forked from andrewssobral/bgslibrary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Demo.cpp
194 lines (155 loc) · 5.88 KB
/
Demo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
This file is part of BGSLibrary.
BGSLibrary is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BGSLibrary is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BGSLibrary. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <opencv2/opencv.hpp>
#include "package_bgs/FrameDifferenceBGS.h"
#include "package_bgs/StaticFrameDifferenceBGS.h"
#include "package_bgs/WeightedMovingMeanBGS.h"
#include "package_bgs/WeightedMovingVarianceBGS.h"
#include "package_bgs/MixtureOfGaussianV1BGS.h"
#include "package_bgs/MixtureOfGaussianV2BGS.h"
#include "package_bgs/AdaptiveBackgroundLearning.h"
#include "package_bgs/AdaptiveSelectiveBackgroundLearning.h"
#if CV_MAJOR_VERSION >= 2 && CV_MINOR_VERSION >= 4 && CV_SUBMINOR_VERSION >= 3
#include "package_bgs/GMG.h"
#endif
#include "package_bgs/dp/DPAdaptiveMedianBGS.h"
#include "package_bgs/dp/DPGrimsonGMMBGS.h"
#include "package_bgs/dp/DPZivkovicAGMMBGS.h"
#include "package_bgs/dp/DPMeanBGS.h"
#include "package_bgs/dp/DPWrenGABGS.h"
#include "package_bgs/dp/DPPratiMediodBGS.h"
#include "package_bgs/dp/DPEigenbackgroundBGS.h"
#include "package_bgs/dp/DPTextureBGS.h"
#include "package_bgs/tb/T2FGMM_UM.h"
#include "package_bgs/tb/T2FGMM_UV.h"
#include "package_bgs/tb/T2FMRF_UM.h"
#include "package_bgs/tb/T2FMRF_UV.h"
#include "package_bgs/tb/FuzzySugenoIntegral.h"
#include "package_bgs/tb/FuzzyChoquetIntegral.h"
#include "package_bgs/lb/LBSimpleGaussian.h"
#include "package_bgs/lb/LBFuzzyGaussian.h"
#include "package_bgs/lb/LBMixtureOfGaussians.h"
#include "package_bgs/lb/LBAdaptiveSOM.h"
#include "package_bgs/lb/LBFuzzyAdaptiveSOM.h"
#include "package_bgs/ck/LbpMrf.h"
#include "package_bgs/jmo/MultiLayerBGS.h"
// The PBAS algorithm was removed from BGSLibrary because it is
// based on patented algorithm ViBE
// http://www2.ulg.ac.be/telecom/research/vibe/
//#include "package_bgs/pt/PixelBasedAdaptiveSegmenter.h"
#include "package_bgs/av/VuMeter.h"
#include "package_bgs/ae/KDE.h"
#include "package_bgs/db/IndependentMultimodalBGS.h"
#include "package_bgs/sjn/SJN_MultiCueBGS.h"
#include "package_bgs/bl/SigmaDeltaBGS.h"
#include "package_bgs/pl/SuBSENSE.h"
#include "package_bgs/pl/LOBSTER.h"
int main(int argc, char **argv)
{
std::cout << "Using OpenCV " << CV_MAJOR_VERSION << "." << CV_MINOR_VERSION << "." << CV_SUBMINOR_VERSION << std::endl;
CvCapture *capture = 0;
int resize_factor = 100;
if(argc > 1)
{
std::cout << "Openning: " << argv[1] << std::endl;
capture = cvCaptureFromAVI(argv[1]);
}
else
{
capture = cvCaptureFromCAM(0);
resize_factor = 50; // set size = 50% of original image
}
if(!capture)
{
std::cerr << "Cannot initialize video!" << std::endl;
return -1;
}
IplImage *frame_aux = cvQueryFrame(capture);
IplImage *frame = cvCreateImage(cvSize((int)((frame_aux->width*resize_factor)/100) , (int)((frame_aux->height*resize_factor)/100)), frame_aux->depth, frame_aux->nChannels);
cvResize(frame_aux, frame);
/* Background Subtraction Methods */
IBGS *bgs;
/*** Default Package ***/
bgs = new FrameDifferenceBGS;
//bgs = new StaticFrameDifferenceBGS;
//bgs = new WeightedMovingMeanBGS;
//bgs = new WeightedMovingVarianceBGS;
//bgs = new MixtureOfGaussianV1BGS;
//bgs = new MixtureOfGaussianV2BGS;
//bgs = new AdaptiveBackgroundLearning;
//bgs = new AdaptiveSelectiveBackgroundLearning;
//bgs = new GMG;
/*** DP Package (thanks to Donovan Parks) ***/
//bgs = new DPAdaptiveMedianBGS;
//bgs = new DPGrimsonGMMBGS;
//bgs = new DPZivkovicAGMMBGS;
//bgs = new DPMeanBGS;
//bgs = new DPWrenGABGS;
//bgs = new DPPratiMediodBGS;
//bgs = new DPEigenbackgroundBGS;
//bgs = new DPTextureBGS;
/*** TB Package (thanks to Thierry Bouwmans, Fida EL BAF and Zhenjie Zhao) ***/
//bgs = new T2FGMM_UM;
//bgs = new T2FGMM_UV;
//bgs = new T2FMRF_UM;
//bgs = new T2FMRF_UV;
//bgs = new FuzzySugenoIntegral;
//bgs = new FuzzyChoquetIntegral;
/*** JMO Package (thanks to Jean-Marc Odobez) ***/
//bgs = new MultiLayerBGS;
/*** PT Package (thanks to Martin Hofmann, Philipp Tiefenbacher and Gerhard Rigoll) ***/
//bgs = new PixelBasedAdaptiveSegmenter;
/*** LB Package (thanks to Laurence Bender) ***/
//bgs = new LBSimpleGaussian;
//bgs = new LBFuzzyGaussian;
//bgs = new LBMixtureOfGaussians;
//bgs = new LBAdaptiveSOM;
//bgs = new LBFuzzyAdaptiveSOM;
/*** LBP-MRF Package (thanks to Csaba Kertész) ***/
//bgs = new LbpMrf;
/*** AV Package (thanks to Lionel Robinault and Antoine Vacavant) ***/
//bgs = new VuMeter;
/*** EG Package (thanks to Ahmed Elgammal) ***/
//bgs = new KDE;
/*** DB Package (thanks to Domenico Daniele Bloisi) ***/
//bgs = new IndependentMultimodalBGS;
/*** SJN Package (thanks to SeungJong Noh) ***/
//bgs = new SJN_MultiCueBGS;
/*** BL Package (thanks to Benjamin Laugraud) ***/
//bgs = new SigmaDeltaBGS;
/*** PL Package (thanks to Pierre-Luc) ***/
//bgs = new SuBSENSEBGS();
//bgs = new LOBSTERBGS();
int key = 0;
while(key != 'q')
{
frame_aux = cvQueryFrame(capture);
if(!frame_aux) break;
cvResize(frame_aux, frame);
cv::Mat img_input(frame);
cv::imshow("input", img_input);
cv::Mat img_mask;
cv::Mat img_bkgmodel;
bgs->process(img_input, img_mask, img_bkgmodel); // by default, it shows automatically the foreground mask image
//if(!img_mask.empty())
// cv::imshow("Foreground", img_mask);
// do something
key = cvWaitKey(33);
}
delete bgs;
cvDestroyAllWindows();
cvReleaseCapture(&capture);
return 0;
}