Skip to content

Latest commit

 

History

History
82 lines (72 loc) · 3.22 KB

README.md

File metadata and controls

82 lines (72 loc) · 3.22 KB

Segmentation Map

teaser 

The code is located in vitonhd_seg.py, and the parameters include

## Dataset storage location
parser.add_argument('--dataset_dir', type=str, default='/data/extern/vition-HD')
# The required data includes:"densepose"、"image-parse-agnostic-v3.2"、"warped_mask"
# Among them, warped_mask can be downloaded, with the file name sample and structure as follows:
"sample/{test_paired/test_unpaired/train_paired}/mask"
# Download the warped_mask to the dataset_dir directory
"""
The content that dataset_dir needs to include is as follows:
dataset_dir
|-- sample
|-- train
|-- test
Among them, both train and test contain:
|-- image-parse-agnostic-v3.2
|-- densepose
The sample directory contains:
sample
|-- test_paired
|   `-- mask
|-- test_unpaired
    |   `-- mask
`-- train_paired
    `-- mask
"""

## Splitting dataset txt name
parser.add_argument('--dataset_list', type=str, default='train_pairs_1018new.txt')
# Save the position of the dataset sequence txt for train and test, where the internal content format of txt is: img cloth mode, for example:
"""
12999_00.jpg 12999_00.jpg
"""
# Dataset splitting txt needs to be saved in the dataset_dir directory

## dataset_mode
parser.add_argument('--dataset_mode', type=str, default='test')
## paired
parser.add_argument('--paired', type=str, default='unpaired')
## Save location
parser.add_argument('--save_dir', type=str, default='./results/')
"""
The file structure after saving all file outputs is:
results/
|-- train
|   `-- warped_paired
|-- test
|   `-- warped_paired
|   `-- warped_unpaired
"""

The densepose images can be downloaded at: Baidu Cloud. The warped mask is generated from the GP-VTON. The other data sources is based on the VITON-HD dataset.

Data processing can run the script vitonhd_seg.sh, which requires three parameters. The first parameter is dataset_list, the second parameter is train/test, and the third parameter is paid/unpaired. For example:

bash vitonhd_seg.sh test_pairs.txt test unpaired

Before running the script, it is necessary to modify the path corresponding to the script vitonhd_seg.sh to the path of one's own computer based on the local directory.

Highlighting Map

teaser 

The code is located in vitonhd_highlight.py, and the parameters include

## warped clothes dir
parser.add_argument('--warped_path', type=str, default='/home/ock/aigc/GP-VTON-main/sample/viton_hd/train_paired/warped')
## warped masks dir
parser.add_argument('--mask_path', type=str, default='/home/ock/aigc/GP-VTON-main/sample/viton_hd/train_paired/mask')
## output dir
parser.add_argument('--output_folder', type=str, default='/home/ock/aigc/Try-On-old/highlight/train')

The warped cloth and mask pair is generated from the GP-VTON. Data processing can run the file vitonhd_highlight.py . For example:

python  data_preparation/vitonhd_highlight.py  --warped_path A --mask_path B --output_folder C