forked from wbenbihi/hourglasstensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
filters.py
131 lines (109 loc) · 4.47 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
Deep Human Pose Estimation
Project by Walid Benbihi
MSc Individual Project
Imperial College
Created on Mon Sep 4 20:54:25 2017
@author: Walid Benbihi
@mail : w.benbihi(at)gmail.com
@github : https://github.com/wbenbihi/hourglasstensorlfow/
Abstract:
This python code creates a Stacked Hourglass Model
(Credits : A.Newell et al.)
(Paper : https://arxiv.org/abs/1603.06937)
Code translated from 'anewell' github
Torch7(LUA) --> TensorFlow(PYTHON)
(Code : https://github.com/anewell/pose-hg-train)
Modification are made and explained in the report
Goal : Achieve Real Time detection (Webcam)
----- Modifications made to obtain faster results (trade off speed/accuracy)
This work is free of use, please cite the author if you use it!
"""
import numpy as np
import cv2
class VideoFilters():
"""
Work In Progress
"""
def __init__(self):
""" Initialize Filters
"""
self._sayan_params()
self.num_filters = 1
self.existing_filters = ['isSayan']
self.activated_filters = [0]
self.filter_func = ['plotSayan']
def _sayan_params(self):
"""
Initialize Sayan parameters
"""
self.sayan_avg = np.array([40, 53, 167, 59, 53, 122, 29, 136, 39, 128])
self.sayan_std = np.array([44, 16, 13, 15, 43, 18, 6, 17, 20, 18])
def joint2Vect(self, pt1,pt2):
""" Given 2 Joints (Points), returns the associated Vector
"""
vect = pt1 - pt2
d = np.linalg.norm(vect)
return vect/d
def vect2angle(self, u,v):
""" Given 2 vectors, returns the Angle between Vectors
"""
return abs(np.arccos(np.dot(u,v)))
def angleAdir(self, joints):
""" Given a list of Joints, returns Vectors and Angles of body
"""
j = joints.reshape((16,2), order = 'F')
links = [(0,1),(1,2),(2,6),(3,6),(4,3),(5,4),(10,11),(11,12),(12,8),(13,8),(14,13),(15,14)]
angles_l = [(0,1),(1,2),(2,3),(3,4),(4,5),(6,7),(7,8),(8,9),(9,10),(10,11)]
vects = []
angles = []
for i in range(len(links)):
vects.append(self.joint2Vect( j[links[i][0]], j[links[i][1]]))
for i in range(len(angles_l)):
angles.append(self.vect2angle(vects[angles_l[i][0]], vects[angles_l[i][1]]))
return vects, np.degrees(angles)
def isSayan(self, angles):
""" Given an angle list, returns a boolean to state if the Sayan pose is detected
"""
say = True
for i in range(10):
if not(self.sayan_avg[i] - 1.5*self.sayan_std[i] < angles[i] < self.sayan_avg[i] + 1.5*self.sayan_std[i] ):
say = False
return say
def plotSayan(self, img, j):
"""
WORK IN PROGRESS
FUNCTION MAY CRASH
"""
hair = cv2.imread('./hair.png')
ratio = hair.shape[1]/ hair.shape[0]
mask = cv2.imread('./maskhair.png') /255
dist_h_n = np.linalg.norm(j[9]-j[8])
h = int(hair.shape[0] *20 / dist_h_n)
w = int(h * ratio)
hair = cv2.resize(hair, (w,h))
mask = cv2.resize(mask, (w,h))
padd = [[0,0],[0,0],[0,0]]
if h / 2 > j[9][0]:
padd[0][0] = int(h/2 - j[9][0])
if h / 2 + j[9][0] > img.shape[0]:
padd[0][1] = int(h/2 + j[9][0] - img.shape[0])
if w / 2 > j[9][1]:
padd[1][0] = int(w/2 - j[9][1])
if w / 2 + j[9][1] > img.shape[1]:
padd[1][1] = int(w/2 + j[9][1] - img.shape[1])
print('Frame')
shape = img[int(j[9][0]) - int(np.ceil(h/2)) + padd[0][0]:int(j[9][0]) + int(np.ceil(h/2)) - padd[0][1] ,int(j[9][1]) - int(np.ceil(w/2)) + padd[1][0]:int(j[9][1]) + int(np.ceil(w/2)) - padd[1][1],:].shape
print(shape)
print(hair[padd[0][0]:mask.shape[0] -padd[0][1],padd[1][0]:mask.shape[1] -padd[1][1],:].shape)
print(mask[padd[0][0]:mask.shape[0] -padd[0][1],padd[1][0]:mask.shape[1] -padd[1][1],:].shape)
mask = mask[padd[0][0]:mask.shape[0] -padd[0][1],padd[1][0]:mask.shape[1] -padd[1][1],:]
hair = hair[padd[0][0]:mask.shape[0] -padd[0][1],padd[1][0]:mask.shape[1] -padd[1][1],:]
hair = cv2.resize(hair, (shape[1],shape[0]))
mask = cv2.resize(mask, (shape[1],shape[0]))
mask[mask != 1] = 0
reco = img[int(j[9][0]) - int(np.ceil(h/2)) + padd[0][0]:int(j[9][0]) + int(np.ceil(h/2)) - padd[0][1] ,int(j[9][1]) - int(np.ceil(w/2)) + padd[1][0]:int(j[9][1]) + int(np.ceil(w/2)) - padd[1][1],:] * mask+ hair
img[int(j[9][0]) - int(np.ceil(h/2)) + padd[0][0]:int(j[9][0]) + int(np.ceil(h/2)) - padd[0][1] ,int(j[9][1]) - int(np.ceil(w/2)) + padd[1][0]:int(j[9][1]) + int(np.ceil(w/2)) - padd[1][1],:] = reco
img = img.astype(np.uint8)
return img