forked from RANDCorporation/dgmnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nodepred.py
91 lines (69 loc) · 3.19 KB
/
nodepred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, SAGEConv
class mlp(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(mlp, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_classes = num_classes
self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.fc2 = torch.nn.Linear(self.hidden_size, self.hidden_size)
self.fc3 = torch.nn.Linear(self.hidden_size, self.hidden_size)
self.fc4 = torch.nn.Linear(self.hidden_size, self.num_classes)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = F.dropout(x, p=0.2, training=self.training)
x = self.relu(self.fc2(x))
x = F.dropout(x, p=0.2, training=self.training)
x = self.relu(self.fc3(x))
x = F.dropout(x, p=0.2, training=self.training)
x = self.fc4(x)
x = x.log_softmax(dim=-1)
return x
class GCN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super(GCN, self).__init__()
self.conv1 = GCNConv(in_channels, hidden_channels)
self.conv2 = GCNConv(hidden_channels, hidden_channels)
self.conv3 = GCNConv(hidden_channels, hidden_channels)
self.lin = torch.nn.Linear(hidden_channels, out_channels)
def set_aggr(self, aggr):
self.conv1.aggr = aggr
self.conv2.aggr = aggr
self.conv3.aggr = aggr
def forward(self, x, edge_index, edge_weight=None):
#edge_index, _ = add_self_loops(edge_index)
x = F.relu(self.conv1(x, edge_index, edge_weight))
x = F.dropout(x, p=0.2, training=self.training)
x = F.relu(self.conv2(x, edge_index, edge_weight))
x = F.dropout(x, p=0.2, training=self.training)
x = F.relu(self.conv3(x, edge_index, edge_weight))
x = F.dropout(x, p=0.2, training=self.training)
x = self.lin(x)
x = x.log_softmax(dim=-1)
return x
class SAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super(SAGE, self).__init__()
self.conv1 = SAGEConv(in_channels, hidden_channels)
self.conv2 = SAGEConv(hidden_channels, hidden_channels)
self.conv3 = SAGEConv(hidden_channels, hidden_channels)
self.lin = torch.nn.Linear(hidden_channels, out_channels)
def set_aggr(self, aggr):
self.conv1.aggr = aggr
self.conv2.aggr = aggr
self.conv3.aggr = aggr
def forward(self, x, edge_index, edge_weight=None):
#edge_index, _ = add_self_loops(edge_index)
x = F.relu(self.conv1(x, edge_index, edge_weight))
x = F.dropout(x, p=0.2, training=self.training)
x = F.relu(self.conv2(x, edge_index, edge_weight))
x = F.dropout(x, p=0.2, training=self.training)
x = F.relu(self.conv3(x, edge_index, edge_weight))
x = F.dropout(x, p=0.2, training=self.training)
x = self.lin(x)
x = x.log_softmax(dim=-1)
return x