-
Notifications
You must be signed in to change notification settings - Fork 13
/
comm_helpers.py
313 lines (277 loc) · 10.7 KB
/
comm_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import collections
import logging
import math
import sys
import copy
import torch
import torch.distributed as dist
import functools
import copy
def flatten_tensors(tensors):
"""
Reference: https://github.com/facebookresearch/stochastic_gradient_push
Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of
same dense type.
Since inputs are dense, the resulting tensor will be a concatenated 1D
buffer. Element-wise operation on this buffer will be equivalent to
operating individually.
Arguments:
tensors (Iterable[Tensor]): dense tensors to flatten.
Returns:
A 1D buffer containing input tensors.
"""
if len(tensors) == 1:
return tensors[0].view(-1).clone()
flat = torch.cat([t.view(-1) for t in tensors], dim=0)
return flat
def unflatten_tensors(flat, tensors):
"""
Reference: https://github.com/facebookresearch/stochastic_gradient_push
View a flat buffer using the sizes of tensors. Assume that tensors are of
same dense type, and that flat is given by flatten_dense_tensors.
Arguments:
flat (Tensor): flattened dense tensors to unflatten.
tensors (Iterable[Tensor]): dense tensors whose sizes will be used to
unflatten flat.
Returns:
Unflattened dense tensors with sizes same as tensors and values from
flat.
"""
outputs = []
offset = 0
for tensor in tensors:
numel = tensor.numel()
outputs.append(flat.narrow(0, offset, numel).view_as(tensor))
offset += numel
return tuple(outputs)
def communicate(tensors, communication_op, attention=False):
"""
Reference: https://github.com/facebookresearch/stochastic_gradient_push
Communicate a list of tensors.
Arguments:
tensors (Iterable[Tensor]): list of tensors.
communication_op: a method or partial object which takes a tensor as
input and communicates it. It can be a partial object around
something like torch.distributed.all_reduce.
"""
flat_tensor = flatten_tensors(tensors)
communication_op(tensor=flat_tensor)
if attention:
return tensors/flat_tensor
for f, t in zip(unflatten_tensors(flat_tensor, tensors), tensors):
with torch.no_grad():
t.set_(f)
# def group_by_dtype(tensors):
# """
# Returns a dict mapping from the tensor dtype to a list containing all
# tensors of that dtype.
# Arguments:
# tensors (Iterable[Tensor]): list of tensors.
# """
# tensors_by_dtype = collections.defaultdict(list)
# for tensor in tensors:
# tensors_by_dtype[tensor.dtype].append(tensor)
# return tensors_by_dtype
#
# def communicate(tensors, communication_op):
# """
# Communicate a list of tensors.
# Arguments:
# tensors (Iterable[Tensor]): list of tensors.
# communication_op: a method or partial object which takes a tensor as
# input and communicates it. It can be a partial object around
# something like torch.distributed.all_reduce.
# """
# with torch.no_grad():
# tensors_by_dtype = group_by_dtype(tensors)
# for dtype in tensors_by_dtype:
# flat_tensor = flatten_tensors(tensors_by_dtype[dtype])
# communication_op(tensor=flat_tensor)
# for f, t in zip(unflatten_tensors(flat_tensor, tensors_by_dtype[dtype]),
# tensors_by_dtype[dtype]):
# t.set_(f)
def SyncEAvg(model, anchor_model, rank, size, group, alpha):
'''
Inputs:
model: (x^i) local neural net model at i-th worker node
anchor_model: (z^1=z^2=...=z^m=z) local copy of auxiliary variable
rank: (i) worker index
size: (m) total number of workers
group: worker group
alpha: (a) elasticity parameter
Output:
return void, change in-place
Formula:
x_new = (1-a)*x^i + a*z
z_new = z + a*(sum_i x^i - m*z)
'''
for param1, param2 in zip(anchor_model.parameters(), model.parameters()):
diff = (param2.data - param1.data)
param2.data = (1-alpha)*param2.data + alpha*param1.data
param1.data = param1.data/float(size) + alpha*diff
for param in anchor_model.parameters():
dist.all_reduce(param.data, op=dist.ReduceOp.SUM, group=group)
def AsyncEAvg(model, anchor_model, rank, size, group, req, alpha):
'''
Inputs:
model: (x^i) local neural net model at i-th worker node
anchor_model: (z^1=z^2=...=z^m=z) local copy of auxiliary variable
rank: (i) worker index
size: (m) total number of workers
group: worker group
alpha: (a) elasticity parameter
req: handle of last iteration's communication
Output:
return a handle of asynchronous fuction
Formula:
x_new = (1-a)*x^i + a*z
z_new = z + a*(sum_i x^i - m*z)
* the computation of z_new isn't finished when the function returns
'''
if req:
for param1, param2 in zip(anchor_model.parameters(), model.parameters()):
req[param1].wait() # wait the last iteration's update of z to finish
diff = (param2.data - param1.data)
param2.data = (1-alpha)*param2.data + alpha*param1.data
param1.data = param1.data/float(size) + alpha*diff
else:
for param1, param2 in zip(anchor_model.parameters(), model.parameters()):
diff = (param2.data - param1.data)
param2.data = (1-alpha)*param2.data + alpha*param1.data
param1.data = param1.data/float(size) + alpha*diff
for param in anchor_model.parameters():
req[param] = dist.all_reduce(param.data, op=dist.ReduceOp.SUM, group=group, async_op=True)
return req
def SyncAllreduce(model, rank, size):
'''
Inputs:
model: (x^i) local neural net model at i-th worker node
anchor_model: (z^1=z^2=...=z^m=z) local copy of auxiliary variable
rank: (i) worker index
size: (m) total number of workers
group: worker group
Output:
return void, change in-place
Formula:
x_new = sum_i x_i / size
'''
communication_op = functools.partial(dist.all_reduce)
params_list = []
for param in model.parameters():
param.data.div_(float(size))
# params_list.append(param.data)
params_list.append(param)
communicate(params_list, communication_op)
def communicate_gather(tensors, rank, gsize, communication_op, group, dst=0, attention=False):
"""
Reference: https://github.com/facebookresearch/stochastic_gradient_push
Communicate a list of tensors.
Arguments:
tensors (Iterable[Tensor]): list of tensors.
communication_op: a method or partial object which takes a tensor as
input and communicates it. It can be a partial object around
something like torch.distributed.all_reduce.
"""
flat_tensor = flatten_tensors(tensors)
if rank == 0:
gather_list = [flat_tensor.clone() for _ in range(gsize)]
else:
gather_list = []
communication_op(tensor=flat_tensor, gather_list=gather_list, group=group, dst=dst)
if attention:
return tensors/flat_tensor
gather_parameters_list = []
if rank == 0:
for i in range(gsize):
# tensors_clone = tensors.clone()
tensors_clone = copy.deepcopy(tensors)#[ten.clone() for ten in tensors]
for f, t in zip(unflatten_tensors(gather_list[i], tensors_clone), tensors_clone):
with torch.no_grad():
t.set_(f)
gather_parameters_list.append(tensors_clone)
return gather_parameters_list
else:
return gather_parameters_list
def SyncAllGather(model, rank, gsize, group):
'''
Inputs:
model: (x^i) local neural net model at i-th worker node
anchor_model: (z^1=z^2=...=z^m=z) local copy of auxiliary variable
rank: (i) worker index
size: (m) total number of workers
group: worker group
Output:
return void, change in-place
Formula:
x_new = sum_i x_i / size
'''
communication_op = functools.partial(dist.gather)
params_list = []
for param in model.parameters():
params_list.append(param.data.cpu().clone())
gather_parameters_list = communicate_gather(params_list, rank, gsize, communication_op, group, dst=0)
return gather_parameters_list
def communicate_1(tensors, communication_op, group, attention=False):
"""
Reference: https://github.com/facebookresearch/stochastic_gradient_push
Communicate a list of tensors.
Arguments:
tensors (Iterable[Tensor]): list of tensors.
communication_op: a method or partial object which takes a tensor as
input and communicates it. It can be a partial object around
something like torch.distributed.all_reduce.
"""
flat_tensor = flatten_tensors(tensors)
communication_op(tensor=flat_tensor, group=group)
if attention:
return tensors/flat_tensor
for f, t in zip(unflatten_tensors(flat_tensor, tensors), tensors):
with torch.no_grad():
t.set_(f)
def SyncAllreduce_1(model, rank, size,group):
'''
Inputs:
model: (x^i) local neural net model at i-th worker node
anchor_model: (z^1=z^2=...=z^m=z) local copy of auxiliary variable
rank: (i) worker index
size: (m) total number of workers
group: worker group
Output:
return void, change in-place
Formula:
x_new = sum_i x_i / size
'''
communication_op = functools.partial(dist.all_reduce)
params_list = []
for param in model.parameters():
param.data.div_(float(size))
# params_list.append(param.data)
params_list.append(param)
communicate_1(params_list, communication_op, group=group)
def SyncAllreduce_2(model, rank, size, ue_list):
'''
Inputs:
model: (x^i) local neural net model at i-th worker node
anchor_model: (z^1=z^2=...=z^m=z) local copy of auxiliary variable
rank: (i) worker index
size: (m) total number of workers
group: worker group
Output:
return void, change in-place
Formula:
x_new = sum_i x_i / size
'''
communication_op = functools.partial(dist.all_reduce)
params_list = []
ue_list_set = set(ue_list)
if rank in ue_list_set:
for param in model.parameters():
param.data.div_(float(len(ue_list)))
# params_list.append(param.data)
params_list.append(param)
else:
for param in model.parameters():
param.data.mul_(0.0)
# params_list.append(param.data)
params_list.append(param)
communicate(params_list, communication_op)