-
Notifications
You must be signed in to change notification settings - Fork 0
/
avr.c
1267 lines (1086 loc) · 31.9 KB
/
avr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <[email protected]>
* Copyright (C) 2011 Darell Tan <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id: avr.c 1294 2014-03-12 23:03:18Z joerg_wunsch $ */
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include "avrdude.h"
#include "avr.h"
#include "lists.h"
#include "pindefs.h"
#include "ppi.h"
#include "safemode.h"
#include "update.h"
#include "tpi.h"
FP_UpdateProgress update_progress;
#define DEBUG 0
/* TPI: returns 1 if NVM controller busy, 0 if free */
int avr_tpi_poll_nvmbsy(PROGRAMMER *pgm)
{
unsigned char cmd;
unsigned char res;
cmd = TPI_CMD_SIN | TPI_SIO_ADDR(TPI_IOREG_NVMCSR);
(void)pgm->cmd_tpi(pgm, &cmd, 1, &res, 1);
return (res & TPI_IOREG_NVMCSR_NVMBSY);
}
/* TPI chip erase sequence */
int avr_tpi_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
int err;
AVRMEM *mem;
if (p->flags & AVRPART_HAS_TPI) {
pgm->pgm_led(pgm, ON);
/* Set Pointer Register */
mem = avr_locate_mem(p, "flash");
if (mem == NULL) {
fprintf(stderr, "No flash memory to erase for part %s\n",
p->desc);
return -1;
}
unsigned char cmd[] = {
/* write pointer register high byte */
(TPI_CMD_SSTPR | 0),
((mem->offset & 0xFF) | 1),
/* and low byte */
(TPI_CMD_SSTPR | 1),
((mem->offset >> 8) & 0xFF),
/* write CHIP_ERASE command to NVMCMD register */
(TPI_CMD_SOUT | TPI_SIO_ADDR(TPI_IOREG_NVMCMD)),
TPI_NVMCMD_CHIP_ERASE,
/* write dummy value to start erase */
TPI_CMD_SST,
0xFF
};
while (avr_tpi_poll_nvmbsy(pgm));
err = pgm->cmd_tpi(pgm, cmd, sizeof(cmd), NULL, 0);
if(err)
return err;
while (avr_tpi_poll_nvmbsy(pgm));
pgm->pgm_led(pgm, OFF);
return 0;
} else {
fprintf(stderr, "%s called for a part that has no TPI\n", __func__);
return -1;
}
}
/* TPI program enable sequence */
int avr_tpi_program_enable(PROGRAMMER * pgm, AVRPART * p, unsigned char guard_time)
{
int err, retry;
unsigned char cmd[2];
unsigned char response;
if(p->flags & AVRPART_HAS_TPI) {
/* set guard time */
cmd[0] = (TPI_CMD_SSTCS | TPI_REG_TPIPCR);
cmd[1] = guard_time;
err = pgm->cmd_tpi(pgm, cmd, sizeof(cmd), NULL, 0);
if(err)
return err;
/* read TPI ident reg */
cmd[0] = (TPI_CMD_SLDCS | TPI_REG_TPIIR);
err = pgm->cmd_tpi(pgm, cmd, 1, &response, sizeof(response));
if (err || response != TPI_IDENT_CODE) {
fprintf(stderr, "TPIIR not correct\n");
return -1;
}
/* send SKEY command + SKEY */
err = pgm->cmd_tpi(pgm, tpi_skey_cmd, sizeof(tpi_skey_cmd), NULL, 0);
if(err)
return err;
/* check if device is ready */
for(retry = 0; retry < 10; retry++)
{
cmd[0] = (TPI_CMD_SLDCS | TPI_REG_TPISR);
err = pgm->cmd_tpi(pgm, cmd, 1, &response, sizeof(response));
if(err || !(response & TPI_REG_TPISR_NVMEN))
continue;
return 0;
}
fprintf(stderr, "Error enabling TPI external programming mode:");
fprintf(stderr, "Target does not reply\n");
return -1;
} else {
fprintf(stderr, "%s called for a part that has no TPI\n", __func__);
return -1;
}
}
/* TPI: setup NVMCMD register and pointer register (PR) for read/write/erase */
static int avr_tpi_setup_rw(PROGRAMMER * pgm, AVRMEM * mem,
unsigned long addr, unsigned char nvmcmd)
{
unsigned char cmd[4];
int rc;
/* set NVMCMD register */
cmd[0] = TPI_CMD_SOUT | TPI_SIO_ADDR(TPI_IOREG_NVMCMD);
cmd[1] = nvmcmd;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
if (rc == -1)
return -1;
/* set Pointer Register (PR) */
cmd[0] = TPI_CMD_SSTPR | 0;
cmd[1] = (mem->offset + addr) & 0xFF;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
if (rc == -1)
return -1;
cmd[0] = TPI_CMD_SSTPR | 1;
cmd[1] = ((mem->offset + addr) >> 8) & 0xFF;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
if (rc == -1)
return -1;
return 0;
}
int avr_read_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char * value)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char data;
int r;
OPCODE * readop, * lext;
if (pgm->cmd == NULL) {
fprintf(stderr,
"%s: Error: %s programmer uses avr_read_byte_default() but does not\n"
"provide a cmd() method.\n",
progname, pgm->type);
return -1;
}
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
if (p->flags & AVRPART_HAS_TPI) {
if (pgm->cmd_tpi == NULL) {
fprintf(stderr, "%s: Error: %s programmer does not support TPI\n",
progname, pgm->type);
return -1;
}
while (avr_tpi_poll_nvmbsy(pgm));
/* setup for read */
avr_tpi_setup_rw(pgm, mem, addr, TPI_NVMCMD_NO_OPERATION);
/* load byte */
cmd[0] = TPI_CMD_SLD;
r = pgm->cmd_tpi(pgm, cmd, 1, value, 1);
if (r == -1)
return -1;
return 0;
}
/*
* figure out what opcode to use
*/
if (mem->op[AVR_OP_READ_LO]) {
if (addr & 0x00000001)
readop = mem->op[AVR_OP_READ_HI];
else
readop = mem->op[AVR_OP_READ_LO];
addr = addr / 2;
}
else {
readop = mem->op[AVR_OP_READ];
}
if (readop == NULL) {
#if DEBUG
fprintf(stderr,
"avr_read_byte(): operation not supported on memory type \"%s\"\n",
mem->desc);
#endif
return -1;
}
/*
* If this device has a "load extended address" command, issue it.
*/
lext = mem->op[AVR_OP_LOAD_EXT_ADDR];
if (lext != NULL) {
memset(cmd, 0, sizeof(cmd));
avr_set_bits(lext, cmd);
avr_set_addr(lext, cmd, addr);
r = pgm->cmd(pgm, cmd, res);
if (r < 0)
return r;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(readop, cmd);
avr_set_addr(readop, cmd, addr);
r = pgm->cmd(pgm, cmd, res);
if (r < 0)
return r;
data = 0;
avr_get_output(readop, res, &data);
pgm->pgm_led(pgm, OFF);
*value = data;
return 0;
}
/*
* Return the number of "interesting" bytes in a memory buffer,
* "interesting" being defined as up to the last non-0xff data
* value. This is useful for determining where to stop when dealing
* with "flash" memory, since writing 0xff to flash is typically a
* no-op. Always return an even number since flash is word addressed.
*/
int avr_mem_hiaddr(AVRMEM * mem)
{
int i, n;
/* return the highest non-0xff address regardless of how much
memory was read */
for (i=mem->size-1; i>0; i--) {
if (mem->buf[i] != 0xff) {
n = i+1;
if (n & 0x01)
return n+1;
else
return n;
}
}
return 0;
}
/*
* Read the entirety of the specified memory type into the
* corresponding buffer of the avrpart pointed to by 'p'.
* If v is non-NULL, verify against v's memory area, only
* those cells that are tagged TAG_ALLOCATED are verified.
*
* Return the number of bytes read, or < 0 if an error occurs.
*/
int avr_read(PROGRAMMER * pgm, AVRPART * p, char * memtype,
AVRPART * v)
{
unsigned long i, lastaddr;
unsigned char cmd[4];
AVRMEM * mem, * vmem = NULL;
int rc;
mem = avr_locate_mem(p, memtype);
if (v != NULL)
vmem = avr_locate_mem(v, memtype);
if (mem == NULL) {
fprintf(stderr, "No \"%s\" memory for part %s\n",
memtype, p->desc);
return -1;
}
/*
* start with all 0xff
*/
memset(mem->buf, 0xff, mem->size);
/* supports "paged load" thru post-increment */
if ((p->flags & AVRPART_HAS_TPI) && mem->page_size != 0 &&
pgm->cmd_tpi != NULL) {
while (avr_tpi_poll_nvmbsy(pgm));
/* setup for read (NOOP) */
avr_tpi_setup_rw(pgm, mem, 0, TPI_NVMCMD_NO_OPERATION);
/* load bytes */
for (lastaddr = i = 0; i < mem->size; i++) {
if (vmem == NULL ||
(vmem->tags[i] & TAG_ALLOCATED) != 0)
{
if (lastaddr != i) {
/* need to setup new address */
avr_tpi_setup_rw(pgm, mem, i, TPI_NVMCMD_NO_OPERATION);
lastaddr = i;
}
cmd[0] = TPI_CMD_SLD_PI;
rc = pgm->cmd_tpi(pgm, cmd, 1, mem->buf + i, 1);
lastaddr++;
if (rc == -1) {
fprintf(stderr, "avr_read(): error reading address 0x%04lx\n", i);
return -1;
}
}
report_progress(i, mem->size, NULL);
}
return avr_mem_hiaddr(mem);
}
if (pgm->paged_load != NULL && mem->page_size != 0) {
/*
* the programmer supports a paged mode read
*/
int need_read, failure;
unsigned int pageaddr;
unsigned int npages, nread;
/* quickly scan number of pages to be written to first */
for (pageaddr = 0, npages = 0;
pageaddr < mem->size;
pageaddr += mem->page_size) {
/* check whether this page must be read */
for (i = pageaddr;
i < pageaddr + mem->page_size;
i++)
if (vmem == NULL /* no verify, read everything */ ||
(mem->tags[i] & TAG_ALLOCATED) != 0 /* verify, do only
read pages that
are needed in
input file */) {
npages++;
break;
}
}
for (pageaddr = 0, failure = 0, nread = 0;
!failure && pageaddr < mem->size;
pageaddr += mem->page_size) {
/* check whether this page must be read */
for (i = pageaddr, need_read = 0;
i < pageaddr + mem->page_size;
i++)
if (vmem == NULL /* no verify, read everything */ ||
(vmem->tags[i] & TAG_ALLOCATED) != 0 /* verify, do only
read pages that
are needed in
input file */) {
need_read = 1;
break;
}
if (need_read) {
rc = pgm->paged_load(pgm, p, mem, mem->page_size,
pageaddr, mem->page_size);
if (rc < 0)
/* paged load failed, fall back to byte-at-a-time read below */
failure = 1;
} else if (verbose >= 3) {
fprintf(stderr,
"%s: avr_read(): skipping page %u: no interesting data\n",
progname, pageaddr / mem->page_size);
}
nread++;
report_progress(nread, npages, NULL);
}
if (!failure) {
if (strcasecmp(mem->desc, "flash") == 0 ||
strcasecmp(mem->desc, "application") == 0 ||
strcasecmp(mem->desc, "apptable") == 0 ||
strcasecmp(mem->desc, "boot") == 0)
return avr_mem_hiaddr(mem);
else
return mem->size;
}
/* else: fall back to byte-at-a-time write, for historical reasons */
}
if (strcmp(mem->desc, "signature") == 0) {
if (pgm->read_sig_bytes) {
return pgm->read_sig_bytes(pgm, p, mem);
}
}
for (i=0; i < mem->size; i++) {
if (vmem == NULL ||
(vmem->tags[i] & TAG_ALLOCATED) != 0)
{
rc = pgm->read_byte(pgm, p, mem, i, mem->buf + i);
if (rc != 0) {
fprintf(stderr, "avr_read(): error reading address 0x%04lx\n", i);
if (rc == -1)
fprintf(stderr,
" read operation not supported for memory \"%s\"\n",
memtype);
return -2;
}
}
report_progress(i, mem->size, NULL);
}
if (strcasecmp(mem->desc, "flash") == 0 ||
strcasecmp(mem->desc, "application") == 0 ||
strcasecmp(mem->desc, "apptable") == 0 ||
strcasecmp(mem->desc, "boot") == 0)
return avr_mem_hiaddr(mem);
else
return i;
}
/*
* write a page data at the specified address
*/
int avr_write_page(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr)
{
unsigned char cmd[4];
unsigned char res[4];
OPCODE * wp, * lext;
if (pgm->cmd == NULL) {
fprintf(stderr,
"%s: Error: %s programmer uses avr_write_page() but does not\n"
"provide a cmd() method.\n",
progname, pgm->type);
return -1;
}
wp = mem->op[AVR_OP_WRITEPAGE];
if (wp == NULL) {
fprintf(stderr,
"avr_write_page(): memory \"%s\" not configured for page writes\n",
mem->desc);
return -1;
}
/*
* if this memory is word-addressable, adjust the address
* accordingly
*/
if ((mem->op[AVR_OP_LOADPAGE_LO]) || (mem->op[AVR_OP_READ_LO]))
addr = addr / 2;
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
/*
* If this device has a "load extended address" command, issue it.
*/
lext = mem->op[AVR_OP_LOAD_EXT_ADDR];
if (lext != NULL) {
memset(cmd, 0, sizeof(cmd));
avr_set_bits(lext, cmd);
avr_set_addr(lext, cmd, addr);
pgm->cmd(pgm, cmd, res);
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(wp, cmd);
avr_set_addr(wp, cmd, addr);
pgm->cmd(pgm, cmd, res);
/*
* since we don't know what voltage the target AVR is powered by, be
* conservative and delay the max amount the spec says to wait
*/
usleep(mem->max_write_delay);
pgm->pgm_led(pgm, OFF);
return 0;
}
int avr_write_byte_default(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char cmd[4];
unsigned char res[4];
unsigned char r;
int ready;
int tries;
unsigned long start_time;
unsigned long prog_time;
unsigned char b;
unsigned short caddr;
OPCODE * writeop;
int rc;
int readok=0;
struct timeval tv;
if (pgm->cmd == NULL) {
fprintf(stderr,
"%s: Error: %s programmer uses avr_write_byte_default() but does not\n"
"provide a cmd() method.\n",
progname, pgm->type);
return -1;
}
if (p->flags & AVRPART_HAS_TPI) {
if (pgm->cmd_tpi == NULL) {
fprintf(stderr, "%s: Error: %s programmer does not support TPI\n",
progname, pgm->type);
return -1;
}
if (strcmp(mem->desc, "flash") == 0) {
fprintf(stderr, "Writing a byte to flash is not supported for %s\n", p->desc);
return -1;
} else if ((mem->offset + addr) & 1) {
fprintf(stderr, "Writing a byte to an odd location is not supported for %s\n", p->desc);
return -1;
}
while (avr_tpi_poll_nvmbsy(pgm));
/* must erase fuse first */
if (strcmp(mem->desc, "fuse") == 0) {
/* setup for SECTION_ERASE (high byte) */
avr_tpi_setup_rw(pgm, mem, addr | 1, TPI_NVMCMD_SECTION_ERASE);
/* write dummy byte */
cmd[0] = TPI_CMD_SST;
cmd[1] = 0xFF;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
while (avr_tpi_poll_nvmbsy(pgm));
}
/* setup for WORD_WRITE */
avr_tpi_setup_rw(pgm, mem, addr, TPI_NVMCMD_WORD_WRITE);
cmd[0] = TPI_CMD_SST_PI;
cmd[1] = data;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
/* dummy high byte to start WORD_WRITE */
cmd[0] = TPI_CMD_SST_PI;
cmd[1] = data;
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
while (avr_tpi_poll_nvmbsy(pgm));
return 0;
}
if (!mem->paged &&
(p->flags & AVRPART_IS_AT90S1200) == 0) {
/*
* check to see if the write is necessary by reading the existing
* value and only write if we are changing the value; we can't
* use this optimization for paged addressing.
*
* For mysterious reasons, on the AT90S1200, this read operation
* sometimes causes the high byte of the same word to be
* programmed to the value of the low byte that has just been
* programmed before. Avoid that optimization on this device.
*/
rc = pgm->read_byte(pgm, p, mem, addr, &b);
if (rc != 0) {
if (rc != -1) {
return -2;
}
/*
* the read operation is not support on this memory type
*/
}
else {
readok = 1;
if (b == data) {
return 0;
}
}
}
/*
* determine which memory opcode to use
*/
if (mem->op[AVR_OP_WRITE_LO]) {
if (addr & 0x01)
writeop = mem->op[AVR_OP_WRITE_HI];
else
writeop = mem->op[AVR_OP_WRITE_LO];
caddr = addr / 2;
}
else if (mem->paged && mem->op[AVR_OP_LOADPAGE_LO]) {
if (addr & 0x01)
writeop = mem->op[AVR_OP_LOADPAGE_HI];
else
writeop = mem->op[AVR_OP_LOADPAGE_LO];
caddr = addr / 2;
}
else {
writeop = mem->op[AVR_OP_WRITE];
caddr = addr;
}
if (writeop == NULL) {
#if DEBUG
fprintf(stderr,
"avr_write_byte(): write not supported for memory type \"%s\"\n",
mem->desc);
#endif
return -1;
}
pgm->pgm_led(pgm, ON);
pgm->err_led(pgm, OFF);
memset(cmd, 0, sizeof(cmd));
avr_set_bits(writeop, cmd);
avr_set_addr(writeop, cmd, caddr);
avr_set_input(writeop, cmd, data);
pgm->cmd(pgm, cmd, res);
if (mem->paged) {
/*
* in paged addressing, single bytes to be written to the memory
* page complete immediately, we only need to delay when we commit
* the whole page via the avr_write_page() routine.
*/
pgm->pgm_led(pgm, OFF);
return 0;
}
if (readok == 0) {
/*
* read operation not supported for this memory type, just wait
* the max programming time and then return
*/
usleep(mem->max_write_delay); /* maximum write delay */
pgm->pgm_led(pgm, OFF);
return 0;
}
tries = 0;
ready = 0;
while (!ready) {
if ((data == mem->readback[0]) ||
(data == mem->readback[1])) {
/*
* use an extra long delay when we happen to be writing values
* used for polled data read-back. In this case, polling
* doesn't work, and we need to delay the worst case write time
* specified for the chip.
*/
usleep(mem->max_write_delay);
rc = pgm->read_byte(pgm, p, mem, addr, &r);
if (rc != 0) {
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, OFF);
return -5;
}
}
else {
gettimeofday (&tv, NULL);
start_time = (tv.tv_sec * 1000000) + tv.tv_usec;
do {
/*
* Do polling, but timeout after max_write_delay.
*/
rc = pgm->read_byte(pgm, p, mem, addr, &r);
if (rc != 0) {
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, ON);
return -4;
}
gettimeofday (&tv, NULL);
prog_time = (tv.tv_sec * 1000000) + tv.tv_usec;
} while ((r != data) &&
((prog_time-start_time) < mem->max_write_delay));
}
/*
* At this point we either have a valid readback or the
* max_write_delay is expired.
*/
if (r == data) {
ready = 1;
}
else if (mem->pwroff_after_write) {
/*
* The device has been flagged as power-off after write to this
* memory type. The reason we don't just blindly follow the
* flag is that the power-off advice may only apply to some
* memory bits but not all. We only actually power-off the
* device if the data read back does not match what we wrote.
*/
pgm->pgm_led(pgm, OFF);
fprintf(stderr,
"%s: this device must be powered off and back on to continue\n",
progname);
if (pgm->pinno[PPI_AVR_VCC]) {
fprintf(stderr, "%s: attempting to do this now ...\n", progname);
pgm->powerdown(pgm);
usleep(250000);
rc = pgm->initialize(pgm, p);
if (rc < 0) {
fprintf(stderr, "%s: initialization failed, rc=%d\n", progname, rc);
fprintf(stderr,
"%s: can't re-initialize device after programming the "
"%s bits\n", progname, mem->desc);
fprintf(stderr,
"%s: you must manually power-down the device and restart\n"
"%s: %s to continue.\n",
progname, progname, progname);
return -3;
}
fprintf(stderr, "%s: device was successfully re-initialized\n",
progname);
return 0;
}
}
tries++;
if (!ready && tries > 5) {
/*
* we wrote the data, but after waiting for what should have
* been plenty of time, the memory cell still doesn't match what
* we wrote. Indicate a write error.
*/
pgm->pgm_led(pgm, OFF);
pgm->err_led(pgm, ON);
return -6;
}
}
pgm->pgm_led(pgm, OFF);
return 0;
}
/*
* write a byte of data at the specified address
*/
int avr_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * mem,
unsigned long addr, unsigned char data)
{
unsigned char safemode_lfuse;
unsigned char safemode_hfuse;
unsigned char safemode_efuse;
unsigned char safemode_fuse;
/* If we write the fuses, then we need to tell safemode that they *should* change */
safemode_memfuses(0, &safemode_lfuse, &safemode_hfuse, &safemode_efuse, &safemode_fuse);
if (strcmp(mem->desc, "fuse")==0) {
safemode_fuse = data;
}
if (strcmp(mem->desc, "lfuse")==0) {
safemode_lfuse = data;
}
if (strcmp(mem->desc, "hfuse")==0) {
safemode_hfuse = data;
}
if (strcmp(mem->desc, "efuse")==0) {
safemode_efuse = data;
}
safemode_memfuses(1, &safemode_lfuse, &safemode_hfuse, &safemode_efuse, &safemode_fuse);
return pgm->write_byte(pgm, p, mem, addr, data);
}
/*
* Write the whole memory region of the specified memory from the
* corresponding buffer of the avrpart pointed to by 'p'. Write up to
* 'size' bytes from the buffer. Data is only written if the new data
* value is different from the existing data value. Data beyond
* 'size' bytes is not affected.
*
* Return the number of bytes written, or -1 if an error occurs.
*/
int avr_write(PROGRAMMER * pgm, AVRPART * p, char * memtype, int size,
int auto_erase)
{
int rc;
int newpage, page_tainted, flush_page, do_write;
int wsize;
unsigned int i, lastaddr;
unsigned char data;
int werror;
unsigned char cmd[4];
AVRMEM * m;
m = avr_locate_mem(p, memtype);
if (m == NULL) {
fprintf(stderr, "No \"%s\" memory for part %s\n",
memtype, p->desc);
return -1;
}
pgm->err_led(pgm, OFF);
werror = 0;
wsize = m->size;
if (size < wsize) {
wsize = size;
}
else if (size > wsize) {
fprintf(stderr,
"%s: WARNING: %d bytes requested, but memory region is only %d"
"bytes\n"
"%sOnly %d bytes will actually be written\n",
progname, size, wsize,
progbuf, wsize);
}
if ((p->flags & AVRPART_HAS_TPI) && m->page_size != 0 &&
pgm->cmd_tpi != NULL) {
while (avr_tpi_poll_nvmbsy(pgm));
/* setup for WORD_WRITE */
avr_tpi_setup_rw(pgm, m, 0, TPI_NVMCMD_WORD_WRITE);
/* make sure it's aligned to a word boundary */
if (wsize & 0x1) {
wsize++;
}
/* write words, low byte first */
for (lastaddr = i = 0; i < wsize; i += 2) {
if ((m->tags[i] & TAG_ALLOCATED) != 0 ||
(m->tags[i + 1] & TAG_ALLOCATED) != 0) {
if (lastaddr != i) {
/* need to setup new address */
avr_tpi_setup_rw(pgm, m, i, TPI_NVMCMD_WORD_WRITE);
lastaddr = i;
}
cmd[0] = TPI_CMD_SST_PI;
cmd[1] = m->buf[i];
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
cmd[1] = m->buf[i + 1];
rc = pgm->cmd_tpi(pgm, cmd, 2, NULL, 0);
lastaddr += 2;
while (avr_tpi_poll_nvmbsy(pgm));
}
report_progress(i, wsize, NULL);
}
return i;
}
if (pgm->paged_write != NULL && m->page_size != 0) {
/*
* the programmer supports a paged mode write
*/
int need_write, failure;
unsigned int pageaddr;
unsigned int npages, nwritten;
/* quickly scan number of pages to be written to first */
for (pageaddr = 0, npages = 0;
pageaddr < wsize;
pageaddr += m->page_size) {
/* check whether this page must be written to */
for (i = pageaddr;
i < pageaddr + m->page_size;
i++)
if ((m->tags[i] & TAG_ALLOCATED) != 0) {
npages++;
break;
}
}
for (pageaddr = 0, failure = 0, nwritten = 0;
!failure && pageaddr < wsize;
pageaddr += m->page_size) {
/* check whether this page must be written to */
for (i = pageaddr, need_write = 0;
i < pageaddr + m->page_size;
i++)
if ((m->tags[i] & TAG_ALLOCATED) != 0) {
need_write = 1;
break;
}
if (need_write) {
rc = 0;
if (auto_erase)
rc = pgm->page_erase(pgm, p, m, pageaddr);
if (rc >= 0)
rc = pgm->paged_write(pgm, p, m, m->page_size, pageaddr, m->page_size);
if (rc < 0)
/* paged write failed, fall back to byte-at-a-time write below */
failure = 1;
} else if (verbose >= 3) {
fprintf(stderr,
"%s: avr_write(): skipping page %u: no interesting data\n",
progname, pageaddr / m->page_size);
}
nwritten++;
report_progress(nwritten, npages, NULL);
}
if (!failure)
return wsize;
/* else: fall back to byte-at-a-time write, for historical reasons */
}
if (pgm->write_setup) {
pgm->write_setup(pgm, p, m);
}
newpage = 1;
page_tainted = 0;
flush_page = 0;
for (i=0; i<wsize; i++) {
data = m->buf[i];
report_progress(i, wsize, NULL);
/*
* Find out whether the write action must be invoked for this
* byte.
*
* For non-paged memory, this only happens if TAG_ALLOCATED is
* set for the byte.
*
* For paged memory, TAG_ALLOCATED also invokes the write
* operation, which is actually a page buffer fill only. This
* "taints" the page, and upon encountering the last byte of each
* tainted page, the write operation must also be invoked in order
* to actually write the page buffer to memory.
*/
do_write = (m->tags[i] & TAG_ALLOCATED) != 0;
if (m->paged) {
if (newpage) {