From de4616375b2a3685706ccb7a8a568ecd41a51f0b Mon Sep 17 00:00:00 2001 From: Johnnie Gray Date: Fri, 20 Sep 2024 09:32:00 -0700 Subject: [PATCH] expose qtn.edge_coloring --- docs/changelog.md | 9 ++ quimb/tensor/__init__.py | 2 + quimb/tensor/tensor_arbgeom_tebd.py | 169 ++++++++++++++-------------- 3 files changed, 98 insertions(+), 82 deletions(-) diff --git a/docs/changelog.md b/docs/changelog.md index 8267b366..d76e9dd9 100644 --- a/docs/changelog.md +++ b/docs/changelog.md @@ -2,6 +2,15 @@ Release notes for `quimb`. +(whats-new-1-8-5)= +## v1.8.5 (unreleased) + +**Enhancements:** + +- expose [`qtn.edge_coloring`](quimb.tensor.tensor_arbgeom_tebd.edge_coloring) + as top level function and allow layers to be returned grouped. + + (whats-new-1-8-4)= ## v1.8.4 (2024-07-20) diff --git a/quimb/tensor/__init__.py b/quimb/tensor/__init__.py index 0e86e08f..0ba8f222 100644 --- a/quimb/tensor/__init__.py +++ b/quimb/tensor/__init__.py @@ -99,6 +99,7 @@ LocalHamGen, SimpleUpdateGen, TEBDGen, + edge_coloring, ) from .tensor_builder import ( MPS_COPY, @@ -242,6 +243,7 @@ "DMRG1", "DMRG2", "DMRGX", + "edge_coloring", "edges_1d_chain", "edges_2d_hexagonal", "edges_2d_kagome", diff --git a/quimb/tensor/tensor_arbgeom_tebd.py b/quimb/tensor/tensor_arbgeom_tebd.py index 3af52811..d7b0e530 100644 --- a/quimb/tensor/tensor_arbgeom_tebd.py +++ b/quimb/tensor/tensor_arbgeom_tebd.py @@ -1,5 +1,4 @@ -"""Tools for performing TEBD like algorithms on arbitrary lattices. -""" +"""Tools for performing TEBD like algorithms on arbitrary lattices.""" import random import itertools @@ -14,6 +13,55 @@ from .drawing import get_colors, get_positions +def edge_coloring( + edges, + strategy="smallest_last", + interchange=True, + group=True, +): + """Generate an edge coloring for the graph given by ``edges``, using + ``networkx.coloring.greedy_color``. + + Parameters + ---------- + edges : sequence[tuple[hashable, hashable]] + The edges of the graph. + strategy : str or callable, optional + The strategy to use for coloring the edges. Can be: + + - 'largest_first' + - 'smallest_last' + - 'random_sequential' + ... + + interchange : bool, optional + Whether to use the interchange heuristic. Usually generates better + colorings but can be slower. + group : bool, optional + Whether to group the edges by color or return a flat list. + """ + import networkx as nx + + # find vertex coloring of line graph + G = nx.Graph(tuple(edges)) + edge_colors = nx.coloring.greedy_color( + nx.line_graph(G), strategy, interchange=interchange + ) + + # group the edges by color + coloring = {} + for edge, color in edge_colors.items(): + coloring.setdefault(color, []).append(edge) + + if group: + return tuple(tuple(coloring[color]) for color in sorted(coloring)) + else: + # flatten sorted groups + return tuple( + edge for color in sorted(coloring) for edge in coloring[color] + ) + + class LocalHamGen: """Representation of a local hamiltonian defined on a general graph. This combines all two site and one site terms into a single interaction per @@ -104,7 +152,6 @@ def __init__(self, H2, H1=None): # now absorb the single site terms evenly into the two site terms for site, H in H1s.items(): - # get interacting terms which cover the site pairs = self._sites_to_covering_terms[site] num_pairs = len(pairs) @@ -124,8 +171,7 @@ def __init__(self, H2, H1=None): @property def nsites(self): - """The number of sites in the system. - """ + """The number of sites in the system.""" return len(self.sites) def items(self): @@ -171,7 +217,7 @@ def _op_id_cached(self, x): key = id(x) if key not in cache: xn = to_numpy(x) - d = int(xn.size ** 0.5) + d = int(xn.size**0.5) Id = eye(d, dtype=xn.dtype) XI = do("array", kron(xn, Id), like=x) cache[key] = XI @@ -182,7 +228,7 @@ def _id_op_cached(self, x): key = id(x) if key not in cache: xn = to_numpy(x) - d = int(xn.size ** 0.5) + d = int(xn.size**0.5) Id = eye(d, dtype=xn.dtype) IX = do("array", kron(Id, xn), like=x) cache[key] = IX @@ -198,8 +244,7 @@ def _expm_cached(self, x, y): return cache[key] def get_gate(self, where): - """Get the local term for pair ``where``, cached. - """ + """Get the local term for pair ``where``, cached.""" return self.terms[tuple(sorted(where))] def get_gate_expm(self, where, x): @@ -209,33 +254,10 @@ def get_gate_expm(self, where, x): return self._expm_cached(self.get_gate(where), x) def apply_to_arrays(self, fn): - """Apply the function ``fn`` to all the arrays representing terms. - """ + """Apply the function ``fn`` to all the arrays representing terms.""" for k, x in self.terms.items(): self.terms[k] = fn(x) - def _nx_color_ordering(self, strategy="smallest_first", interchange=True): - """Generate a term ordering based on a coloring on the line graph. - """ - import networkx as nx - - G = nx.Graph(tuple(self.terms)) - - coloring = list( - nx.coloring.greedy_color( - nx.line_graph(G), strategy, interchange=interchange - ).items() - ) - - # sort into color groups - coloring.sort(key=lambda coo_color: coo_color[1]) - - return [ - # networkx doesn't preserve node order of edge spec - tuple(sorted(coo)) for - coo, _ in coloring - ] - def get_auto_ordering(self, order="sort", **kwargs): """Get an ordering of the terms to use with TEBD, for example. The default is to sort the coordinates then greedily group them into @@ -278,7 +300,7 @@ def get_auto_ordering(self, order="sort", **kwargs): random.shuffle(pairs) return pairs else: - return self._nx_color_ordering(order, **kwargs) + return edge_coloring(self.terms, order, group=False, **kwargs) pairs = {x: None for x in pairs} @@ -334,7 +356,7 @@ def draw( import matplotlib.pyplot as plt if figsize is None: - L = self.nsites ** 0.5 + 1 + L = self.nsites**0.5 + 1 figsize = (L, L) ax_supplied = ax is not None @@ -472,9 +494,9 @@ def __init__( if D is None: D = self._psi.max_bond() self.gate_opts = ensure_dict(gate_opts) - self.gate_opts['max_bond'] = D - self.gate_opts.setdefault('cutoff', 0.0) - self.gate_opts.setdefault('contract', 'reduce-split') + self.gate_opts["max_bond"] = D + self.gate_opts.setdefault("cutoff", 0.0) + self.gate_opts.setdefault("contract", "reduce-split") # parse energy computation options self.compute_energy_opts = ensure_dict(compute_energy_opts) @@ -487,7 +509,7 @@ def __init__( if ordering is None: def dynamic_random(): - return self.ham.get_auto_ordering('random_sequential') + return self.ham.get_auto_ordering("random_sequential") self.ordering = dynamic_random elif isinstance(ordering, str): @@ -506,7 +528,7 @@ def dynamic_random(): self.energies = [] self.keep_best = bool(keep_best) - self.best = dict(energy=float('inf'), state=None, it=None) + self.best = dict(energy=float("inf"), state=None, it=None) def sweep(self, tau): r"""Perform a full sweep of gates at every pair. @@ -555,7 +577,7 @@ def evolve(self, steps, tau=None, progbar=None): if progbar is None: progbar = self.progbar - pbar = Progbar(total=steps, disable=self.progbar is not True) + pbar = Progbar(total=steps, disable=progbar is not True) try: for i in range(steps): @@ -563,9 +585,9 @@ def evolve(self, steps, tau=None, progbar=None): self.presweep(i) # possibly compute the energy - should_compute_energy = ( - bool(self.compute_energy_every) and - (i % self.compute_energy_every == 0)) + should_compute_energy = bool(self.compute_energy_every) and ( + i % self.compute_energy_every == 0 + ) if should_compute_energy: self._check_energy() self._update_progbar(pbar) @@ -592,8 +614,7 @@ def evolve(self, steps, tau=None, progbar=None): @property def state(self): - """Return a copy of the current state. - """ + """Return a copy of the current state.""" return self.get_state() @state.setter @@ -602,25 +623,21 @@ def state(self, psi): @property def n(self): - """The number of sweeps performed. - """ + """The number of sweeps performed.""" return self._n @property def D(self): - """The maximum bond dimension. - """ - return self.gate_opts['max_bond'] + """The maximum bond dimension.""" + return self.gate_opts["max_bond"] @D.setter def D(self, value): - """The maximum bond dimension. - """ - self.gate_opts['max_bond'] = round(value) + """The maximum bond dimension.""" + self.gate_opts["max_bond"] = round(value) def _check_energy(self): - """Logic for maybe computing the energy if needed. - """ + """Logic for maybe computing the energy if needed.""" if self.its and (self._n == self.its[-1]): # only compute if haven't already return self.energies[-1] @@ -637,17 +654,17 @@ def _check_energy(self): self.taus.append(float(self.last_tau)) self.its.append(self._n) - if self.keep_best and en < self.best['energy']: - self.best['energy'] = en - self.best['state'] = self.state - self.best['it'] = self._n + if self.keep_best and en < self.best["energy"]: + self.best["energy"] = en + self.best["state"] = self.state + self.best["gauges"] = self.gauges.copy() + self.best["it"] = self._n return self.energies[-1] @property def energy(self): - """Return the energy of current state, computing it only if necessary. - """ + """Return the energy of current state, computing it only if necessary.""" return self._check_energy() # ------- abstract methods that subclasses might want to override ------- # @@ -681,17 +698,12 @@ def compute_energy(self): override this with a custom method to compute the energy. """ return self._psi.compute_local_expectation_cluster( - terms=self.ham.terms, - **self.compute_energy_opts + terms=self.ham.terms, **self.compute_energy_opts ) @default_to_neutral_style def plot( - self, - zoom="auto", - xscale="symlog", - xscale_linthresh=20, - hlines=() + self, zoom="auto", xscale="symlog", xscale_linthresh=20, hlines=() ): import numpy as np import matplotlib.pyplot as plt @@ -702,13 +714,13 @@ def plot( xs = np.array(self.its) ys = np.array(self.energies) - ax.plot(xs, ys, '.-') + ax.plot(xs, ys, ".-") ax.set_xlabel("Iteration") ax.set_ylabel("Energy") if xscale == "symlog": ax.set_xscale(xscale, linthresh=xscale_linthresh) - ax.axvline(xscale_linthresh, color=(.5, .5, .5), ls="-", lw=0.5) + ax.axvline(xscale_linthresh, color=(0.5, 0.5, 0.5), ls="-", lw=0.5) else: ax.set_xscale(xscale) @@ -730,22 +742,17 @@ def plot( def __repr__(self): s = "<{}(n={}, tau={}, D={})>" - return s.format( - self.__class__.__name__, self.n, self.tau, self.D) + return s.format(self.__class__.__name__, self.n, self.tau, self.D) class SimpleUpdateGen(TEBDGen): - """Simple update for arbitrary geometry hamiltonians. - """ + """Simple update for arbitrary geometry hamiltonians.""" def gate(self, U, where): - self._psi.gate_simple_( - U, where, gauges=self.gauges, **self.gate_opts - ) + self._psi.gate_simple_(U, where, gauges=self.gauges, **self.gate_opts) def normalize(self): - """Normalize the state and simple gauges. - """ + """Normalize the state and simple gauges.""" self._psi.normalize_simple(self.gauges) def compute_energy(self): @@ -773,5 +780,3 @@ def set_state(self, psi, gauges=None): self._psi.gauge_all_simple_(gauges=self.gauges) else: self.gauges = dict(gauges) - -