-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathpreprocess.py
80 lines (70 loc) · 3.87 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
from __future__ import print_function
import torch
import argparse
from data import data_utils
from data.data_utils import read_parallel_corpus
from data.data_utils import build_vocab
from data.data_utils import convert_text2idx
def main(opt):
train_src, train_tgt = read_parallel_corpus(opt.train_src, opt.train_tgt, opt.max_len, opt.lower_case)
dev_src, dev_tgt = read_parallel_corpus(opt.dev_src, opt.dev_tgt, None, opt.lower_case)
if opt.vocab:
src_counter, src_word2idx, src_idx2word, = torch.load(opt.vocab)['src_dict']
tgt_counter, tgt_word2idx, tgt_idx2word, = torch.load(opt.vocab)['tgt_dict']
else:
if opt.share_vocab:
print('Building shared vocabulary')
vocab_size = min(opt.src_vocab_size, opt.tgt_vocab_size) \
if (opt.src_vocab_size is not None and opt.tgt_vocab_size is not None) else None
counter, word2idx, idx2word = build_vocab(train_src + train_tgt, vocab_size,
opt.min_word_count, data_utils.extra_tokens)
src_counter, src_word2idx, src_idx2word = (counter, word2idx, idx2word)
tgt_counter, tgt_word2idx, tgt_idx2word = (counter, word2idx, idx2word)
else:
src_counter, src_word2idx, src_idx2word = build_vocab(train_src, opt.src_vocab_size,
opt.min_word_count, data_utils.extra_tokens)
tgt_counter, tgt_word2idx, tgt_idx2word = build_vocab(train_tgt, opt.tgt_vocab_size,
opt.min_word_count, data_utils.extra_tokens)
train_src, train_tgt = \
convert_text2idx(train_src, src_word2idx), convert_text2idx(train_tgt, tgt_word2idx)
dev_src, dev_tgt = \
convert_text2idx(dev_src, src_word2idx), convert_text2idx(dev_tgt, tgt_word2idx)
# Save source/target vocabulary and train/dev data
torch.save(
{
'src_dict' : (src_counter, src_word2idx, src_idx2word),
'tgt_dict' : (tgt_counter, tgt_word2idx, tgt_idx2word),
'src_path' : opt.train_src,
'tgt_path' : opt.train_tgt,
'lower_case': opt.lower_case
}
,'{}.dict'.format(opt.save_data)
)
torch.save(
{
'train_src': train_src, 'train_tgt': train_tgt,
'dev_src' : dev_src, 'dev_tgt' : dev_tgt,
'src_dict' : src_word2idx, 'tgt_dict' : tgt_word2idx,
}
, '{}-train.t7'.format(opt.save_data)
)
print('Saved the vocabulary at {}.dict'.format(opt.save_data))
print('Saved the preprocessed train/dev data at {}-train.t7'.format(opt.save_data))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Preprocessing')
parser.add_argument('-train_src', required=True, type=str, help='Path to training source data')
parser.add_argument('-train_tgt', required=True, type=str, help='Path to training target data')
parser.add_argument('-dev_src', required=True, type=str, help='Path to devation source data')
parser.add_argument('-dev_tgt', required=True, type=str, help='Path to devation target data')
parser.add_argument('-vocab', type=str, help='Path to an existing vocabulary file')
parser.add_argument('-src_vocab_size', type=int, help='Source vocabulary size')
parser.add_argument('-tgt_vocab_size', type=int, help='Target vocabulary size')
parser.add_argument('-min_word_count', type=int, default=1)
parser.add_argument('-max_len', type=int, default=50, help='Maximum sequence length')
parser.add_argument('-lower_case', action='store_true')
parser.add_argument('-share_vocab', action='store_true')
parser.add_argument('-save_data', required=True, type=str, help='Output file for the prepared data')
opt = parser.parse_args()
print(opt)
main(opt)