-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtictactoe_minimax_helper.py
127 lines (113 loc) · 4.21 KB
/
tictactoe_minimax_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def get_next_turn(active_turn):
# Change player
# 1 -> o
#-1 -> x
if active_turn == 1:
next_turn = -1
else:
next_turn = 1
return next_turn
def score(matrix, i_am, depth):
# Returns +-10 points -+ depth
# It is the score for user i_am depending on matrix
# If matrix correspond to a win for user i_am, get 10 points - depth
# If matrix correspond to a win for the other user, return depth - 10
# If matrix if not a winning condition, then returns 0
# The maximum depth is 8 so it seems natural that the max points are 10
points = 10
status = game_status(matrix)
if status==0:
return 0
if status==i_am:
return points - depth
if status!=i_am:
return depth - points
def get_childs(matrix, turn):
# turn is 1 or -1
# 1 -> o
#-1 -> x
# 0 -> Free space
# return all posible plays for user 'turn' ('x' or 'o')
N = 3
childs = []
for i in range(N):
for j in range(N):
if matrix[i,j]==0:
child = matrix.copy()
child[i,j] = turn
childs.append(child)
return childs
def game_status(matrix):
# Returns 1 if 'o' win, -1 if 'x' win, 0 if draw
points = 1
if (matrix[0,:].sum() == 3)|(matrix[1,:].sum() == 3)|(matrix[2,:].sum() == 3)|(matrix[:,0].sum() == 3)|(matrix[:,1].sum() == 3)|(matrix[:,2].sum() == 3):
return points
if (matrix[0,0]==matrix[1,1])&(matrix[2,2]==matrix[1,1])&(matrix[0,0]==1):
return points
if (matrix[0,2]==matrix[1,1])&(matrix[2,0]==matrix[1,1])&(matrix[2,0]==1):
return points
if (matrix[0,:].sum() == -3)|(matrix[1,:].sum() == -3)|(matrix[2,:].sum() == -3)|(matrix[:,0].sum() == -3)|(matrix[:,1].sum() == -3)|(matrix[:,2].sum() == -3):
return -points
if (matrix[0,0]==matrix[1,1])&(matrix[2,2]==matrix[1,1])&(matrix[0,0]==-1):
return -points
if (matrix[0,2]==matrix[1,1])&(matrix[2,0]==matrix[1,1])&(matrix[2,0]==-1):
return -points
return 0
def game_over(matrix):
# status <- Returns 1 if 'o' win, -1 if 'x' win, 0 if draw
# game_finished: true is game is over
game_finished = False
status = game_status(matrix)
if status!=0:
#Game finishes, someone won
game_finished = True
if abs(matrix).sum() == 9:
#No more moves
game_finished = True
return game_finished, status
def maximize(matrix, active_turn, player, depth, alpha, beta, nodes_visited):
game_finished,_ = game_over(matrix)
if game_finished:
return None, score(matrix, player, depth), nodes_visited
depth += 1
infinite_number = 100000
maxUtility = -infinite_number
choice = None
childs = get_childs(matrix, active_turn)
for child in childs:
nodes_visited = nodes_visited + 1
_, utility, nodes_visited = minimize(child, get_next_turn(active_turn), player, depth, alpha, beta, nodes_visited)
if utility > maxUtility:
choice = child
maxUtility = utility
if maxUtility >= beta:
break
if maxUtility > alpha:
alpha = maxUtility
return choice, maxUtility, nodes_visited
def minimize(matrix, active_turn, player, depth, alpha, beta, nodes_visited):
game_finished,_ = game_over(matrix)
if game_finished:
return None, score(matrix, player, depth), nodes_visited
depth += 1
infinite_number = 100000
minUtility = infinite_number
choice = None
childs = get_childs(matrix, active_turn)
for child in childs:
nodes_visited = nodes_visited + 1
_, utility, nodes_visited = maximize(child, get_next_turn(active_turn), player, depth, alpha, beta, nodes_visited)
if utility < minUtility:
choice = child
minUtility = utility
if minUtility <= alpha:
break
if minUtility < beta:
beta = minUtility
return choice, minUtility, nodes_visited
def minimax(matrix, player):
infinite_number = 1000
alpha = -infinite_number
beta = infinite_number
choice, score, nodes_visited = maximize(matrix, player, player, 0, alpha, beta, 0)
return choice, score, nodes_visited