Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Trained neural network outputs the same results for all evaluation rows #257

Open
karlarnejo opened this issue Sep 26, 2018 · 1 comment
Labels

Comments

@karlarnejo
Copy link

There seems to be no problem when training my network because it converges and falls below 0.01 error. However when I load my trained network, and introduce the evaluation set, it outputs the same results for all the evaluation set rows (the actual prediction, not the training phase). I trained my network with resilient propagation with 9 inputs, 1 hidden layer with 7 hidden neurons and 1 output neuron. UPDATE: My data is normalized using min-max. i am trying to predict an electric load data.

Here is the sample data, first 9 rows are the inputs while the 10th is the ideal value:

0.5386671932975533, 1100000.0, 0.0, 1.0, 40.0, 1.0, 30.0, 9.0, 2014.0 , 0.5260616667545941
0.5260616667545941, 1100000.0, 0.0, 1.0, 40.0, 2.0, 30.0, 9.0, 2014.0, 0.5196499668339777
0.5196499668339777, 1100000.0, 0.0, 1.0, 40.0, 3.0, 30.0, 9.0, 2014.0, 0.5083828048375548
0.5083828048375548, 1100000.0, 0.0, 1.0, 40.0, 4.0, 30.0, 9.0, 2014.0, 0.49985462144799725
0.49985462144799725, 1100000.0, 0.0, 1.0, 40.0, 5.0, 30.0, 9.0, 2014.0, 0.49085956670499675
0.49085956670499675, 1100000.0, 0.0, 1.0, 40.0, 6.0, 30.0, 9.0, 2014.0, 0.485008112408512

Here's the full code:

public class ANN
{	
//training
//public final static String SQL = "SELECT load_input, day_of_week, weekend_day, type_of_day, week_num, time, day_date, month, year, ideal_value FROM sample WHERE (year,month,day_date,time) between (2012,4,1,1) and (2014,9,29, 96) ORDER BY ID";
//testing
public final static String SQL = "SELECT load_input, day_of_week, weekend_day, type_of_day, week_num, time, day_date, month, year, ideal_value FROM sample WHERE (year,month,day_date,time) between (2014,9,30,1) and (2014,9,30, 92) ORDER BY ID";
//validation
//public final static String SQL = "SELECT load_input, day_of_week, weekend_day, type_of_day, week_num, time, day_date, month, year, ideal_value FROM sample WHERE (year,month,day_date,time) between (2014,9,30,93) and (2014,9,30, 96) ORDER BY ID";
public final static int INPUT_SIZE = 9;
public final static int IDEAL_SIZE = 1;
public final static String SQL_DRIVER = "org.postgresql.Driver";
public final static String SQL_URL = "jdbc:postgresql://localhost/ANN";
public final static String SQL_UID = "postgres";
public final static String SQL_PWD = "";

public static void main(String args[])
{	
	Mynetwork();
	//train network. will add customizable params later.
	//train(trainingData());
	//evaluate network
	evaluate(trainingData());
	Encog.getInstance().shutdown();
}
public static void evaluate(MLDataSet testSet)
{
	BasicNetwork network = (BasicNetwork)EncogDirectoryPersistence.loadObject(new File("directory"));
	
	// test the neural network
	System.out.println("Neural Network Results:");
	for(MLDataPair pair: testSet ) {
		final MLData output = network.compute(pair.getInput());
		System.out.println(pair.getInput().getData(0) + "," + pair.getInput().getData(1) + "," + pair.getInput().getData(2) + "," + pair.getInput().getData(3) + "," + pair.getInput().getData(4) + "," + pair.getInput().getData(5) + "," + pair.getInput().getData(6) + "," + pair.getInput().getData(7) + "," + pair.getInput().getData(8) + "," + "Predicted=" + output.getData(0) + ", Actual=" + pair.getIdeal().getData(0));
	}
}
public static BasicNetwork Mynetwork()
{
	//basic neural network template. Inputs should'nt have activation functions
	//because it affects data coming from the previous layer and there is no previous layer before the input.
	BasicNetwork network = new BasicNetwork();
	//input layer with 2 neurons.
	//The 'true' parameter means that it should have a bias neuron. Bias neuron affects the next layer.
	network.addLayer(new BasicLayer(null , true, 9));
	//hidden layer with 3 neurons
	network.addLayer(new BasicLayer(new ActivationSigmoid(), true, 5));
	//output layer with 1 neuron
	network.addLayer(new BasicLayer(new ActivationSigmoid(), false, 1));
	network.getStructure().finalizeStructure() ;
	network.reset();
	
	return network;
}
public static void train(MLDataSet trainingSet)
{
	//Backpropagation(network, dataset, learning rate, momentum)
	//final Backpropagation train = new Backpropagation(Mynetwork(), trainingSet, 0.1, 0.9);
	final ResilientPropagation train = new ResilientPropagation(Mynetwork(), trainingSet);
	//final QuickPropagation train = new QuickPropagation(Mynetwork(), trainingSet, 0.9);
	
	int epoch = 1;
	 
	do {
		train.iteration();
		System.out.println("Epoch #" + epoch + " Error:" + train.getError());
		epoch++;
	} while((train.getError() > 0.01)); 
	System.out.println("Saving network");
	System.out.println("Saving Done");
	EncogDirectoryPersistence.saveObject(new File("directory"), Mynetwork());
}
public static MLDataSet trainingData()
{
	MLDataSet trainingSet = new SQLNeuralDataSet(
			ANN.SQL,
			ANN.INPUT_SIZE,
			ANN.IDEAL_SIZE,
			ANN.SQL_DRIVER,
			ANN.SQL_URL,
			ANN.SQL_UID,
			ANN.SQL_PWD);
	
	return trainingSet;
}

}

Here is my result:

Predicted=0.4451817588640455, Actual=0.5260616667545941
Predicted=0.4451817588640455, Actual=0.5196499668339777
Predicted=0.4451817588640455, Actual=0.5083828048375548
Predicted=0.4451817588640455, Actual=0.49985462144799725
Predicted=0.4451817588640455, Actual=0.49085956670499675
Predicted=0.4451817588640455, Actual=0.485008112408512
Predicted=0.4451817588640455, Actual=0.47800504210686795
Predicted=0.4451817588640455, Actual=0.4693212349328293
(...and so on with the same "predicted")

Results im expecting (I changed the "predicted" with something random for demonstration purposes, indicating that the network is actually predicting):

Predicted=0.4451817588640455, Actual=0.5260616667545941
Predicted=0.5123312331212122, Actual=0.5196499668339777
Predicted=0.435234234234254365, Actual=0.5083828048375548
Predicted=0.673424556563455, Actual=0.49985462144799725
Predicted=0.2344673345345544235, Actual=0.49085956670499675
Predicted=0.123346457544324, Actual=0.485008112408512
Predicted=0.5673452342342342, Actual=0.47800504210686795
Predicted=0.678435234423423423, Actual=0.4693212349328293
@jeffheaton
Copy link
Owner

I know Encog does not return the same outputs in all cases, so this is something to do with this unique case, so I am marking as support. Usually when a neural network outputs the same results, the data (or at least how it is represented) is not well enough preprocessed that any patterns can be found, so the neural network is somewhat averaging.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants