forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
variable.h
807 lines (717 loc) · 33.3 KB
/
variable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
#pragma once
#include <torch/csrc/utils/python_stub.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/autograd/cpp_hook.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/forward_grad.h>
#include <torch/csrc/autograd/function_hook.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/core/Tensor.h>
#include <c10/util/Exception.h>
#include <cstdint>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
namespace torch {
namespace autograd {
/// `Variable` is exactly the same as `Tensor` (i.e. we have `using Variable =
/// at::Tensor`). This means you can perform all the usual mathematical and
/// other operations you can perform on `Tensor`s also on `Variable`s.
///
/// The only reason we are keeping the `Variable` class is backward
/// compatibility with external user's legacy C++ frontend code. Our intention
/// is to eliminate the `Variable` class in the near future.
using Variable = at::Tensor;
} // namespace autograd
} // namespace torch
// The following are all internal APIs and should not be shown in libtorch docs.
// Therefore, we wrap the following code with `#ifndef DOXYGEN_SHOULD_SKIP_THIS
// ... #endif`
#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace torch {
namespace autograd {
/// Check if this type is supported by the autograd engine.
/// If you change this, update the doc at the top of the
/// torch/autograd/__init__.py file and
/// "test_set_requires_grad_only_for_continuous_types" in test/test_autograd.py
static inline bool isDifferentiableType(at::ScalarType t) {
return isFloatingType(t) || isComplexType(t);
}
struct Node;
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Variable
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// A `Variable` augments a `Tensor` with the ability to interact in our
/// autograd machinery. Conceptually, `Variable`s travel along `Edge`s between
/// `Node`s in the autograd graph. A `Variable` can either be a leaf, like a
/// weight in a neural network, or an interior variable, when it is the result
/// of an operation between variables. Every `Variable` also stores another
/// `Variable` called its `grad` (gradient). If the variable is a leaf, its
/// gradient will be accumulated into this variable.
///
/// Every Tensor is a Variable, but sometimes we colloquially refer to Variables
/// that don't require gradients as Tensors (since none of the autograd
/// machinery for Variables applies). Historically, Variables and Tensors
/// were separate concepts, but now they are exactly the same (i.e. we have
/// `using Variable = at::Tensor`).
///
/// Gradient Edges
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Furthermore, `Variable`s have the notion of a `gradient_edge`, which is the
/// edge in the autograd graph that connects the variable to a particular input
/// of the gradient function that will be invoked with the variable during the
/// backward pass. More precisely, this gradient function can be one of two
/// things:
/// 1. A `grad_fn`, if the variable is in the interior of the graph. This is the
/// gradient of the function that produced the variable.
/// 2. A `grad_accumulator`, if the variable is a leaf, which accumulates a
/// scalar gradient value into its `grad` variable.
///
/// Versioning
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Another major feature of `Variable`s are *versions*. Versions are
/// incremented when an in-place mutation of a variable occurs. Versions are
/// useful when constructing `SavedVariable`s, which take a snapshot of a
/// `Variable` at a certain version. You can retrieve a `Variable`'s version
/// through its `current_version()` method.
///
/// Views
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// It is possible for a `Variable` to be a *view* of another `Variable`, in
/// which case it tracks that `Variable`'s data and autograd history. Beyond
/// construction, the interface of a view is identical to that of a regular
/// `Variable`. You can determine whether `Variable` is in fact a view by
/// probing its `is_view()` method. Note that the *view* semantics are only
/// meaningful for `Variable` relations that are relevant to autograd.
/// See NOTE [ Autograd View Variables ] for more details.
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
struct AutogradMeta;
struct DifferentiableViewMeta;
// Private-ish functions for manipulating variables; we don't want to put them
// on Tensor proper
namespace impl {
// WARNING: This may return a nullptr. If you require AutogradMeta to return
// a materialized structure, use materialize_autograd_meta instead.
TORCH_API AutogradMeta* get_autograd_meta(const at::TensorBase&);
// WARNING: This will return a nullptr if the Tensor is not a view.
TORCH_API DifferentiableViewMeta* get_view_autograd_meta(const at::TensorBase&);
// Returns the current autograd meta, materializing it if it was previously
// none. This counts as a *mutating* operation, so do not call it on
// "read-only" operators; in particular, this is NOT thread safe
TORCH_API AutogradMeta* materialize_autograd_meta(const at::TensorBase&);
/// Set the gradient accumulator of the `Variable`. This is only applicable to
/// leaf variables. Interior variables should call `set_gradient_edge()`.
TORCH_API void set_grad_accumulator(
const Variable&,
std::weak_ptr<Node> grad_accumulator);
/// Attempts to get a pointer to the gradient accumulator of the `Variable`,
/// if it still exists. If the gradient accumulator function has been
/// destroyed, returns a `nullptr`.
TORCH_API std::shared_ptr<Node> try_get_grad_accumulator(const Variable&);
/// Gets the gradient accumulator of the `Variable` if it has one, or else
/// create one on the fly and return it.
TORCH_API std::shared_ptr<Node> grad_accumulator(const Variable&);
/// Returns the "canonical" gradient edge of this `Variable`, i.e. either the
/// gradient function if this is an interior `Variable`, or the gradient
/// accumulator otherwise. If the `Variable` is interior, the returned `Edge`
/// will store the input index of the `Node` to which this variable is
/// connected in its `input_nr` field. For leaves, the `input_nr` is always
/// zero. Note that `set_gradient_edge` and `gradient_edge` are not
/// symmetric. You must use `set_gradient_edge` to set the `grad_fn` and
/// `set_grad_accumulator` to set the accumulator.
TORCH_API Edge gradient_edge(const Variable&);
/// Set the gradient edge -- i.e. `grad_fn` and `input_nr` -- of the
/// `Variable`.
/// NOTE: This will always set the `grad_fn`, even if this is a leaf variable,
/// and never the `grad_accumulator`. For the latter, use
/// `set_grad_accumulator`. This allows late construction of an interior
/// `Variable`.
TORCH_API void set_gradient_edge(const Variable&, Edge edge);
// Autograd Graph Interaction
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Update the `grad_fn` of an existing Variable. Called after in-place
/// modifications.
///
/// For View Variables:
/// Called after in-place modifications. Modifies the grad_fn of the base
/// Variable.
TORCH_API void rebase_history(const Variable&, Edge gradient_edge);
/// Gets the raw gradient function pointer, whatever it currently is.
TORCH_API Node* grad_fn_unsafe(const Variable&);
/// Increments the version count of this `Variable`.
TORCH_API void bump_version(const Variable&);
TORCH_API void set_version_counter(
const Variable&,
const c10::VariableVersion& version_counter);
/// Retrieves this `Variable`s version counter.
TORCH_API const c10::VariableVersion& version_counter(const Variable&);
TORCH_API void set_name(const Variable&, const std::string& name);
TORCH_API void add_hook(
const at::TensorBase&,
std::unique_ptr<FunctionPreHook> hook);
TORCH_API std::vector<std::unique_ptr<FunctionPreHook>>& hooks(const Variable&);
TORCH_API void clear_hooks(const at::TensorBase&);
TORCH_API void create_cpp_hook(
const at::TensorBase&,
bool is_retains_grad_hooks = false);
} // namespace impl
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// AutogradMeta
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Each `Variable` has one unique `AutogradMeta` struct, which stores autograd
/// metadata fields that are necessary for tracking the Variable's autograd
/// history. As an optimization, a Variable may store a nullptr, in lieu of a
/// default constructed AutogradMeta.
struct TORCH_API AutogradMeta : public c10::AutogradMetaInterface {
std::string name_;
Variable grad_;
std::shared_ptr<Node> grad_fn_;
std::weak_ptr<Node> grad_accumulator_;
// This field is used to store all the forward AD gradients
// associated with this AutogradMeta (and the Tensor it corresponds to)
// There is a semantic 1:1 correspondence between AutogradMeta and
// ForwardGrad but:
// - This field is lazily populated.
// - This field is a shared_ptr but it must never be
// shared by multiple Tensors. See Note [ Using ForwardGrad ]
// Any transition from not_initialized to initialized
// must be protected by mutex_
std::shared_ptr<ForwardGrad> fw_grad_;
// The hooks_ field is actually reused by both python and cpp logic
// For both cases, we have a data structure, cpp_hooks_list_ (cpp)
// or dict (python) which is the canonical copy.
// Then, for both cases, we always register a single hook to
// hooks_ which wraps all the hooks in the list/dict.
// And, again in both cases, if the grad_fn exists on that tensor
// we will additionally register a single hook to the grad_fn.
//
// Note that the cpp and python use cases aren't actually aware of
// each other, so using both is not defined behavior.
std::vector<std::unique_ptr<FunctionPreHook>> hooks_;
std::shared_ptr<hooks_list> cpp_hooks_list_;
// Only meaningful on leaf variables (must be false otherwise)
bool requires_grad_{false};
// Only meaningful on non-leaf variables (must be false otherwise)
bool retains_grad_{false};
bool is_view_{false};
// The "output number" of this variable; e.g., if this variable
// was the second output of a function, then output_nr == 1.
// We use this to make sure we can setup the backwards trace
// correctly when this variable is passed to another function.
uint32_t output_nr_;
// Mutex to ensure that concurrent read operations that modify internal
// state are still thread-safe. Used by grad_fn(), grad_accumulator(),
// fw_grad() and set_fw_grad()
// This is mutable because we need to be able to acquire this from const
// version of this class for the functions above
mutable std::mutex mutex_;
/// Sets the `requires_grad` property of `Variable`. This should be true for
/// leaf variables that want to accumulate gradients, and false for all other
/// variables.
void set_requires_grad(bool requires_grad, at::TensorImpl* self_impl)
override {
TORCH_CHECK(
!requires_grad ||
isDifferentiableType(at::typeMetaToScalarType(self_impl->dtype())),
"Only Tensors of floating point and complex dtype can require gradients");
requires_grad_ = requires_grad;
}
bool requires_grad() const override {
return requires_grad_ || grad_fn_;
}
/// Accesses the gradient `Variable` of this `Variable`.
Variable& mutable_grad() override {
return grad_;
}
const Variable& grad() const override {
return grad_;
}
const Variable& fw_grad(uint64_t level, const at::TensorBase& self)
const override;
void set_fw_grad(
const at::TensorBase& new_grad,
const at::TensorBase& self,
uint64_t level,
bool is_inplace_op) override;
AutogradMeta(
at::TensorImpl* self_impl = nullptr,
bool requires_grad = false,
Edge gradient_edge = Edge())
: grad_fn_(std::move(gradient_edge.function)),
output_nr_(gradient_edge.input_nr) {
// set_requires_grad also checks error conditions.
if (requires_grad) {
TORCH_INTERNAL_ASSERT(self_impl);
// NOLINTNEXTLINE(clang-analyzer-optin.cplusplus.VirtualCall)
set_requires_grad(requires_grad, self_impl);
}
TORCH_CHECK(
!grad_fn_ || !requires_grad_,
"requires_grad should be false if grad_fn is set");
}
~AutogradMeta() override {
// If AutogradMeta is being destroyed, it means that there is no other
// reference to its corresponding Tensor. It implies that no other thread
// can be using this object and so there is no need to lock mutex_ here to
// guard the check if fw_grad_ is populated.
if (fw_grad_) {
// See note [ Using ForwardGrad ]
fw_grad_->clear();
}
}
};
struct TORCH_API ViewInfo {
/// The base `Variable`
/// If this ViewInfo represents a forward (respectively backward) AD gradient,
/// then this Tensor cannot be a forward (respectively backward) view.
Variable base_;
/// By default we use as_strided to recover views which is more efficient.
/// view_fn is only saved when as_strided is not supported.
/// If view_fn has value, we use it to recover views in backward.
std::function<Variable(const Variable&)> view_fn_;
/// Accessors for the view function
bool has_view_fn() const {
return view_fn_ != nullptr;
}
std::function<Variable(const Variable&)> view_fn() const {
TORCH_CHECK(
has_view_fn(), "Can only access the view function if it exists.");
return view_fn_;
}
/// The chain function can be used to build a new ViewInfo for a
/// differentiable view function. It will return a new view info that
/// accurately represents how "tensor" is a view of this instance's "base_".
/// The "base" and "tensor" are respectively the input and output of the
/// differentiable view function that happened. They are required to properly
/// set the optional view_fn_ when it is not provided. The "view_func", if
/// provided, should be a function that allows to re-do the view between
/// "base" and "tensor".
ViewInfo chain(
const Variable& base,
const Variable& tensor,
std::function<Variable(const Variable&)> view_func = nullptr) const;
ViewInfo(Variable base, std::function<Variable(const Variable&)> view_fn)
: base_(std::move(base)), view_fn_(std::move(view_fn)) {
TORCH_CHECK(base_.defined(), "base is undefined");
}
};
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// DifferentiableViewMeta
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// NOTE [ Autograd View Variables ]
///
/// Many operations return Variable that shares storage with an input Variable.
/// The returned Variable is called a **view** Variable on the input **base**
/// Variable.
///
/// In PyTorch, we have two types of views: differentiable views, and
/// non-differentiable views. In either type, to support proper version
/// checking, the base and view Variables must always share the same
/// version_counter.
///
///
/// Differentiable Views
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// This class allows to track both forward and backward AD differentiable
/// views. These views can have different base as non-differentiable view for
/// forward and backward mode AD are not the same.
///
/// Most function are either both forward and backward differentiable views (for
/// example: view, select, narrow, transpose, etc) or both not forward and not
/// backward differentiable views (for example: indices, values, eq, lt, etc).
/// But there are also functions that are forward but not backward
/// differentiable views (only detach for now) or functions that are backward
/// but not forward differentiable view (only make_dual and unpack dual for
/// now).
///
/// A concrete example of two views with different bases is as follow:
///
/// # Have:
/// # dual is a dual Tensor that is neither a forward or backward view
/// detached_dual = dual.detach()
/// view = detached_dual.view_as(dual)
/// # The forward base of view is dual
/// # The backward base of view is detached_dual
///
/// - Backward Mode View
/// Differentiable views are the view variables where you want gradients to flow
/// back to the base variables. Out-of-place operations on views are quite
/// straightforward, but in-place ones are very tricky. Even if the base
/// variable may not require grad when we create the view, we still need to
/// track the view relation because future in-place ops may require back-proping
/// through it. For example, we need to support
///
/// (1) in-place operation on view, e.g.,
///
/// # Have:
/// # base.requires_grad = False
/// # var.requires_grad = True
/// base[1] = var # i.e., base[1].copy_(var)
/// torch.autograd.grad(base.sum(), var) <- should return an all ones
/// tensor
///
/// (2) in-place operation on base after view is created, e.g.,
///
/// # Have:
/// # base.requires_grad = False
/// # var.requires_grad = True
/// view = base[1]
/// base.copy_(var)
/// torch.autograd.grad(view.sum(), var) <- should return a tensor with
/// var[1] filled with all ones and
/// zeros everywhere else
///
/// - Forward Mode View
/// Forward differentiable views follow the same semantic as backward ones but
/// show up differently as they are computed along with the forward evaluation.
/// The hard examples above are thus very similar
///
/// (1) in-place operation on view, e.g.,
///
/// # Have:
/// # base is a regular Tensor
/// # var is a dual Tensor whose tangent is all ones
/// base[1] = var # i.e., base[1].copy_(var)
/// # Now, base is a dual Tensor
/// _, fw_grad = fwAD.unpack_dual(base) <- fw_grad should be a tensor with
/// fw_grad[1] filled with all ones
/// and zeros everywhere else
///
/// (2) in-place operation on base after view is created, e.g.,
///
/// # Have:
/// # base is a regular Tensor
/// # var is a dual Tensor whose tangent is all ones
/// view = base[1]
/// base.copy_(var)
/// _, fw_grad = fwAD.unpack_dual(view) <- fw_grad should be an all ones
/// tensor
///
/// See Note [Forward Grad View/inplace] for more details on how we handle these
/// hard cases.
///
///
/// DifferentiableViewMeta is created to support gradient tracking of
/// such **in-place** operations. In particular,
/// + if an in-place op is done on base, the grad_fn field of the view may
/// become stale. So accesses should always go through grad_fn(), which
/// reconstructs an updated grad_fn if the version_counter has incremented.
/// All other fields are always valid.
/// + if an in-place op is done on view, in rebase_history() of view, which is
/// called after every in-place op in VariableType.cpp, the grad_fn of base
/// is updated.
/// + if a single autograd Node returns multiple differentiable views, if any
/// output is modified by an inplace operation, the autograd engine will
/// make an equivalent graph (corresponding to the view operations) without
/// using equivalent graph, where each output is treated as if it were
/// produced by a distinct view operation. This discards the original (e.g.,
/// user provided) grad_fn. If the provided grad_fn does more than the
/// backward of the view, then the DifferentiableViewMeta must be created
/// with creation_meta= CreationMeta::MULTI_OUTPUT_NODE to prevent the
/// engine from ignoring the provided grad_fn.
///
/// Interaction with GradMode:
/// The particular case that we consider here is:
///
/// # Have:
/// # base.requires_grad = True or False
/// with torch.no_grad():
/// view = base[1]
/// base.requires_grad_()
/// view.copy_(var)
/// torch.autograd.grad(base.sum(), var) <- what should it return?
///
/// Given that this particular code example is ambiguous and can easily be
/// replace by either moving both inside the no_grad block or both outside, we
/// explicitly forbid it. For now, it is deprecated by a warning. This is
/// achieved by setting creation_meta=CreationMeta::NO_GRAD_MODE for all
/// differentiable views created in no_grad mode.
///
/// See Note [View + Inplace update for base tensor]
/// and Note [View + Inplace update for view tensor] for the details how
/// autograd handles inplace update with view ops.
///
/// Non-Differentiable Views
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// In certain cases, although function outputs share storage with inputs, they
/// will **never** require gradient history tracking. Instead of registering the
/// view relation via DifferentiableViewMeta in autograd, the views will be
/// using usual AutogradMeta and just share the version counters with the base
/// Variables.
/// Such views include:
/// 1. Views created from .detach()
/// 2. Views that are non-differentiable by its nature.
/// E.g., `sparse_tensor.indices()` is a integral view on a (possibly)
/// floating point tensor.
/// See top of `derivatives.yaml` on how to specify that outputs of a
/// function are non-differentiable.
/// These are called non-differentiable views as the gradients do not flow
/// through the view relation.
///
/// Relevant logic for both differentiable and non-differentiable views is
/// implemented in make_variable_(non_)differentiable_view below, and
/// wrap_output of gen_variable_type.py.
/// NOTE [ View + Inplace detection ]
///
/// We want to detect views followed by inplace as they are often forbidden to
/// ensure correctness of the computed gradients. But since we want to only
/// notify the user when both happen, we tag the DifferentiableViewMeta when the
/// view is created via the `make_variable_*_view()` functions. This tag is then
/// checked by the `check_inplace()` function from `VariableTypeUtils.h` that
/// should be called before every inplace operation and to detect cases where
/// other views are modified and this one is rebased by side effect, we also
/// check in the `VariableHooks::grad_fn()`.
/// Flag that gives more information about when this view was created:
/// - IN_CUSTOM_FUNCTION should be set when the view is created inside a custom
/// autograd Function is returned.
/// - NO_GRAD_MODE should be set when a view in created when GradMode is
/// disabled
/// - MULTI_OUTPUT_NODE should be set when a Node created by codegen code
/// returns
/// multiple differentiable views
/// - Inference_MODE should be set when a view of normal tensor is created in
/// InferenceMode.
/// - DEFAULT is for all other cases
enum class CreationMeta : uint8_t {
DEFAULT,
IN_CUSTOM_FUNCTION,
MULTI_OUTPUT_NODE,
NO_GRAD_MODE,
INFERENCE_MODE
};
/// Handles correctly propagating CreationMeta when a new view is created from a
/// previous view. In general, we don't want the new view to be _less_
/// restrictive than the previous view (it's okay to be _more_ restrictive). A
/// CreationMeta value of DEFAULT is currently the least restrictive, as the
/// behavior for all other CreationMeta values is to error out for in-place ops.
/// A CreationMeta value of INFERENCE_MODE is currently the most restrictive, so
/// it takes precedence in propagation. If this changes, the logic here will
/// need to be updated to properly handle the new semantics.
inline CreationMeta propagate_creation_meta(
CreationMeta prev_view_creation_meta,
CreationMeta new_view_creation_meta) {
return (new_view_creation_meta == CreationMeta::DEFAULT)
? prev_view_creation_meta
: (prev_view_creation_meta == CreationMeta::INFERENCE_MODE
? prev_view_creation_meta
: new_view_creation_meta);
}
/// Unified function to handle error checking when rebase happens
/// indirect=true means that the caller is not doing the inplace, but the
/// inplace happened somewhere else.
TORCH_API void handle_view_on_rebase(
DifferentiableViewMeta* diff_view_meta,
bool indirect = false);
struct TORCH_API DifferentiableViewMeta : public AutogradMeta {
private:
/// Informations about the views
c10::optional<ViewInfo> backward_info_;
c10::optional<ViewInfo> forward_info_;
// Optimization to reduce the number of ViewInfo we create.
// In the (very common) case where backward_info_ == forward_info_, we only
// populate backward_info_ (that should be used as both the forward and
// backward view information) and set shared_view_info_ = true. Invariants:
// - If shared_view_info_ is false, there is no special constraints on
// backward_info_ and forward_info_
// - If shared_view_info_ is true, we must have:
// - backward_info_.has_value() == true
// - forward_info_.has_value() == false
bool shared_view_info_;
/// The two following fields are extra information that we track to ensure
/// that any operation on this backward view is valid.
/// The value of the version_counter at the time grad_fn was created. The
/// grad_fn field is stale if attr_version_ !=
/// version_counter.current_version().
uint32_t attr_version_;
CreationMeta creation_meta_;
public:
/// requires_grad is a backward AD field so we only use the view specific
/// logic for backward differentiable views
bool requires_grad() const override {
return requires_grad_ || grad_fn_ ||
(has_bw_view() && get_backward_view().base_.requires_grad());
}
bool shared_view_info() const {
return shared_view_info_;
}
bool has_bw_view() const {
return backward_info_.has_value();
}
const ViewInfo& get_backward_view() const {
TORCH_CHECK(
has_bw_view(), "backward view info can only exist for backward views.");
return backward_info_.value();
}
uint32_t get_attr_version() const {
TORCH_CHECK(
has_bw_view(), "attr_version can only exist for backward views.");
return attr_version_;
}
void set_attr_version(uint32_t new_attr_version) {
TORCH_CHECK(
has_bw_view(), "attr_version can only exist for backward views.");
attr_version_ = new_attr_version;
}
CreationMeta get_creation_meta() const {
TORCH_CHECK(
has_bw_view(), "creation_meta can only exist for backward views.");
return creation_meta_;
}
void set_creation_meta(CreationMeta new_creation_meta) {
TORCH_CHECK(
has_bw_view(), "creation_meta can only exist for backward views.");
creation_meta_ = new_creation_meta;
}
bool has_fw_view() const {
return shared_view_info_ || forward_info_.has_value();
}
const ViewInfo& get_forward_view() const {
TORCH_CHECK(
has_fw_view(), "forward view info can only exist for forward views.");
TORCH_CHECK(
!shared_view_info_ || has_bw_view(),
"forward view info can only exist for forward views.");
return shared_view_info_ ? backward_info_.value() : forward_info_.value();
}
DifferentiableViewMeta(
at::TensorImpl* self_impl,
c10::optional<ViewInfo> backward_info,
c10::optional<ViewInfo> forward_info,
bool shared_view_info,
CreationMeta creation_meta = CreationMeta::DEFAULT);
};
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Variable Implementation
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Factory Functions
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Creates a `Variable` that is a *view* of another (*base*) variable.
/// The `gradient_edge` is an optional (gradient_function, input_number) pair.
/// `is_differentiable` is a bool that specifies whether this view is
/// differentiable, i.e., whether the relation should be tracked by autograd.
/// See NOTE [ Autograd View Variables ] for details.
/// NOTE: `allow_tensor_metadata_change` is set to true by default, because
/// there are a lot of call sites to these factory functions that need to change
/// the variable's size or storage afterwards, and they don't expect the
/// original tensor (where the variable is created from) to be updated. Setting
/// `allow_tensor_metadata_change_` to false by default would unnecessarily
/// prevent those changes from happening and is undesirable.
// See NOTE [ Autograd View Variables ] for details.
// Differentiable view. Track history with DifferentiableViewMeta.
inline Variable make_variable_differentiable_view(
const at::Tensor& data,
c10::optional<ViewInfo> backward_info,
c10::optional<ViewInfo> forward_info,
bool shared_view_info,
CreationMeta creation_meta,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
TORCH_CHECK(
data.getIntrusivePtr()->autograd_meta() == nullptr,
"Attempted to make a tensor into a differentiable view, but the "
"tensor already had autograd metadata associated with it. If you are "
"using a __torch_dispatch__ mode, the most common cause for this "
"problem is that you used torch.overrides.enable_reentrant_dispatch() "
"improperly; tensors created within the extent of reentrant dispatch "
"MUST NOT be directly returned from __torch_dispatch__; instead, they "
"must be wrapped into fresh tensors that serve as the output. If you "
"are not using wrappers, you probably don't need reentrant dispatch. "
"If this doesn't seem applicable, please file a bug to PyTorch.");
at::TensorImpl* data_impl = data.unsafeGetTensorImpl();
data_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
data_impl->set_autograd_meta(std::make_unique<DifferentiableViewMeta>(
data_impl,
std::move(backward_info),
std::move(forward_info),
shared_view_info,
creation_meta));
return data;
}
return Variable();
}
// See NOTE [ Autograd View Variables ] for details.
// Non-differentiable view. Just share version counter.
inline Variable make_variable_non_differentiable_view(
Variable base,
const at::Tensor& data,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
// Currently all of non-differentiable view ops(detach/_indices/_values)
// share the same TensorImpl as their base Tensor. Thus a new TensorImpl
// allocation here is required.
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/impl::version_counter(base),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
data_impl_copy->set_autograd_meta(nullptr);
return Variable(data_impl_copy);
}
return Variable();
}
/// Creates a `Variable` from the given `Tensor`, copying its underlying
/// `TensorImpl`. `requires_grad` should be set only for leaves, and determines
/// whether the `Variable` will accumulate gradients. NOTE: `data` must *not* be
/// a `Variable` already. Its dynamic type *must* be `Tensor`.
///
/// TODO: Eliminate this function as much as possible, as it can be expressed
/// more clearly as detach() or a no-op in most call sites (especially when
/// there is only one use of the variable).
inline Variable make_variable(
at::Tensor data,
bool requires_grad = false,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
if (data.getIntrusivePtr().use_count() == 1 &&
data.getIntrusivePtr()->unique_version()) {
auto data_impl = data.unsafeReleaseIntrusivePtr();
data_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (requires_grad) {
data_impl->set_autograd_meta(
std::make_unique<AutogradMeta>(data_impl.get(), requires_grad));
} else {
data_impl->set_autograd_meta(nullptr);
}
return Variable(std::move(data_impl));
} else {
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/0,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (requires_grad) {
data_impl_copy->set_autograd_meta(std::make_unique<AutogradMeta>(
data_impl_copy.get(), requires_grad));
} else {
data_impl_copy->set_autograd_meta(nullptr);
}
return Variable(data_impl_copy);
}
}
return Variable();
}
/// Creates a `Variable` from the given `Tensor`, copying its underlying
/// `TensorImpl`. `gradient_edge` should be a (function, input_nr) pair
/// specifying the function in the autograd graph, and what particular input of
/// that function, this variable is connected to.
inline Variable make_variable(
at::Tensor data,
Edge gradient_edge,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/0,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
data_impl_copy->set_autograd_meta(std::make_unique<AutogradMeta>(
data_impl_copy.get(), false, std::move(gradient_edge)));
return Variable(data_impl_copy);
}
return Variable();
}
namespace utils {
TORCH_API bool has_same_meta(const Variable& base, const Variable& other);
} // namespace utils
} // namespace autograd
} // namespace torch
#endif /* DOXYGEN_SHOULD_SKIP_THIS */