forked from ketatam/DiffDock-PP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
db5_inference.sh
42 lines (36 loc) · 1.23 KB
/
db5_inference.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
NUM_FOLDS=1 # number of seeds to try, default 5
SEED=0 # initial seed
CUDA=0 # will use GPUs from CUDA to CUDA + NUM_GPU - 1
NUM_GPU=1
BATCH_SIZE=1 # split across all GPUs
NUM_SAMPLES=40
NAME="single_pair_inference" # change to name of config file
RUN_NAME="run_on_pdb_pairs"
CONFIG="config/${NAME}.yaml"
SAVE_PATH="ckpts/${RUN_NAME}"
VISUALIZATION_PATH="visualization/${RUN_NAME}"
STORAGE_PATH="storage/${RUN_NAME}.pkl"
FILTERING_PATH="checkpoints/confidence_model_dips/fold_0/"
SCORE_PATH="checkpoints/large_model_dips/fold_0/"
echo SCORE_MODEL_PATH: $SCORE_PATH
echo CONFIDENCE_MODEL_PATH: $SCORE_PATH
echo SAVE_PATH: $SAVE_PATH
python src/main_inf.py \
--mode "test" \
--config_file $CONFIG \
--run_name $RUN_NAME \
--save_path $SAVE_PATH \
--batch_size $BATCH_SIZE \
--num_folds $NUM_FOLDS \
--num_gpu $NUM_GPU \
--gpu $CUDA --seed $SEED \
--logger "wandb" \
--project "DiffDock Tuning" \
--visualize_n_val_graphs 25 \
--visualization_path $VISUALIZATION_PATH \
--filtering_model_path $FILTERING_PATH \
--score_model_path $SCORE_PATH \
--num_samples $NUM_SAMPLES \
--prediction_storage $STORAGE_PATH \
#--entity coarse-graining-mit \
#--debug True # load small dataset