-
Notifications
You must be signed in to change notification settings - Fork 1
/
pupilDS_AX-CPT.rmd
391 lines (336 loc) · 14.5 KB
/
pupilDS_AX-CPT.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
---
title: "Pupillometry and AX-CPT"
author: "Jeremy Elman"
date: "`r Sys.Date()`"
output:
html_document:
theme: readable
pdf_document:
latex_engine: xelatex
word_document: default
---
```{r global_options, include=FALSE}
knitr::opts_chunk$set(warning=FALSE, message=FALSE)
```
Load libraries
```{r results='hide', message=FALSE, warning=FALSE}
library(ggplot2)
library(gridExtra)
library(gtools)
library(lme4)
library(arm)
library(lmerTest)
library(dplyr)
library(magrittr)
library(sjPlot)
library(sjmisc)
library(multcomp)
source("~/netshare/K/code/misc/summarySE.R")
source("~/netshare/K/code/misc/normDataWithin.R")
source("~/netshare/K/code/misc/summarySEwithin.R")
source("~/netshare/K/code/misc/get_legend.R")
sjp.setTheme(base=theme_bw())
```
Load data.
```{r}
pupilAXCPT = read.csv("~/netshare/K/Projects/Pupil_AX-CPT/data/pupil_AX-CPT.csv",
stringsAsFactors = FALSE)
pupilAXCPT = pupilAXCPT[!is.na(pupilAXCPT$PCA) &
!is.na(pupilAXCPT$CPTDPRIME_V2_nasp),]
pupilAXCPT = subset(pupilAXCPT, (VETSAGRP=='V1V2') | (VETSAGRP=='V2AR'))
str(pupilAXCPT)
```
Recode two-level factors to 0/1. Center continuous data.
*TRANSFORM*
```{r}
## Create factors
# Set 6 as reference level to contrast adjacent levels. Flip sign of
# coefficient contrast 3 vs 6 to interpret slope.
pupilAXCPT$facLoad = factor(pupilAXCPT$Load)
pupilAXCPT$facLoad = relevel(pupilAXCPT$facLoad, ref="6")
loads = unique(pupilAXCPT$Load)
pupilAXCPT$MZ = ifelse(pupilAXCPT$zygos==1, 1, 0)
pupilAXCPT$site_v2rev = ifelse(pupilAXCPT$site_v2rev==1, 1, 0)
pupilAXCPT$Device = factor(pupilAXCPT$LR_Device)
pupilAXCPT$acamedbin = ifelse(pupilAXCPT$acamedtot==0, 0, 1)
#Bin MCI data into 0 = No impairment, 1 = Single domain MCI, 2 = Multi-domain MCI.
pupilAXCPT$rMCI_cons_3grp = ifelse(pupilAXCPT$rMCI_cons_v2pe==0, 0,
ifelse(pupilAXCPT$rMCI_cons_v2pe==1 |
pupilAXCPT$rMCI_cons_v2pe==2, 1, 2))
pupilAXCPT$rMCI_cons_3grp = factor(pupilAXCPT$rMCI_cons_3grp,
labels=c("CN","SMCI","MMCI"))
#Bin MCI data into 0 = No impairment, 1 = Non-amnestic S-MCI, 2 = Amnestic S-MCI, 3 = Multi-domain MCI.
pupilAXCPT$rMCI_cons_4grp = pupilAXCPT$rMCI_cons_v2pe
pupilAXCPT$rMCI_cons_4grp = gsub(4, 3, pupilAXCPT$rMCI_cons_4grp)
pupilAXCPT$rMCI_cons_4grp = factor(pupilAXCPT$rMCI_cons_4grp,
labels=c("CN","naSMCI","aSMCI","MMCI"))
# Original MCI categories: 0 = No impairment, 1 = Non-amnestic S-MCI, 2 = Amnestic S-MCI, 3 = Non-amnestic M-MCI, 4 = Amnestic M-MCI
pupilAXCPT$rMCI_cons_v2pe = factor(pupilAXCPT$rMCI_cons_v2pe,
labels=c("CN","naSMCI","aSMCI","naMMCI","aMMCI"))
# Center continuous variables to interpret intercept at mean value (rather than 0).
# Subject specific variables centered at subject level, trial specific variables centered at trial level.
contTrialVars = c("PCA","pctPCA","adjPCA")
contSubjVars = c("age_v2","nas201tran","DSFMAX_V2_nasp","CPTDPRIME_V2_nasp")
# Center trial specific variables
for (x in contTrialVars) {
newcol = paste0('c.',x)
pupilAXCPT[[newcol]] = as.numeric(scale(pupilAXCPT[[x]], center=TRUE, scale=FALSE))
}
# Center subject specific variables
subjDF = pupilAXCPT[c("vetsaid",contSubjVars)]
subjDF %<>% group_by(vetsaid) %>% dplyr::summarise_each(funs(mean))
nums <- sapply(subjDF, is.numeric)
c.subjDF = as.data.frame(apply(subjDF[,nums],2, function(y) y - mean(y, na.rm=TRUE)))
names(c.subjDF) = paste0("c.",names(c.subjDF))
c.subjDF$vetsaid = subjDF$vetsaid
pupilAXCPT = left_join(pupilAXCPT, c.subjDF, by="vetsaid")
# Create quantile groups data
qVars = c("DSFMAX_V2_nasp","CPTDPRIME_V2_nasp")
new.qVars = qVars
names(new.qVars) = paste0("q.",qVars)
pupilAXCPT %<>%
group_by(vetsaid) %>%
dplyr::summarise_each_(funs(mean),qVars) %>%
mutate_each_(funs(quantcut(., labels=seq(1,4))),qVars) %>%
dplyr::select_("vetsaid"="vetsaid",.dots=new.qVars) %>%
inner_join(pupilAXCPT, by="vetsaid")
# Create residPCA by regressing BaselineDiameter from PCA and taking the residuals.
lme.PCA.resid = lmer(PCA ~ BaselineDiameter + (1 | case/vetsaid),data=pupilAXCPT)
pupilAXCPT$residPCA = resid(lme.PCA.resid)
```
# Basic sample descriptives
```{r, include=FALSE}
#Create dataset with subject level variables to assess relationships with BOLD variance.
subjDatAXCPT = pupilAXCPT %>%
dplyr::select(-contains("PCA"),-contains("Load")) %>%
group_by(vetsaid) %>%
summarise_each(funs(first))
#write.csv(subjDatAXCPT, "~/netshare/K/Projects/Pupil_AX-CPT/data/AX-CPT_subjDat.csv")
```
How many subjects?
```{r}
n_distinct(subjDatAXCPT$vetsaid)
```
How many attrition replacements?
```{r}
dplyr::count(subjDatAXCPT, VETSAGRP)
```
How many twin pairs vs unpaired twins?
```{r}
subjDatAXCPT %>%
group_by(case) %>%
dplyr::summarise(n_twins = n_distinct(vetsaid)) %>%
dplyr::count(n_twins)
```
How many MZ and DZ pairs? (excludes unpaired subjects)
```{r}
subjDatAXCPT %>%
group_by(case) %>%
mutate(n_twins = n_distinct(vetsaid)) %>%
filter(n_twins > 1) %>%
dplyr::summarise(zyg = mean(zygos)) %>%
group_by(zyg) %>%
dplyr::count(zyg)
```
How many levels of load did subjects complete? Shows number of subjects who completed 1, 2, or 3 levels (corresponding to digit spans of 3, 6, and 9).
```{r}
pupilAXCPT %>%
group_by(vetsaid) %>%
dplyr::summarise(load = n()) %>%
dplyr::count(load)
```
How many of each MCI group?
```{r}
dplyr::count(subjDatAXCPT, rMCI_cons_v2pe)
```
How many of each MCI group binned by single or multi-doman MCI?
```{r}
dplyr::count(subjDatAXCPT, rMCI_cons_3grp)
```
How many of each MCI group binned by single amnestic/non-amnestic or multi-doman MCI?
```{r}
dplyr::count(subjDatAXCPT, rMCI_cons_4grp)
```
Plot frequencies of MCI measures
```{r}
sjp.frq(subjDatAXCPT$rMCI_cons_v2pe,
title="MCI groups",
axis.labels=c("Normal","Single Domain\nNon-amnestic",
"Single Domain\nAmnestic","Multi Domain\nNon-Amnestic",
"Multi Domain Amnestic"))
```
```{r, include=FALSE}
# png("~/netshare/K/Projects/Pupil_AX-CPT/results/MCI_groups.png", width=8, height=6)
# grid.arrange(mci.p1$plot,mci.p2$plot)
# dev.off()
```
Plot pctPCA and residPCA data to check for ceiling effects on pupil dilation
```{r}
pctPcaPlot = ggplot(pupilAXCPT, aes(x=pctPCA)) +
geom_histogram(fill="steelblue3",color="black",size=.4) +
facet_wrap(~ Load, nrow=3) +
ggtitle("Histogram of pctPCA by Load") +
xlab("% PCA") + theme_bw()
residPcaPlot = ggplot(pupilAXCPT, aes(x=residPCA)) +
geom_histogram(fill="steelblue3",color="black",size=.4) +
facet_wrap(~ Load, nrow=3) +
ggtitle("Histogram of residPCA by Load") +
xlab("PCA (adjusted for baseline)") + theme_bw()
grid.arrange(pctPcaPlot, residPcaPlot, ncol=2)
```
```{r, include=FALSE}
# png("~/netshare/K/Projects/Pupil_AX-CPT/results/PCAxLoad.png")
# grid.arrange(pctPcaPlot, residPcaPlot, ncol=2)
# dev.off()
```
--------------------------------------------------
# AX-CPT performance
## Error Rates
d' by MCI group
```{r}
dprime.p1 = ggplot(subjDatAXCPT, aes(x=CPTDPRIME_V2_nasp)) +
geom_histogram(fill="steelblue3",color="black",size=.4) +
theme(plot.title=element_text(face="bold")) + theme_bw(14)
dprime.p2 = ggplot(subjDatAXCPT, aes(x=rMCI_cons_4grp,y=CPTDPRIME_V2_nasp)) +
geom_boxplot(fill="firebrick",alpha=.75) +
geom_jitter(alpha=0.3,position=position_jitter(width = 0.1)) +
theme(plot.title=element_text(face="bold")) +
theme_bw(14)
g.dprime = grid.arrange(dprime.p1,dprime.p2, ncol=2, top="d' by MCI status")
summary(lm(CPTDPRIME_V2_nasp ~ rMCI_cons_4grp, data=subjDatAXCPT))
```
```{r,include=FALSE}
# png("~/netshare/K/Projects/Pupil_AX-CPT/results/AX-CPTperformance_X_MCI.png", width=16,height=12)
# grid.arrange(g.dprime,g.ax,g.bx,g.ay, ncol=2,top="AX-CPT Performance by MCI status")
# dev.off()
```
# Mixed Effects Models
Run model testing interaction of Load with d prime, digit span and MCI
```{r}
lme.facLoad.dprime = lmer(residPCA ~ facLoad*(CPTDPRIME_V2_nasp +
c.DSFMAX_V2_nasp) +
apoe4 + c.age_v2 + site_v2rev + Device + acamedbin +
(1 | case/vetsaid), data=pupilAXCPT)
summary(lme.facLoad.dprime)
anova(lme.facLoad.dprime)
```
Test for differences based on d prime within each level of Load
```{r}
lme.dprime.loads <- lapply(loads, function(x) {
lmer(residPCA ~ CPTDPRIME_V2_nasp + apoe4 + c.age_v2 + site_v2rev +
Device + acamedbin + c.DSFMAX_V2_nasp +
(1 | case),
data=filter(pupilAXCPT, Load==x))
})
lapply(lme.dprime.loads, summary)
```
Plot pupil dilation by d' quantile
```{r, echo=FALSE}
# Plot raw values
summaryResidPCA.dprime = summarySEwithin(pupilAXCPT,
measurevar="residPCA",
idvar="vetsaid",
withinvars="Load",
betweenvars="q.CPTDPRIME_V2_nasp",
na.rm=TRUE)
p.Draw = ggplot(summaryResidPCA.dprime, aes(x=Load,y=residPCA,
color=q.CPTDPRIME_V2_nasp,
group=q.CPTDPRIME_V2_nasp)) +
geom_line(size=1) +
geom_errorbar(width=.2,size=1, aes(ymin=residPCA-ci,ymax=residPCA+ci)) +
theme_bw(20) + ylab("Change in Pupil Diameter") +
scale_color_brewer(name=" d' quartile", palette='RdBu') +
theme(plot.title = element_text(size=20),
axis.title = element_text(size=18),
axis.text.x = element_text(size=16),
legend.background = element_rect(fill = "transparent"),
legend.justification=c(1,0), legend.position=c(1,0),
legend.text.align=1,
legend.title.align=0,
legend.title = element_text(size=16),
legend.text = element_text(size=16))
# Plot predicted values
dfDpred = sjp.int(lme.facLoad.dprime, type="eff", int.term="facLoad:CPTDPRIME_V2_nasp",
swap.pred=T, mdrt.values = "quart", prnt.plot=F)$data.list[[1]]
levels(dfDpred$grp) = seq(length(levels(dfDpred$grp)))
p.Dpred = ggplot(data=subset(dfDpred, !grp==3), aes(x=x, y=y, color=grp, group=grp)) +
geom_line(size=1) +
geom_errorbar(width=.2,size=1, aes(ymin=conf.low,ymax=conf.high)) +
ylab(expression(paste("Predicted ", Delta, " Pupil Diameter"))) + xlab("Load") +
scale_color_brewer(name="d' quartile",palette='RdBu',direction=-1,labels=seq(4)) +
scale_x_continuous(breaks=c(3,6,9)) + theme_bw(16) +
theme(plot.title = element_text(size=20),
axis.title = element_text(size=18),
axis.text.x = element_text(size=16),
legend.background = element_rect(fill = "transparent"),
legend.justification=c(1,0), legend.position=c(1,0),
legend.text.align=1,
legend.title.align=0,
legend.title = element_text(size=16),
legend.text = element_text(size=16))
gDprime = arrangeGrob(p.Draw, p.Dpred,ncol=2)
ggsave("~/netshare/K/Projects/Pupil_AX-CPT/results/pupil_dprime_All.png", gDprime, height=6, width=12, dpi=300)
ggsave("~/netshare/K/Projects/Pupil_AX-CPT/results/pupil_dprime_Raw.png", p.Draw, height=6, width=8, dpi=300)
ggsave("~/netshare/K/Projects/Pupil_AX-CPT/results/pupil_dprime_Predicted.png", p.Dpred, height=6, width=8, dpi=300)
```
# Covariate Plot
Plot pupil dilation by digit span max quantile
```{r, echo=FALSE}
summaryResidPCA.DSFMAX_v2 = summarySEwithin(pupilAXCPT,
measurevar="residPCA",
idvar="vetsaid",
withinvars="Load",
betweenvars="q.DSFMAX_V2_nasp",
na.rm=TRUE)
pDSFMAX_v2raw = summaryResidPCA.DSFMAX_v2 %>%
ggplot(., aes(x=Load,y=residPCA,
color=q.DSFMAX_V2_nasp,
group=q.DSFMAX_V2_nasp)) +
theme_bw(16) +
ylab("Change in Pupil Diameter\n(Adjusted for Baseline)") +
geom_line(size=1) +
geom_errorbar(width=.2,size=1, aes(ymin=residPCA-ci,ymax=residPCA+ci)) +
theme_bw(20) + ylab("Change in Pupil Diameter") +
scale_color_brewer(name="d' quartile",palette='RdBu') +
theme(plot.title = element_text(size=20),
axis.title = element_text(size=18),
axis.text.x = element_text(size=16),
legend.background = element_rect(fill = "transparent"),
legend.justification=c(1,0), legend.position=c(1,0),
legend.text.align=1,
legend.title.align=0,
legend.title = element_text(size=16),
legend.text = element_text(size=16))
# Plot predicted values
dfDSFRAWpred = sjp.int(lme.facLoad.dprime, type="eff", int.term="facLoad:c.DSFMAX_V2_nasp",
swap.pred=T, mdrt.values = "quart", prnt.plot=F)$data.list[[1]]
levels(dfDSFRAWpred$grp) = seq(length(levels(dfDSFRAWpred$grp)))
pDSFMAX_v2pred = ggplot(data=subset(dfDSFRAWpred, !grp==3), aes(x=x, y=y, color=grp, group=grp)) +
geom_line(size=1) +
geom_errorbar(width=.2,size=1, aes(ymin=conf.low,ymax=conf.high)) +
ylab(expression(paste("Predicted ", Delta, " Pupil Diameter"))) + xlab("Load") +
scale_color_brewer(name="Max Digit Span quartile",palette='RdBu',direction=-1,labels=seq(4)) +
scale_x_continuous(breaks=c(3,6,9)) + theme_bw(16) +
theme(plot.title = element_text(size=20),
axis.title = element_text(size=18),
axis.text.x = element_text(size=16),
legend.background = element_rect(fill = "transparent"),
legend.justification=c(1,0), legend.position=c(1,0),
legend.text.align=1,
legend.title.align=0,
legend.title = element_text(size=16),
legend.text = element_text(size=16))
gDSFMAX = arrangeGrob(pDSFMAX_v2raw, pDSFMAX_v2pred,ncol=2)
ggsave("~/netshare/K/Projects/Pupil_AX-CPT/results/pupil_DSFMAX_All.png", gDSFMAX, height=6, width=12, dpi=300)
ggsave("~/netshare/K/Projects/Pupil_AX-CPT/results/pupil_DSFMAX_All_Raw.png", pDSFMAX_v2raw, height=6, width=8, dpi=300)
ggsave("~/netshare/K/Projects/Pupil_AX-CPT/results/pupil_DSFMAX_All_Predicted.png", pDSFMAX_v2pred, height=6, width=8, dpi=300)
plot(gDSFMAX)
```
----------------------------
```{r, include=FALSE}
#Save out analysis dataset
write.csv(pupilAXCPT, "~/netshare/K/Projects/Pupil_AX-CPT/data/pupilDS_AX-CPT_AnalysisDataset.csv")
```
```{r}
print(sessionInfo(), locale = FALSE)
```