minimum sequence length of generated summary. Applies only for beam search decoding mode') # for generator
tf.app.flags.DEFINE_integer('vocab_size', 50000, 'Size of vocabulary. These will be read from the vocabulary file in order. If the vocabulary file contains fewer words than this number, or if this number is set to 0, will take all words in the vocabulary file.')
tf.app.flags.DEFINE_float('lr', 0.6, 'learning rate') # for discriminator and generator
tf.app.flags.DEFINE_float('adagrad_init_acc', 0.1, 'initial accumulator value for Adagrad') # for discriminator and generator
tf.app.flags.DEFINE_float('rand_unif_init_mag', 0.02, 'magnitude for lstm cells random uniform inititalization') # for discriminator and generator
tf.app.flags.DEFINE_float('trunc_norm_init_std', 1e-4, 'std of trunc norm init, used for initializing everything else') # for discriminator and generator
tf.app.flags.DEFINE_float('max_grad_norm', 2.0, 'for gradient clipping') # for discriminator and generator
'''the generator model is saved at FLAGS.log_root + "train-generator"
give up sv, use sess
'''
def setup_training_generator(model):
"""Does setup before starting training (run_training)"""
train_dir = os.path.join(FLAGS.log_root, "train-generator")
if not os.path.exists(train_dir): os.makedirs(train_dir)
model.build_graph() # build the graph
saver = tf.train.Saver(max_to_keep=20) # we use this to load checkpoints for decoding
sess = tf.Session(config=util.get_config())
#sess.run(tf.train.Saver(max_to_keep=20))
init = tf.global_variables_initializer()
sess.run(init)
# Load an initial checkpoint to use for decoding
#util.load_ckpt(saver, sess, ckpt_dir="train-generator")
return sess, saver,train_dir
def setup_training_discriminator(model):
"""Does setup before starting training (run_training)"""
train_dir = os.path.join(FLAGS.log_root, "train-discriminator")
if not os.path.exists(train_dir): os.makedirs(train_dir)
model.build_graph() # build the graph
saver = tf.train.Saver(max_to_keep=20) # we use this to load checkpoints for decoding
sess = tf.Session(config=util.get_config())
init = tf.global_variables_initializer()
sess.run(init)
#util.load_ckpt(saver, sess, ckpt_dir="train-discriminator")
return sess, saver,train_dir
def print_batch(batch):
'''tf.logging.info("enc_batch")
tf.logging.info(list(batch.enc_batch))
tf.logging.info("enc_lens")
tf.logging.info(list(batch.enc_lens))
tf.logging.info('dec_batch')
tf.logging.info(list(batch.dec_batch))
tf.logging.info('target_batch')
tf.logging.info(list(batch.target_batch))
tf.logging.info('dec_padding_mask')
tf.logging.info(list(batch.dec_padding_mask))'''
tf.logging.info(batch.original_reviews)
def run_pre_train_generator(model, batcher, max_run_epoch, sess, saver, train_dir, generatored):
tf.logging.info("starting run_pre_train_generator")
epoch = 0
while epoch < max_run_epoch:
batches = batcher.get_batches(mode='train')
step = 0
t0 = time.time()
loss_window = 0.0
while step < len(batches):
current_batch = batches[step]
#print_batch(current_batch)
step += 1
results = model.run_pre_train_step(sess, current_batch)
loss = results['loss']
loss_window += loss
if not np.isfinite(loss):
raise Exception("Loss is not finite. Stopping.")
train_step = results['global_step'] # we need this to update our running average loss
if train_step % 100 == 0:
t1 = time.time()
tf.logging.info('seconds for %d training generator step: %.3f ', train_step, (t1 - t0) / 100)
t0 = time.time()
tf.logging.info('loss: %f', loss_window / 100) # print the loss to screen
loss_window = 0.0
if train_step % 10000 == 0:
saver.save(sess, train_dir + "/model", global_step=train_step)
bleu_score = generatored.compute_BLEU(str(train_step))
#tf.logging.info('bleu: %f', bleu_score) # print the loss to screen
epoch += 1
tf.logging.info("finished %d epoches", epoch)
def batch_to_batch(batch, batcher, dis_batcher):
db_example_list = []
for i in range(FLAGS.batch_size):
new_dis_example = bd.Example(batch.original_review_output[i], -0.01, dis_batcher._vocab, dis_batcher._hps)
db_example_list.append(new_dis_example)
return bd.Batch(db_example_list, dis_batcher._hps, dis_batcher._vocab)
def output_to_batch(current_batch, result, batcher, dis_batcher):
example_list= []
db_example_list = []
for i in range(FLAGS.batch_size):
decoded_words_all = []
encode_words = current_batch.original_review_inputs[i]
for j in range(FLAGS.max_dec_sen_num):
output_ids = [int(t) for t in result['generated'][i][j]][1:]
decoded_words = data.outputids2words(output_ids, batcher._vocab, None)
# Remove the [STOP] token from decoded_words, if necessary
try:
fst_stop_idx = decoded_words.index(data.STOP_DECODING) # index of the (first) [STOP] symbol
decoded_words = decoded_words[:fst_stop_idx]
except ValueError:
decoded_words = decoded_words
if len(decoded_words) < 2:
continue
if len(decoded_words_all) > 0:
new_set1 = set(decoded_words_all[len(decoded_words_all) - 1].split())
new_set2 = set(decoded_words)
if len(new_set1 & new_set2) > 0.5 * len(new_set2):
continue
if decoded_words[-1] != '.' and decoded_words[-1] != '!' and decoded_words[-1] != '?':
decoded_words.append('.')
decoded_output = ' '.join(decoded_words).strip() # single string
decoded_words_all.append(decoded_output)
decoded_words_all = ' '.join(decoded_words_all).strip()
try:
fst_stop_idx = decoded_words_all.index(
data.STOP_DECODING_DOCUMENT) # index of the (first) [STOP] symbol
decoded_words_all = decoded_words_all[:fst_stop_idx]
except ValueError:
decoded_words_all = decoded_words_all
decoded_words_all = decoded_words_all.replace("[UNK] ", "")
decoded_words_all = decoded_words_all.replace("[UNK]", "")
decoded_words_all, _ = re.subn(r"(! ){2,}", "", decoded_words_all)
decoded_words_all, _ = re.subn(r"(\. ){2,}", "", decoded_words_all)
if decoded_words_all.strip() == "":
'''tf.logging.info("decode")
tf.logging.info(current_batch.original_reviews[i])
tf.logging.info("encode")
tf.logging.info(encode_words)'''
new_dis_example = bd.Example(current_batch.original_review_output[i], -0.0001, dis_batcher._vocab, dis_batcher._hps)
new_example = Example(current_batch.original_review_output[i], batcher._vocab, batcher._hps,encode_words)
else:
'''tf.logging.info("decode")
tf.logging.info(decoded_words_all)
tf.logging.info("encode")
tf.logging.info(encode_words)'''
new_dis_example = bd.Example(decoded_words_all, 1, dis_batcher._vocab, dis_batcher._hps)
new_example = Example(decoded_words_all, batcher._vocab, batcher._hps,encode_words)
example_list.append(new_example)
db_example_list.append(new_dis_example)
return Batch(example_list, batcher._hps, batcher._vocab), bd.Batch(db_example_list, dis_batcher._hps, dis_batcher._vocab)
def run_train_generator(model, discirminator_model, discriminator_sess, batcher, dis_batcher, batches, sess, saver, train_dir, generated):
tf.logging.info("starting training generator")
step = 0
t0 = time.time()
loss_window = 0.0
new_loss_window = 0.0
while step < len(batches):
current_batch = batches[step]
step += 1
for i in range(1):
results = model.run_eval_given_step(sess, current_batch)
new_batch, new_dis_batch = output_to_batch(current_batch, results, batcher, dis_batcher)
reward = discirminator_model.run_ypred_auc(discriminator_sess,new_dis_batch)
reward_sentence_level = reward['y_pred_auc_sentence']
for i in range(len(reward['y_pred_auc'])):
for j in range(len(reward['y_pred_auc'][i])):
for k in range(len(reward['y_pred_auc'][i][j])):
if reward['y_pred_auc'][i][j][k] > 12:
reward['y_pred_auc'][i][j][k] = 12/ 10000.0
else:
reward['y_pred_auc'][i][j][k] = reward['y_pred_auc'][i][j][k] / 10000.0
reward['y_pred_auc'] = np.reshape(np.array(reward['y_pred_auc']), [batcher._hps.batch_size*batcher._hps.max_dec_sen_num,batcher._hps.max_dec_steps])
#reward = [math.fabs(re-0.3) for re in reward['y_pred_auc'][:,1]]
#for i in range(batcher._hps.max_dec_steps):
# reward[i] = 1
results = model.run_train_step(sess, new_batch,reward['y_pred_auc'])
loss = results['loss']
loss_window += loss
if not np.isfinite(loss):
raise Exception("Loss is not finite. Stopping.")
new_dis_batch = batch_to_batch(current_batch, batcher, dis_batcher)
# print_batch(new_batch)
reward = discirminator_model.run_ypred_auc(discriminator_sess, new_dis_batch)
reward_sentence_level = reward['y_pred_auc_sentence']
for i in range(len(reward['y_pred_auc'])):
for j in range(len(reward['y_pred_auc'][i])):
for k in range(len(reward['y_pred_auc'][i][j])):
if reward['y_pred_auc'][i][j][k] > 12:
reward['y_pred_auc'][i][j][k] = 1
else:
reward['y_pred_auc'][i][j][k] = reward['y_pred_auc'][i][j][k] / 10.0
reward['y_pred_auc'] = np.reshape(np.array(reward['y_pred_auc']),
[FLAGS.batch_size * batcher._hps.max_dec_sen_num,batcher._hps.max_dec_steps])
#results = model.run_train_step(sess, current_batch, reward['y_pred_auc'])
new_results = model.run_train_step(sess, current_batch,
reward['y_pred_auc'])
new_loss = new_results['loss']
new_loss_window += new_loss
if not np.isfinite(new_loss):
raise Exception("new Loss is not finite. Stopping.")
train_step = new_results['global_step'] # we need this to update our running average loss
'''if train_step % 10000 == 0:
#saver.save(sess, train_dir + "/model", global_step=train_step)
bleu_score = generated.compute_BLEU(str(train_step))
tf.logging.info('bleu: %f', bleu_score) # print the loss to screen'''
t1 = time.time()
tf.logging.info('seconds for %d training generator step: %.3f ', train_step, (t1 - t0) / len(batches))
tf.logging.info('loss: %f', loss_window / (len(batches)/ len(batches))) # print the loss to screen
tf.logging.info('teach forcing loss: %f', new_loss_window / len(batches)) # print the loss to screen
def print_discriminator_batch(batch):
tf.logging.info("enc_batch")
tf.logging.info(list(batch.enc_batch))
tf.logging.info("enc_sen_lens")
tf.logging.info(list(batch.enc_sen_lens))
tf.logging.info('labels')
tf.logging.info(list(batch.labels))
tf.logging.info('target_mask')
tf.logging.info(list(batch.target_mask))
def run_pre_train_discriminator(model, bachter, max_run_epoch, sess,saver, train_dir):
tf.logging.info("starting run_pre_train_discriminator")
epoch = 0
while epoch < max_run_epoch:
batches = bachter.get_batches(mode='train')
step = 0
t0 = time.time()
loss_window = 0.0
while step < len(batches):
current_batch = batches[step]
step += 1
#print_discriminator_batch(current_batch)
results = model.run_pre_train_step(sess, current_batch)
loss = results['loss']
loss_window += loss
if not np.isfinite(loss):
raise Exception("Loss is not finite. Stopping.")
train_step = results['global_step'] # we need this to update our running average loss
if train_step % 100 == 0:
t1 = time.time()
tf.logging.info('seconds for %d training dirscriminator step: %.3f ', train_step, (t1 - t0) / 100)
t0 = time.time()
tf.logging.info('loss: %f', loss_window / 100) # print the loss to screen
loss_window = 0.0
if train_step % 10000 == 0:
saver.save(sess, train_dir + "/model", global_step=train_step)
run_test_discriminator(model, bachter, sess, saver, str(train_step))
#tf.logging.info('acc: %.6f', acc) # print the loss to screen
epoch +=1
tf.logging.info("finished %d epoches", epoch)
def run_test_discriminator(model, batcher, sess,saver, train_step):
tf.logging.info("starting run testing discriminator")
error_discriminator_file = codecs.open(train_step+ "error_discriminator.txt","w","utf-8")
batches = batcher.get_batches("test")
step = 0
right =0.0
all = 0.0
while step < len(batches):
current_batch = batches[step]
step += 1
result = model.run_ypred_auc(sess, current_batch)
outloss=result['y_pred_auc']
outloss_sentence = result['y_pred_auc_sentence']
for i in range(FLAGS.batch_size):
for j in range(batcher._hps.max_enc_sen_num):
#print ([outloss[i][j][k] for k in range(len(outloss[i][j]))])
a ={"example": current_batch.review_sentenc_orig[i][j], "score": [np.float64(outloss[i][j][k]) for k in range(len(outloss[i][j]))], "sentence_level_score" : np.float64(outloss_sentence[i][j])}
string_a = json.dumps(a)
error_discriminator_file.write(string_a+"\n")
error_discriminator_file.close()
return 0
def run_train_discriminator(model, max_epoch, batcher, batches, sess,saver, train_dir, whole_decay=False):
tf.logging.info("starting trining discriminator")
#batches = batcher.get_batches("train")
step = 0
t0 = time.time()
loss_window = 0.0
right = 0.0
number = 0.0
epoch =0
while epoch < max_epoch:
epoch+=1
while step < len(batches):
current_batch = batches[step]
step += 1
results = model.run_pre_train_step(sess, current_batch)
loss = results['loss']
loss_window += loss
if not np.isfinite(loss):
raise Exception("Loss is not finite. Stopping.")
train_step = results['global_step'] # we need this to update our running average loss
if train_step % 100 == 0:
t1 = time.time()
tf.logging.info('seconds for %d training dirscriminator step: %.3f ', train_step, (t1 - t0) / 100)
t0 = time.time()
tf.logging.info('loss: %f', loss_window / 100) # print the loss to screen
# tf.logging.info('acc: %f', right / number) # print the loss to screen
loss_window = 0.0
if train_step % 10000 == 0:
#saver.save(sess, train_dir + "/model", global_step=train_step)
run_test_discriminator(model, batcher, sess, saver, str(train_step))
return whole_decay
def main(unused_argv):
if len(unused_argv) != 1: # prints a message if you've entered flags incorrectly
raise Exception("Problem with flags: %s" % unused_argv)
tf.logging.set_verbosity(tf.logging.INFO) # choose what level of logging you want
tf.logging.info('Starting running in %s mode...', (FLAGS.mode))
# Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
if not os.path.exists(FLAGS.log_root):
if FLAGS.mode=="train":
os.makedirs(FLAGS.log_root)
else:
raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))
vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size) # create a vocabulary
# Make a namedtuple hps, containing the values of the hyperparameters that the model needs
hparam_list = ['mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag', 'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim', 'batch_size', 'max_dec_sen_num','max_dec_steps', 'max_enc_steps']
hps_dict = {}
for key,val in FLAGS.__flags.items(): # for each flag
if key in hparam_list: # if it's in the list
hps_dict[key] = val # add it to the dict
hps_generator = namedtuple("HParams", hps_dict.keys())(**hps_dict)
hparam_list = ['lr', 'adagrad_init_acc', 'rand_unif_init_mag', 'trunc_norm_init_std', 'max_grad_norm',
'hidden_dim', 'emb_dim', 'batch_size', 'max_enc_sen_num', 'max_enc_seq_len']
hps_dict = {}
for key, val in FLAGS.__flags.items(): # for each flag
if key in hparam_list: # if it's in the list
hps_dict[key] = val # add it to the dict
hps_discriminator = namedtuple("HParams", hps_dict.keys())(**hps_dict)
# Create a batcher object that will create minibatches of data
batcher = GenBatcher(vocab, hps_generator)
tf.set_random_seed(111) # a seed value for randomness
if hps_generator.mode == 'train':
print("Start pre-training......")
model = Generator(hps_generator, vocab)
sess_ge, saver_ge, train_dir_ge = setup_training_generator(model)
generated = Generated_sample(model, vocab, batcher, sess_ge)
print("Start pre-training generator......")
run_pre_train_generator(model, batcher, 1, sess_ge, saver_ge, train_dir_ge,generated) # this is an infinite loop until
print("Generating negetive examples......")
generated.generator_whole_negative_example()
generated.generator_test_negative_example()
model_dis = Discriminator(hps_discriminator, vocab)
dis_batcher = DisBatcher(hps_discriminator, vocab, "train/positive/*", "train/negative/*", "test/positive/*", "test/negative/*")
sess_dis, saver_dis, train_dir_dis = setup_training_discriminator(model_dis)
print("Start pre-training discriminator......")
#run_test_discriminator(model_dis, dis_batcher, sess_dis, saver_dis, "test")
run_pre_train_discriminator(model_dis, dis_batcher, 1, sess_dis, saver_dis, train_dir_dis)
#util.load_ckpt(saver_ge, sess_ge, ckpt_dir="train-generator")
generated.generator_sample_example("sample_temp_positive", "sample_temp_negative", 1000)
generated.generator_test_sample_example("test_sample_temp_positive",
"test_sample_temp_negative",
200)
generated.generator_test_max_example("test_max_temp_positive",
"test_max_temp_negative",
200)
tf.logging.info("true data diversity: ")
eva = Evaluate()
eva.diversity_evaluate("test_sample_temp_positive" + "/*")
print("Start adversial training......")
whole_decay = False
for epoch in range(1):
batches = batcher.get_batches(mode='train')
for step in range(int(len(batches)/1000)):
run_train_generator(model,model_dis,sess_dis,batcher,dis_batcher,batches[step*1000:(step+1)*1000],sess_ge, saver_ge, train_dir_ge,generated) #(model, discirminator_model, discriminator_sess, batcher, dis_batcher, batches, sess, saver, train_dir, generated):
generated.generator_sample_example("sample_generated/"+str(epoch)+"epoch_step"+str(step)+"_temp_positive", "sample_generated/"+str(epoch)+"epoch_step"+str(step)+"_temp_negative", 1000)
#generated.generator_max_example("max_generated/"+str(epoch)+"epoch_step"+str(step)+"_temp_positive", "max_generated/"+str(epoch)+"epoch_step"+str(step)+"_temp_negetive", 200)
tf.logging.info("test performance: ")
tf.logging.info("epoch: "+str(epoch)+" step: "+str(step))
generated.generator_test_sample_example(
"test_sample_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_positive",
"test_sample_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_negative", 200)
generated.generator_test_max_example("test_max_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_positive",
"test_max_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_negative",
200)
dis_batcher.train_queue = []
dis_batcher.train_queue = []
for i in range(epoch+1):
for j in range(step+1):
dis_batcher.train_queue += dis_batcher.fill_example_queue("sample_generated/"+str(i)+"epoch_step"+str(j)+"_temp_positive/*")
dis_batcher.train_queue += dis_batcher.fill_example_queue("sample_generated/"+str(i)+"epoch_step"+str(j)+"_temp_negative/*")
dis_batcher.train_batch = dis_batcher.create_batches(mode="train", shuffleis=True)
#dis_batcher.valid_batch = dis_batcher.train_batch
whole_decay = run_train_discriminator(model_dis, 5, dis_batcher, dis_batcher.get_batches(mode="train"),
sess_dis, saver_dis, train_dir_dis, whole_decay)
'''elif hps_generator.mode == 'decode':
decode_model_hps = hps_generator # This will be the hyperparameters for the decoder model
model = Generator(decode_model_hps, vocab)
generated = Generated_sample(model, vocab, batcher)
bleu_score = generated.compute_BLEU()'=
tf.logging.info('bleu: %f', bleu_score) # print the loss to screen'''
'''else:
raise ValueError("The 'mode' flag must be one of train/eval/decode")'''
if __name__ == '__main__':
tf.app.run()