Skip to content

Latest commit

 

History

History
102 lines (69 loc) · 2.88 KB

File metadata and controls

102 lines (69 loc) · 2.88 KB

TransformerTorchEncoder

TransformerTorchEncoder wraps the torch-version of transformers from huggingface. It encodes text data into dense vectors.

TransformerTorchEncoder receives Documents with text attributes. The text attribute represents the text to be encoded. This Executor will encode each text into a dense vector and store them in the embedding attribute of the Document.

Usage

Use the prebuilt images from Jina Hub in your Flow and encode an image:

from jina import Flow, Document

f = Flow().add(uses='jinahub+docker://TransformerTorchEncoder')

doc = Document(content='my sentence to be encoded')

with f:
    f.post(on='/index', inputs=doc, on_done=lambda resp: print(resp.docs[0].embedding))

Set volumes

With the volumes attribute, you can map the cache directory to your local cache directory, in order to avoid downloading the model each time you start the Flow.

from jina import Flow

flow = Flow().add(
    uses='jinahub+docker://TransformerTorchEncoder',
    volumes='.cache/huggingface:/root/.cache/huggingface'
)

Alternatively, you can reference the docker image in the yml config and specify the volumes configuration.

flow.yml:

jtype: Flow
executors:
  - name: encoder
    uses: 'jinahub+docker://TransformerTorchEncoder'
    volumes: '.cache/huggingface:/root/.cache/huggingface'

And then use it like so:

from jina import Flow

flow = Flow.load_config('flow.yml')

Use other pre-trained models

You can specify the model to use with the parameter pretrained_model_name_or_path:

from jina import Flow, Document

f = Flow().add(
    uses='jinahub+docker://TransformerTorchEncoder',
    uses_with={'pretrained_model_name_or_path': 'bert-base-uncased'}
)

doc = Document(content='this is a sentence to be encoded')

with f:
    f.post(on='/foo', inputs=doc, on_done=lambda resp: print(resp.docs[0].embedding))

You can check the supported pre-trained models here

Use GPUs

To enable GPU, you can set the device parameter to a cuda device. Make sure your machine is cuda-compatible. If you're using a docker container, make sure to add the gpu tag and enable GPU access to Docker with gpus='all'. Furthermore, make sure you satisfy the prerequisites mentioned in Executor on GPU tutorial.

from jina import Flow, Document

f = Flow().add(
    uses='jinahub+docker://TransformerTorchEncoder/gpu',
    uses_with={'device': 'cuda'}, gpus='all'
)

doc = Document(content='this is a sentence to be encoded')

with f:
    f.post(on='/foo', inputs=doc, on_done=lambda resp: print(resp.docs[0].embedding))

Reference