-
Notifications
You must be signed in to change notification settings - Fork 201
/
main_zh.cc
210 lines (172 loc) · 6.39 KB
/
main_zh.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// OpenMP is required..
// g++-4.8 -ozh -fopenmp -std=c++0x -Ofast -march=native -funroll-loops main_zh.cc -lpthread
#include <iostream>
#include <initializer_list>
#include <string>
#include <set>
#include <vector>
#include "word2vec.h"
using Model = Word2Vec<std::u16string>;
using Sentence = Model::Sentence;
using SentenceP = Model::SentenceP;
void standardize(std::vector<Vector>& vs) {
if (vs.size() <= 1) return;
Vector m(vs[0].size()), d(vs[0].size());
for (auto& x: vs) v::add(m, x);
v::scale(m, 1.0 / vs.size());
for (auto& x: vs) {
v::saxpy(x, -1.0, m);
v::sax2(d, x);
}
v::scale(d, 1.0 / (vs.size() - 1));
for (auto& i: d) i = 1.0 / sqrt(i); //sqrt(d);
for (auto& x: vs) v::multiply(x, d);
}
const std::u16string MARKER = u"#m#";
std::vector<SentenceP> load_sentences(const std::string& path, bool with_marker, bool with_tag) {
auto is_word = [](char16_t ch) { return ch >= 0x4e00 && ch <= 0x9fff; };
auto close_tag = [](SentenceP& sentence) {
Model::Tag& t = sentence->tags_.back();
if (t == Model::B) t = Model::S;
else if (t == Model::M) t = Model::E;
};
size_t count =0;
const size_t max_sentence_len = 200;
std::vector<SentenceP> sentences;
SentenceP sentence(new Sentence);
std::ifstream in(path);
while (true) {
std::string s;
in >> s;
if (s.empty()) break;
std::u16string us = Cvt<std::u16string>::from_utf8(s);
for (auto ch: us) {
if (is_word(ch)) {
if (sentence->tokens_.empty() && with_marker)
sentence->tokens_.push_back(MARKER);
sentence->tokens_.push_back(std::u16string(1, ch));
if (with_tag) {
if (sentence->tags_.empty())
sentence->tags_.push_back(Model::B);
else {
auto& t = sentence->tags_.back();
Model::Tag nt = (t == Model::S|| t == Model::E)? Model::B: Model::M;
sentence->tags_.push_back(nt);
}
}
}
if (! is_word(ch) || sentence->tokens_.size() == max_sentence_len) {
if (sentence->tokens_.empty()) continue;
if (with_tag) close_tag(sentence);
if (ch == u',' || ch == u'、') continue;
if (with_marker) sentence->tokens_.push_back(MARKER);
sentence->words_.reserve(sentence->tokens_.size());
sentences.push_back(std::move(sentence));
sentence.reset(new Sentence);
}
}
if (!sentence->tokens_.empty() && with_tag) close_tag(sentence);
}
if (!sentence->tokens_.empty()) {
if (with_tag) close_tag(sentence);
if (with_marker) sentence->tokens_.push_back(MARKER);
sentences.push_back(std::move(sentence));
}
return sentences;
}
std::vector<Vector> generate_samples(const Model& model, const SentenceP& sentence, int window = 5) {
const std::vector<float>& marker = model.word_vector(MARKER);
if (marker.empty()) return std::vector<Vector>{};
size_t n_tokens = sentence->tokens_.size();
size_t vecsize = model.word_vector_size();
Vector tmp((n_tokens + window) * vecsize);
for (int i=0; i<window/2; ++i)
std::copy(marker.begin(), marker.end(), tmp.data() + i * vecsize);
for (size_t i=0; i<n_tokens; ++i) {
auto& s = sentence->tokens_[i];
auto& w = model.word_vector(s);
auto& cur = (w.empty()? marker: w);
std::copy(cur.begin(), cur.end(), tmp.data() + (i + window/2) * vecsize);
}
for (int i=0; i<window/2; ++i)
std::copy(marker.begin(), marker.end(), tmp.data() + (i + window/2 + n_tokens) * vecsize);
std::vector<Vector> samples;
samples.reserve(n_tokens);
for (size_t i=0; i<n_tokens; ++i)
samples.emplace_back(tmp.data() + i * vecsize, tmp.data() + (i + window) * vecsize);
return samples;
}
int main(int argc, const char *argv[])
{
Model model(100);
model.sample_ = 0;
model.min_count_ = 3;
// model.window_ = 10;
// model.phrase_ = true;
int n_workers = 4;
::srand(::time(NULL));
auto distance = [&model]() {
while (1) {
std::string s;
std::cout << "\nFind nearest word for (:quit to break):";
std::cin >> s;
if (s == ":quit") break;
auto p = model.most_similar(std::vector<std::u16string>{Cvt<std::u16string>::from_utf8(s)}, std::vector<std::u16string>(), 10);
size_t i = 0;
for (auto& v: p) {
std::cout << i++ << " " << Cvt<std::u16string>::to_utf8(v.first) << " " << v.second << std::endl;
}
}
};
bool train = true, test = true;
if (train) {
std::vector<SentenceP> sentences = load_sentences(argv[1], true, false);
#if 0
for (size_t i=0; i<sentences.size(); i += 1000) {
auto s = sentences[i];
for (auto w: s->tokens_) std::cout << Cvt<std::u16string>::to_utf8(w); std::cout << std::endl;
for (auto t: s->tags_) std::cout << Model::tag_string(t); std::cout << std::endl;
}
#endif
std::cout << sentences.size() << " sentences, " << std::accumulate(sentences.begin(), sentences.end(), (int)0, [](int x, const SentenceP& s) { return x + s->tokens_.size(); }) << " words loaded" << std::endl;
auto cstart = std::chrono::high_resolution_clock::now();
model.build_vocab(sentences);
auto cend = std::chrono::high_resolution_clock::now();
printf("load vocab: %.4f seconds model size: %d\n", std::chrono::duration_cast<std::chrono::microseconds>(cend - cstart).count() / 1000000.0, model.words_.size());
cstart = cend;
model.train(sentences, n_workers);
cend = std::chrono::high_resolution_clock::now();
printf("train: %.4f seconds\n", std::chrono::duration_cast<std::chrono::microseconds>(cend - cstart).count() / 1000000.0);
cstart = cend;
model.save("vectors.bin");
model.save_text("vectors.txt");
cend = std::chrono::high_resolution_clock::now();
printf("save model: %.4f seconds\n", std::chrono::duration_cast<std::chrono::microseconds>(cend - cstart).count() / 1000000.0);
}
if (test) {
auto cstart = std::chrono::high_resolution_clock::now();
model.load("vectors.bin");
auto cend = std::chrono::high_resolution_clock::now();
printf("load model: %.4f seconds\n", std::chrono::duration_cast<std::chrono::microseconds>(cend - cstart).count() / 1000000.0);
distance();
}
bool build_net = true;
if (build_net) {
int window = 5;
model.load("vectors.bin");
std::vector<SentenceP> sentences = load_sentences(argv[1], false, true);
std::vector<Vector> inputs, targets;
for (auto& sentence: sentences) {
auto samples = generate_samples(model, sentence, window);
std::move(samples.begin(), samples.end(), std::back_inserter(inputs));
auto& tags = sentence->tags_;
for (auto t: tags) {
std::vector<float> tv(4);
tv[t] = 1.0;
targets.emplace_back(std::move(tv));
}
}
standardize(inputs);
}
return 0;
}