-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscriminator.py
274 lines (216 loc) · 11.7 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains code to build and run the tensorflow graph for the sequence-to-sequence model"""
import os
import time
import numpy as np
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
import data
FLAGS = tf.app.flags.FLAGS
class Discriminator(object):
"""A class to represent a sequence-to-sequence model for text summarization. Supports both baseline mode, pointer-generator mode, and coverage"""
def __init__(self, hps, vocab):
self._hps = hps
self._vocab = vocab
def _add_placeholders(self):
"""Add placeholders to the graph. These are entry points for any input data."""
hps = self._hps
# encoder part
self._target_batch = tf.placeholder(tf.int32, [hps.batch_size* hps.max_enc_sen_num, hps.max_enc_seq_len], name='enc_batch')
#self._target_lens = tf.placeholder(tf.int32, [hps.batch_size* hps.max_enc_sen_num], name='enc_lens')
self._dec_batch = tf.placeholder(tf.int32, [hps.batch_size * hps.max_enc_sen_num, hps.max_enc_seq_len], name='enc_batch')
self._dec_lens = tf.placeholder(tf.int32, [hps.batch_size * hps.max_enc_sen_num], name='enc_lens')
#self._enc_sen_lens = tf.placeholder(tf.int32, [hps.batch_size * hps.], name='enc_sen_lens')
self._target_mask = tf.placeholder(tf.float32,
[hps.batch_size* hps.max_enc_sen_num, hps.max_enc_seq_len],
name='target_mask')
#self._enc_padding_mask = tf.placeholder(tf.float32, [hps.batch_size, None], name='enc_padding_mask')
self._decay = tf.placeholder(tf.float32, name="decay_learning_rate")
self.label = tf.placeholder(tf.float32, [hps.batch_size * hps.max_enc_sen_num, hps.max_enc_seq_len], name="positive_negtive")
#self._target_batch = tf.placeholder(tf.int32,
# [hps.batch_size* hps.max_enc_sen_num],
# name='target_batch')
def _make_feed_dict(self, batch):
feed_dict = {}
feed_dict[self._target_batch] = batch.target_batch
feed_dict[self._dec_batch] = batch.dec_batch
feed_dict[self._dec_lens] = batch.dec_sen_lens
feed_dict[self.label] = batch.labels
#feed_dict[self._enc_sen_lens] = batch.enc_sen_lens
#feed_dict[self._enc_padding_mask] = batch.enc_padding_mask
feed_dict[self._target_mask] = batch.dec_padding_mask
#feed_dict[self.label] = batch.labels
return feed_dict
def _build_model(self):
"""Add the whole sequence-to-sequence model to the graph."""
hps = self._hps
vsize = self._vocab.size() # size of the vocabulary
with tf.variable_scope('discriminator'):
# Some initializers
self.rand_unif_init = tf.random_uniform_initializer(-hps.rand_unif_init_mag, hps.rand_unif_init_mag,
seed=123)
self.trunc_norm_init = tf.truncated_normal_initializer(stddev=hps.trunc_norm_init_std)
# Add embedding matrix (shared by the encoder and decoder inputs)
with tf.variable_scope('embedding'):
embedding = tf.get_variable('embedding', [vsize, hps.emb_dim], dtype=tf.float32,
initializer=self.trunc_norm_init)
emb_dec_inputs = tf.nn.embedding_lookup(embedding,
self._dec_batch) # tensor with shape (batch_size, max_enc_steps, emb_size)
self.emb_enc_inputs = emb_dec_inputs
## Add the encoder.
#encoder_vector = self._add_encoder(emb_enc_inputs, self._enc_lens, hps)
with tf.variable_scope('output_projection'):
w = tf.get_variable('w_output', [hps.hidden_dim, vsize], dtype=tf.float32,
initializer=self.trunc_norm_init)
v = tf.get_variable('v_output', [vsize], dtype=tf.float32, initializer=self.trunc_norm_init)
with tf.variable_scope('decoder'):
# When decoding, use model output from the previous step
# for the next step.
loop_function = None
cell = tf.contrib.rnn.LSTMCell(
hps.hidden_dim,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
state_is_tuple=False)
#tf.logging.info(emb_dec_inputs)
emb_dec_inputs = tf.unstack(emb_dec_inputs, axis=1)
self._dec_in_state = cell.zero_state(FLAGS.batch_size* hps.max_enc_sen_num, tf.float32)
# tf.logging.info(self._dec_in_state)
# tf.logging.info(emb_dec_inputs)
decoder_outputs, self._dec_out_state = tf.contrib.legacy_seq2seq.rnn_decoder(
emb_dec_inputs,self._dec_in_state,
cell, loop_function=None
)
decoder_outputs = tf.transpose(decoder_outputs, [1, 0, 2])
decoder_outputs = tf.reshape(decoder_outputs,
[-1,
hps.hidden_dim])
decoder_outputs = tf.nn.xw_plus_b(decoder_outputs, w, v)
decoder_outputs = tf.reshape(decoder_outputs,
[hps.batch_size * hps.max_enc_sen_num, hps.max_enc_seq_len,
FLAGS.vocab_size])
'''crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=self._target_batch, logits=decoder_outputs)
self.out_put = tf.argmax(crossent, 1)
self.out_put = tf.reshape(self.out_put, [hps.batch_size, hps.max_enc_sen_num])'''
'''weights = self._target_mask * self.label
self.train_loss = tf.contrib.seq2seq.sequence_loss(
decoder_outputs,
self._target_batch,
weights,
average_across_timesteps=True,
average_across_batch=True)'''
weights = self._target_mask * self.label
self.train_loss = tf.contrib.seq2seq.sequence_loss(
decoder_outputs,
self._target_batch,
weights,
average_across_timesteps=True,
average_across_batch=True)
self.out_loss = tf.contrib.seq2seq.sequence_loss(
decoder_outputs,
self._target_batch,
self._target_mask,
average_across_timesteps=False,
average_across_batch=False)
self.out_loss=tf.reshape(self.out_loss, [-1])
#label=tf.reshape(self.label, [-1])
#self.train_loss = tf.reduce_mean(self.out_loss)/(hps.batch_size*hps.max_enc_sen_num*hps.max_enc_seq_len)
self.out_loss = tf.reshape(self.out_loss, [hps.batch_size, hps.max_enc_sen_num, hps.max_enc_seq_len])
self.out_loss_sentence = tf.reduce_mean(self.out_loss,axis = -1)
def _add_train_op(self):
"""Sets self._train_op, the op to run for training."""
# Take gradients of the trainable variables w.r.t. the loss function to minimize
loss_to_minimize = self.train_loss
tvars = tf.trainable_variables()
gradients = tf.gradients(loss_to_minimize, tvars, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE)
grads, global_norm = tf.clip_by_global_norm(gradients, self._hps.max_grad_norm)
# Add a summary
tf.summary.scalar('global_norm', global_norm)
# Apply adagrad optimizer
optimizer = tf.train.AdagradOptimizer(self._hps.lr, initial_accumulator_value=self._hps.adagrad_init_acc)
self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step, name='train_step')
def build_graph(self):
"""Add the placeholders, model, global step, train_op and summaries to the graph"""
with tf.device("/gpu:" + str(FLAGS.gpuid)):
tf.logging.info('Building graph...')
t0 = time.time()
self._add_placeholders()
self._build_model()
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self._add_train_op()
t1 = time.time()
tf.logging.info('Time to build graph: %i seconds', t1 - t0)
def run_train_step(self, sess, batch, decay=False):
"""Runs one training iteration. Returns a dictionary containing train op, summaries, loss, global_step and (optionally) coverage loss."""
feed_dict = self._make_feed_dict(batch)
feed_dict[self._decay] = 1.0
if decay:
feed_dict[self._decay] = 0.001
to_return = {
'train_op': self._train_op,
'loss': self.train_loss,
'out_loss': self.out_loss,
'global_step': self.global_step,
}
return sess.run(to_return, feed_dict)
def run_pre_train_step(self, sess, batch):
"""Runs one training iteration. Returns a dictionary containing train op, summaries, loss, global_step and (optionally) coverage loss."""
feed_dict = self._make_feed_dict(batch)
feed_dict[self._decay] = 1.0
to_return = {
'train_op': self._train_op,
'loss': self.train_loss,
'out_loss': self.out_loss,
'global_step': self.global_step,
}
return sess.run(to_return, feed_dict)
def run_ypred_auc(self, sess, batch):
"""Runs one training iteration. Returns a dictionary containing train op, summaries, loss, global_step and (optionally) coverage loss."""
feed_dict = self._make_feed_dict(batch)
to_return = {
'y_pred_auc': self.out_loss,
'y_pred_auc_sentence': self.out_loss_sentence
}
return sess.run(to_return, feed_dict)
'''def run_eval_step(self, sess, batch):
"""Runs one evaluation iteration. Returns a dictionary containing summaries, loss, global_step and (optionally) coverage loss."""
feed_dict = self._make_feed_dict(batch)
error_list =[]
error_label = []
to_return = {
'predictions': self.out_put,
}
results = sess.run(to_return, feed_dict)
right =0
number =0
output = results['predictions']
for i in range(len(batch.labels)):
if batch.target_mask[i] == 1:
if results['predictions'][i] == batch.labels[i]:
right +=1
else:
error_label.append(results['predictions'][i])
error_list.append(batch.original_reviews[i])
number+=1
print (batch.labels)
print (batch.target_mask)
print (results['predictions'])
print (right)
print (number)
print (error_label)
print (error_list)
return right, number,error_list,error_label'''