-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_LocalSGD.py
724 lines (608 loc) · 28.9 KB
/
train_LocalSGD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
import os
import numpy as np
import time
import argparse
import sys
from math import ceil
from random import Random
import time
import random
import torch
import torch.distributed as dist
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim_tr
from torch.multiprocessing import Process
import torchvision
from torchvision import datasets, transforms
import torch.backends.cudnn as cudnn
import torchvision.models as models
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
import datetime
import LocalSGD as optim
import util_v4 as util
from comm_helpers import SyncAllreduce, SyncAllreduce_1, SyncAllreduce_2, SyncAllGather
from scipy.io import loadmat
import json
from scipy import io
from dataset.cifar import get_cifar10, get_cifar100, get_emnist, get_svhn, get_cifar10_semi#, get_emnist, get_svhn
from torch.optim.lr_scheduler import LambdaLR
import utils_v2 as util_1
import math
from utils_v2 import Utils
import copy
import torch.distributed as dist
from utils_v2 import *
"""
The reference sample:
parameters:
size = 10+1
batch_size = 64
cp = 16
basicLabelRatio = 0.0
model = 'res_gn'
iid = 0
num_comm_ue = 5
k_img = 65536
epoches = 300
warmup_epoch = 5
num_data_server = 1000
experiment_name = 'UE10_comUE5_LabeledPerson'
GPU_list = '01234'
rank = 0
master_port = 12345
ip_address = '10.129.2.142'
comm:
python train_LocalSGD_pers_v2.py --dataset {dataset} --model {model} \
--lr {lr} --bs {batch_size} --cp {cp} --alpha 0.6 --gmf 0.7 --basicLabelRatio {basicLabelRatio} --master_port {master_port}\
--name revised_results_e300 --ip_address {ip_address} --num_comm_ue {num_comm_ue} --num_data_server {num_data_server}\
--iid {iid} --rank {rank} --size {size} --backend gloo --warmup_epoch {warmup_epoch} --GPU_list {GPU_list} --labeled {labeled}\
--class_per_device {1} --num-devices {size - 1} --epoch {epoches} --experiment_name {experiment_name}
"""
parser = argparse.ArgumentParser(description='CIFAR-10 baseline')
parser.add_argument('--name','-n',
default="default",
type=str,
help='experiment name, used for saving results')
parser.add_argument('--backend',
default="nccl",
type=str,
help='experiment name, used for saving results')
parser.add_argument('--GPU_list',
default='0',
type=str,
help='gpu list')
parser.add_argument('--dataset',
default="cifar10",
type=str,
help='dataset name')
parser.add_argument('--model',
default="res_gn",
type=str,
help='neural network model')
parser.add_argument('--alpha',
default=0.2,
type=float,
help='alpha')
parser.add_argument('--gmf',
default=0,
type=float,
help='global momentum factor')
parser.add_argument('--lr',
default=0.16,
type=float,
help='learning rate')
parser.add_argument('--basicLabelRatio',
default=0.4,
type=float,
help='basicLabelRatio')
parser.add_argument('--bs',
default=64,
type=int,
help='batch size on each worker')
parser.add_argument('--epoch',
default=300,
type=int,
help='total epoch')
parser.add_argument('--cp',
default=8,
type=int,
help='communication period / work per clock')
parser.add_argument('--print_freq',
default=100,
type=int,
help='print info frequency')
parser.add_argument('--rank',
default=0,
type=int,
help='the rank of worker')
parser.add_argument('--size',
default=8,
type=int,
help='number of workers')
parser.add_argument('--seed',
default=1,
type=int,
help='random seed')
parser.add_argument('--num_comm_ue',
default=10,
type=int,
help='communication user number')
parser.add_argument('--iid',
default=0,
type=int,
help='iid')
parser.add_argument('--class_per_device',
default=1,
type=int,
help='class_per_device')
parser.add_argument('--labeled',
default=0,
type=int,
help='labeled all data')
parser.add_argument('--warmup_epoch',
default=0,
type=int,
help='warmup epoch')
parser.add_argument('--save', '-s',
action='store_true',
help='whether save the training results')
parser.add_argument('--ip_address',
default="10.129.2.142",
type=str,
help='ip_address')
parser.add_argument('--master_port',
default="29021",
type=str,
help='master port')
parser.add_argument('--experiment_name',
default="Major1_setting1",
type=str,
help='name of this experiment')
parser.add_argument('--k-img', default=65536, type=int,
help='number of examples')
parser.add_argument('--num_data_server', default=1000, type=int,
help='number of samples in server')
parser.add_argument('--num-data-server', default=1000, type=int,
help='number of labeled examples in server')
parser.add_argument('--num-devices', default=10, type=int,
help='num of devices')
parser.add_argument('--fast',
default=0,
type=int,
help='use scheduler fast model or not')
parser.add_argument('--H',
default=0,
type=int,
help='grouping or not')
parser.add_argument('--epoch_resume',
default=0,
type=int,
help='epoch checkpoints')
parser.add_argument('--epoch_interval',
default=10,
type=int,
help='epoch_interval')
parser.add_argument('--num_rank',
default=10,
type=int,
help='num_rank')
parser.add_argument('--eval_grad',
default=1,
type=int,
help='eval_grad or training')
parser.add_argument('--experiment_folder', default='.', type=str,
help='the path of the experiment')
parser.add_argument('--tao',
default=0.95,
type=float,
help='tao for cal. mask')
parser.add_argument('--ue_loss', default='CRL', type=str,
help='user loss')
parser.add_argument('--user_semi',
default=1,
type=int,
help='user side semi')
args = parser.parse_args()
def get_cosine_schedule_with_warmup(optimizer,
num_warmup_steps,
num_training_steps,
num_cycles=7./16.,
last_epoch=-1,fast=True):
def _lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
no_progress = float(current_step - num_warmup_steps) / \
float(max(1, num_training_steps - num_warmup_steps))
if fast:
num_cycles = 7.0/16.0*(1024*1024 - num_warmup_steps)/(1024*200 - num_warmup_steps)
return max(0.00001, math.cos(math.pi * num_cycles * no_progress))
else:
num_cycles = 7.0/16.0
return max(0.000001, math.cos(math.pi * num_cycles * no_progress))
return LambdaLR(optimizer, _lr_lambda, last_epoch)
def Get_Model(args):
model = util.select_model(args.model, args).cuda()
return model
def Get_Criterion(args):
criterion = nn.CrossEntropyLoss().cuda()
return criterion
def Get_Optimizer(args, model, size=1, lr=0.03):
optimizer = optim.SGD(model.parameters(),
lr=lr,
alpha=args.alpha,
gmf=args.gmf,
size=size,
momentum=0.9,
nesterov = True,
weight_decay=1e-4)
return optimizer
def Get_Scheduler(args, optimizer, warmup_epoch=5, base_epoch=1024, fast=True):
args.iteration = args.k_img // args.bs
total_steps = base_epoch * args.iteration
if args.dataset == 'emnist' or args.dataset == 'svhn':
total_steps = args.epoch * args.iteration
if args.user_semi:
total_steps = args.epoch * args.iteration
# total_steps = args.epoch * args.iteration
scheduler = get_cosine_schedule_with_warmup(
optimizer, warmup_epoch * args.iteration, total_steps, fast=fast)
return scheduler
### generate the index of the server dataset and the device dataset
def Get_TrainLoader(args):
##### generate the path to save data indexes of the users and the server
if args.iid:
path_device_idxs = '%s_post_data/iid/%s_%s_%s_H_%s_UserSemi_%s/' %(args.dataset, args.num_devices, args.num_data_server, args.num_comm_ue, args.H, args.user_semi)
else:
path_device_idxs = '%s_post_data/noniid/%s_%s_%s_%s_%s_H_%s_UserSemi_%s/' %(args.dataset, args.num_devices, args.num_data_server, args.class_per_device, args.basicLabelRatio, args.num_comm_ue, args.H, args.user_semi)
if not os.path.exists(path_device_idxs):
try:
os.makedirs(path_device_idxs)
except OSError:
pass
util_1.Generate_device_server_index(args, path_device_idxs) #### generate and save data index of the users and the server
##### if the number of users communicate with the server smaller than the total number of users,
##### we generate a user list to decide which user will communicate with the server, and server it in the path of 'path_device_idxs'
util_1.Generate_communicate_user_list(args, path_device_idxs)
import time
time.sleep(5)
if not args.user_semi:
DATASET_GETTERS = {'cifar10': get_cifar10, 'emnist': get_emnist, 'svhn': get_svhn}
else:
DATASET_GETTERS = {'cifar10': get_cifar10_semi}
server_idxs, device_ids = util_1.Load_device_server_index(args, path_device_idxs)
labeled_dataset, unlabeled_dataset, test_dataset, base_dataset = DATASET_GETTERS[args.dataset](
'./data', args.k_img, args.k_img * len(device_ids), device_ids, server_idxs)
print('get dataset, done')
if args.user_semi:
Train_loader_list, Test_loader_list = Generate_Train_data_loader_user_side_semi(args, labeled_dataset, unlabeled_dataset, test_dataset)
max_len = 0
else:
if args.ue_loss == 'SF':
Train_loader_list, Test_loader_list, max_len = util_1.Get_SF_train_test_dataloader(device_ids, server_idxs, args)
print('max_len',max_len)
else:
Train_loader_list = util_1.Generate_Train_data_loader(args, labeled_dataset, unlabeled_dataset, RandomSampler)
Test_loader_list = util_1.Generate_Test_data_loader(args, test_dataset, base_dataset, device_ids)
max_len = 0
return Train_loader_list, Test_loader_list, path_device_idxs, max_len
def run(rank, size, G):
# initiate experiments folder
save_path = f'./results_v0/{args.experiment_name}/'
if rank == 0:
if not os.path.exists(save_path):
try:
os.makedirs(save_path)
except OSError:
pass
folder_name = save_path+args.name+'/'
if rank == 0 and os.path.isdir(folder_name)==False and args.save:
os.makedirs(folder_name)
else:
time.sleep(5)
dist.barrier()
# seed for reproducibility
torch.manual_seed(1)
torch.cuda.manual_seed(1)
torch.backends.cudnn.deterministic = True
train_loader_list, test_loader_list, path_device_idxs, max_len = Get_TrainLoader(args) ### load datasets
ue_list_epoches = util_1.Load_communicate_user_list(args, path_device_idxs) ### load communicate user list
# define neural nets model, criterion, and optimizer
model = Get_Model(args)
criterion = Get_Criterion(args)
optimizer = Get_Optimizer(args, model, size = size, lr = args.lr)
if args.fast == 0:
fast = False
else:
fast = True
scheduler = Get_Scheduler(args, optimizer, warmup_epoch=args.warmup_epoch, fast=fast)
batch_meter = util.Meter(ptag='Time')
comm_meter = util.Meter(ptag='Time')
print('Now train the model')
Fed_training = True
user_weight_diff_array = np.zeros((args.size, args.epoch, args.iteration+1))
if Fed_training:
if args.epoch_resume == 0:
start_epoch = 0
#### At the first epoch, we delete the past files
if not args.eval_grad and rank == 0:
util_1.init_files(args, save_path, rank, prefix='Test_Acc')
Fed_acc_list = []
else:
start_epoch = args.epoch_resume+1
if rank == 0:
Fed_acc_list = util_1.get_acc(args, save_path, rank, prefix='Test_Acc')
if args.eval_grad: #### at this time, we only want to cal. grad. dont want to change DataLoader
args.iteration = 1
if args.ue_loss == 'SF':
args.iteration = max_len // args.bs
for epoch in range(start_epoch, args.epoch):
begin_time = time.time()
if args.epoch_resume > 0 and epoch == args.epoch_resume+1:
print('Loading saved averaged model ... epoch=', epoch, args.epoch_resume)
checkpoint_weights = util_1.Load_Avg_model_checkpoint(args.experiment_folder, args.experiment_name, epoch, prefix='after')
model.load_state_dict(checkpoint_weights, strict=False)
if not args.eval_grad or epoch%args.epoch_interval == 0:
user_id, WD_list, user_weight_diff_array = train(rank, model, criterion, optimizer, scheduler, batch_meter, comm_meter,
train_loader_list, test_loader_list, epoch, device, ue_list_epoches, G, user_weight_diff_array)
# get and save the local fine-tuning acc
if rank == 0:
test_acc = evaluate(model, test_loader_list[0])
test_acc = round(test_acc, 2)
print('test acc', epoch, test_acc, time.time() - begin_time)
if not args.eval_grad:
Fed_acc_list.append(test_acc)
util_1.Save_acc_file(args, save_path, rank, prefix='Test_Acc', acc_list=Fed_acc_list)
def evaluate(model, test_loader):
model.eval()
top1 = util.AverageMeter()
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
data = data.cuda(non_blocking = True)
target = target.cuda(non_blocking = True)
outputs = model(data)
acc1 = util.comp_accuracy(outputs, target)
top1.update(acc1[0].item(), data.size(0))
return top1.avg
def train(rank, model, criterion, optimizer, scheduler, batch_meter, comm_meter,
train_loader_list, test_loader_list, epoch, device, ue_list_epoches, G, user_weight_diff_array):
average_model_weights = copy.deepcopy(model.state_dict())
average_group_model_weights = copy.deepcopy(model.state_dict())
model.train()
WD_list = []
top1 = util.Meter(ptag='Prec@1')
iter_time = time.time()
accum_steps = 1
iteration = 0
while iteration < args.iteration:
ue_list = ue_list_epoches[epoch][iteration] ### Get the users (a list) that are involved in the computation
user_id = ue_list[rank]
groups, server_list = get_groups(args)
if args.user_semi:
loader = zip(train_loader_list[user_id][0], train_loader_list[user_id][1])
test_loader = test_loader_list[0]
if args.eval_grad and epoch%args.epoch_interval == 0:
group_id = Get_group_num(args, groups, rank)
checkpoint_weights = util_1.Load_Avg_model_checkpoint(args.experiment_folder, args.experiment_name, epoch, prefix=f'after_g{group_id+1}')
model.load_state_dict(checkpoint_weights, strict=False)
else:
if args.H:
if user_id in set(server_list):
loader = train_loader_list[0]
test_loader = test_loader_list[0]
else:
loader = train_loader_list[user_id]
test_loader = test_loader_list[0]
if args.eval_grad and epoch%args.epoch_interval == 0:
group_id = Get_group_num(args, groups, rank)
checkpoint_weights = util_1.Load_Avg_model_checkpoint(args.experiment_folder, args.experiment_name, epoch, prefix=f'after_g{group_id+1}')
model.load_state_dict(checkpoint_weights, strict=False)
else:
loader = train_loader_list[user_id]
test_loader = test_loader_list[0]
if args.eval_grad and epoch%args.epoch_interval == 0:
group_id = Get_group_num(args, groups, rank)
checkpoint_weights = util_1.Load_Avg_model_checkpoint(args.experiment_folder, args.experiment_name, epoch, prefix=f'before')
model.load_state_dict(checkpoint_weights, strict=False)
while 1:
break_flag = False
train_loss = 0
loss_steps = 0
train_mask = 0
for batch_idx, (data) in enumerate(loader):
if args.user_semi:
data_x, data_u = data
inputs_x, targets_x = data_x
(inputs_u_w, inputs_u_s), _ = data_u
batch_size = inputs_x.shape[0]
inputs = torch.cat((inputs_x, inputs_u_w, inputs_u_s)).to(device)
targets_x = targets_x.to(device)
logits = model(inputs)
logits_x = logits[:batch_size]
logits_u_w = logits[batch_size:]
del logits
Lx = F.cross_entropy(logits_x, targets_x, reduction='mean')
pseudo_label = torch.softmax(logits_u_w.detach(), dim=-1)
max_probs, targets_u = torch.max(pseudo_label, dim=-1)
if not args.eval_grad:
mask = max_probs.ge(0.95).float()
else:
mask = max_probs.ge(args.tao).float()
train_mask += max_probs.ge(0.95).float().sum().item()
Lu = (F.cross_entropy(logits_u_w, targets_u,
reduction='none') * mask).mean()
loss = Lx + Lu
else:
if user_id in set(server_list):
inputs_x, targets_x = data
inputs_x = inputs_x.to(device)
targets_x = targets_x.to(device)
output = model(inputs_x)
loss = criterion(output, targets_x)
else:
if args.labeled:
(inputs_u_w, inputs_u_s), target_labels = data
inputs_x = inputs_u_w.to(device)
targets_x = target_labels.to(device)
output = model(inputs_x)
loss = criterion(output, targets_x)
else:
if args.ue_loss == 'CRL':
(inputs_u_w, inputs_u_s), _ = data
inputs = torch.cat((inputs_u_w, inputs_u_s)).to(device)
logits = model(inputs)
logits_u_w, logits_u_s = logits.chunk(2)
del logits
pseudo_label = torch.softmax(logits_u_w.detach_(), dim=-1)
max_probs, targets_u = torch.max(pseudo_label, dim=-1)
if not args.eval_grad:
mask = max_probs.ge(0.95).float()
else:
mask = max_probs.ge(args.tao).float()
train_mask += max_probs.ge(0.95).float().sum().item()
loss = (F.cross_entropy(logits_u_s, targets_u,
reduction='none') * mask).mean()
train_loss += loss.item()
loss_steps += 1
if args.ue_loss == 'SF':
inputs_x, targets_x = data
inputs = inputs_x.to(device)
model.eval()
with torch.no_grad():
logits = model(inputs)
pseudo_label = torch.softmax(logits.detach_(), dim=-1)
max_probs, targets_u = torch.max(pseudo_label, dim=-1)
if not args.eval_grad:
mask = max_probs.ge(0.95).float()
else:
mask = max_probs.ge(args.tao).float()
train_mask += max_probs.ge(0.95).float().sum().item()
model.train()
output = model(inputs)
loss = (F.cross_entropy(output, targets_u,
reduction='none') * mask).mean()
loss.backward()
if not args.eval_grad:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if not args.eval_grad:
if iteration != 0 and iteration % args.cp*accum_steps == 0 :
if epoch%args.epoch_interval == 0 or epoch == args.epoch-1:
util_1.Save_model_checkpoint(args.experiment_name, model, rank, epoch)
group_id = Get_group_num(args, groups, rank)
save_each_group_avg_model(args, average_group_model_weights, epoch, rank, rank_save=groups[group_id][0], prefix=f'before_g{group_id+1}')
if rank == 0:
util_1.Save_Avg_model_checkpoint(args.experiment_name, average_model_weights, rank, epoch, prefix='before')
if args.user_semi:
if args.H:
ue_list = ue_list[0:args.num_comm_ue]
group1_size = len(ue_list)//2
group1 = np.array(ue_list)[np.arange(0, group1_size).tolist()].tolist()
group2 = np.array(ue_list)[np.arange(group1_size, len(ue_list)).tolist()].tolist()
if rank < len(ue_list)//2:
#### Group 1 avgerage and communicate
SyncAllreduce_1(model, rank, size=len(group1), group=G[0])
else:
#### Group 2 avgerage and communicate
SyncAllreduce_1(model, rank, size=len(group2), group=G[1])
if rank == 0 or rank == args.num_rank-1:
SyncAllreduce_1(model, rank, size=len(groups[-1]), group=G[-1])
else:
SyncAllreduce(model, rank, args.num_rank)
else:
if args.H:
# print('Groupng method >>>>>')
average_group_model_weights = Grouping_Avg(args, model, rank, G, groups, epoch)
else:
SyncAllreduce(model, rank, args.num_rank)
average_model_weights = copy.deepcopy(model.state_dict())
if epoch%args.epoch_interval == 0 or epoch == args.epoch-1:
if rank == 0:
util_1.Save_Avg_model_checkpoint(args.experiment_name, average_model_weights, rank, epoch, prefix='after')
iteration += 1
break_flag = True
break
iteration += 1
if args.eval_grad:
print(f"save grad. of the whole DataLoader of UE {user_id}")
Save_model_grad_checkpoint(args.experiment_folder, args.experiment_name, model, rank, epoch, args.tao)
### save train_loss train_mask of this epoch
values = {'train_loss': train_loss, 'train_mask':train_mask, 'len_loader':len(loader)}
print(epoch,rank,values)
Save_train_state(args.experiment_folder, args.experiment_name, rank, epoch, values, args.tao)
break
if break_flag:
break
return user_id, WD_list, user_weight_diff_array
def init_processes(args, rank, size, fn, ip_address, master_port):
os.environ['MASTER_ADDR'] = ip_address
os.environ['MASTER_PORT'] = master_port
dist.init_process_group('gloo', rank=rank, world_size=size)
if args.H:
groups = Get_torch_init_rank_group(args)
G = []
for g in range(len(groups)):
group = groups[g]
G_tmp = torch.distributed.new_group(ranks=group)
G.append(G_tmp)
else:
G = torch.distributed.new_group(ranks=np.arange(0, size).tolist())
torch.cuda.manual_seed(1)
fn(rank, size, G)
if __name__ == "__main__":
rank = args.rank
world_size = args.num_rank
master_port = args.master_port
print(rank)
print(args)
######### Assign Ranks to different GPUs
GRU_list = [i for i in args.GPU_list]
increase_tmp = (world_size+1)//len(GRU_list)
ranks_list = np.arange(0, world_size).tolist()
if args.num_rank == 52:
ranks_list = np.arange(0,48).tolist()
if args.num_rank == 33:
ranks_list = np.arange(0,30).tolist()
if args.num_rank == 21 or args.num_rank == 22:
ranks_list = np.arange(0,18).tolist()
rank_group = []
for rank_id in range(len(GRU_list)):
if rank_id == len(GRU_list)-1:
ranks = ranks_list[rank_id*increase_tmp:]
else:
ranks = ranks_list[rank_id*increase_tmp:(rank_id+1)*increase_tmp]
rank_group.append(ranks)
for group_id in range(len(GRU_list)):
if args.num_rank == 52:
if args.rank >= 48 and args.rank < 52:
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[ args.rank-48 ]
else:
if args.rank in set(rank_group[group_id]):
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[group_id]
elif args.num_rank == 21:
if args.rank >= 18 and args.rank < 21:
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[ args.rank-18 ]
else:
if args.rank in set(rank_group[group_id]):
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[group_id]
elif args.num_rank == 22:
if args.rank >= 18 and args.rank < 22:
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[ args.rank-18 ]
else:
if args.rank in set(rank_group[group_id]):
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[group_id]
elif args.num_rank == 33:
if args.rank >= 30 and args.rank < 33:
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[ args.rank-30 ]
else:
if args.rank in set(rank_group[group_id]):
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[group_id]
else:
if args.rank in set(rank_group[group_id]):
os.environ["CUDA_VISIBLE_DEVICES"] = GRU_list[group_id]
break
device = 'cuda' if torch.cuda.is_available() else 'cpu'
init_processes(args, rank, world_size, run, args.ip_address, master_port)